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We use quantum Monte Carlo (stochastic series expansion) and finite-size scaling to study the quantum
critical points of two S=1/2 Heisenberg antiferromagnets in two dimensions: a bilayer and a Kondo-lattice-
like system (incomplete bilayer), each with intraplane and interplane couplings J and J,. We discuss the
ground-state finite-size scaling properties of three different quantities—the Binder moment ratio, the spin
stiffness, and the long-wavelength magnetic susceptibility—which we use to extract the critical value of the
coupling ratio g=J/J. The individual estimates of g. are consistent provided that subleading finite-size
corrections are properly taken into account. For both models, we find that the spin stiffness has the smallest
subleading finite-size corrections; in the case of the incomplete bilayer we find that the first subleading
correction vanishes or is extremely small. In agreement with predictions, we find that at the critical point the
Binder ratio has a universal value and the product of the spin stiffness and the long-wavelength susceptibility
scales as 1/L* with a universal prefactor. Our results for the critical coupling ratios are g,=2.5220(1) (full
bilayer) and g.=1.3888(1) (incomplete bilayer), which represent improvements of more than an order of
magnitude over the previous best estimates. For the correlation length exponent we obtain v=0.7106(9),

consistent with the expected three-dimensional Heisenberg universality class.
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I. INTRODUCTION

The two-dimensional (2D) S=1/2 Heisenberg antiferro-
magnet has received considerable attention in the past two
decades because of its close relation to the CuO, layers of
the cuprate superconductors.! Other, even better realizations
of this model system have been discovered as well.”> The
properties of the single-layer Heisenberg model have been
thoroughly studied using both analytical and numerical
methods, and there is very good agreement with experi-
ments, e.g., for the temperature dependence of the spin cor-
relation length®* in La,CuO, (measured using neutron scat-
tering) and NMR relaxation rates.’

Mapping the lattice Heisenberg model onto a continuum
field theory yields the (2+1)-dimensional nonlinear o
model,>® the coupling constant g of which controls the tran-
sition from Néel order to quantum disorder at temperature
T=0 (a quantum phase transition’). This transition is in the
universality class of the finite-T transition of the 3D classical
Heisenberg model.>® Having an ordered ground state,” the
2D square-lattice S=1/2 Heisenberg model corresponds to
g<g,.. Even so, there is some influence from the critical
point, because a quantum phase transition is also associated
with universal quantum critical scaling at finite temperature,
in an extended (g,7) regime where temperature is the domi-
nant energy scale.'” The energy scales characterizing the or-
dered and disordered phases—the spin stiffness and the
singlet-triplet gap, respectively—vanish continuously as g
— g., and hence the quantum critical regime fans out from
the point (g=g.,T=0).

A quantum phase transition of the type described by the
nonlinear o model can be realized in the Heisenberg antifer-
romagnet by introducing a pattern of two (or more) different
coupling strengths in a way that favors singlet formation on
dimers (or larger units of an even number of spins).>!? This
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leads to an order-disorder transition at some critical coupling
ratio. Models of this kind, e.g., a bilayer where dimers form
across the layers,!'"!3 single layers with various dimer
patterns,'*!> or a regularly depleted system where singlets
form on rings of four or eight spins,'® have been extensively
studied using quantum Monte Carlo simulations in order to
confirm the expected universality class and to test very de-
tailed predictions'® of the finite-7' quantum critical behavior
of various quantities. The predicted universal behavior was
confirmed at low temperature.'>!5-!8 The simulations also
served to establish the onset of nonuniversal lattice effects at
higher temperature and the nature of the crossover!® to the
low-temperature  renormalized classical or quantum-
disordered regimes away from the critical point.

In this paper we study the critical points of two different
S=1/2 Heisenberg models: a symmetric bilayer and a
Kondo-lattice-like system in which there are no intraplane
couplings in one of the layers. We will refer to these systems
as the full and incomplete bilayers, respectively; see Fig. 1.
Their Hamiltonians (H, for the full bilayer and H, for the
incomplete bilayer) are given by

H=J72 (Sli'slj"'SZi‘SZj)"'JJ_E Sii+Sa, (1)
(i.j) i

Hy=J2S,;-S;;+J, 2 S-Sy 2)
(i.j) i

Here, S,; is a spin-1/2 operator at site i of layer a (a
=1,2), and (i,j) denotes a pair of nearest-neighbor sites on
the square lattice of L X L sites with periodic boundary con-
ditions. Both coupling constants are antiferromagnetic
(J,J,>0). In order to avoid any frustration we consider
only even L. As the ratio g=J,/J is increased, there is a
tendency to form interplane near-neighbor singlets, which at
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FIG. 1. The arrangement of spin interactions in the (a) full and
(b) incomplete bilayers. There are two different couplings: J (intra-
plane) and J | (interplane), as indicated.

some g=g, leads to the opening of a spin gap and destruction
of the long-range Néel order present for g<<g,. (in the limit
g— the ground state is a singlet product, which clearly
cannot support long-range spin-spin correlations). This is the
transition we investigate in detail in this paper.

Our purpose in studying these models is twofold. First,
we would like to determinate the locations of the critical
points to much higher accuracy than they are currently
known. The best estimates to date are g.=2.525(2) (full
bilayer)!” and g.=1.393(8) (incomplete bilayer)?! (see also
Ref. 18). The statistical accuracies here are quite modest
compared to results for the standard classical critical points
(e.g., the 3D Heisenberg model'®?°). It would be useful to
increase the precision so that studies of various aspects of
finite-7 quantum criticality (e.g., interesting properties of
isolated impurities in a critical host system?>2%) could be
studied numerically at low T very close to the critical point
(minimizing the effects of the eventual crossover to the
renormalized-classical or quantum-diosrdered regime). Sec-
ond, we wish to compare several different ways of extracting
the critical coupling, in order to gain additional confidence in
the results and to provide guidance for studies of other quan-
tum critical points. The reason for choosing the particular
bilayer lattices of Fig. 1, over other 2D Heisenberg systems
undergoing the same type of transition, is that they do not
break any in-plane symmetries of the square lattice.

We have carried out finite-size scaling of low-temperature
(T— 0 converged) QMC results for three different quantities:
the Binder cumulant ratio, the spin stiffness, and the long-
wavelength (uniform) magnetic susceptibility. We use our
recently proposed method for including subleading finite-
size corrections.?” Although this necessitates nonlinear fits
with a relatively large number of independent parameters, we
believe that this is necessary in order to minimize systematic
errors. Our final results for the critical couplings are g,
=2.5220(1) for the full bilayer and g.=1.3888(1) for the
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incomplete bilayer, i.e., the precision is improved by ap-
proximately one and two orders of magnitude, respectively,
relative to the previous estimates. In addition to statistical
uncertainties, the error bars here reflect estimates of the ef-
fects of remaining systematic errors, which are due to ne-
glected higher-order subleading corrections. We have esti-
mated these using a consistency check of universal quantities
not included in the fits.

Our fitting procedure also gives the correlation-length ex-
ponent v, but because of the multiparameter fits and the rela-
tively modest lattices sizes (L up to 42), its precision is not
quite as high (the error bars are roughly twice as large) as
that of recent classical Monte Carlo simulations of the 3D
Heisenberg model.?° Nevertheless, our result »=0.7106(9) is
fully consistent with the presently most accurate value of this
exponent v=0.7112(5).%°

We also present results for universal quantities at the criti-
cal point. The Binder moment ratio is dimensionless and
independent of system size to leading order in 1/L. We find
that its value in the g— g., L— oc limit is consistent for each
of the two different bilayer models. The spin stiffness and the
long-wavelength susceptibility, on the other hand, are dimen-
sionful quantities and are believed to scale as ¢/L and 1/cL
with universal prefactors.'” Since we have no independent
estimate of ¢, the spin-wave velocity, we cannot test this
prediction directly. We do, however, verify that the product
of the spin stiffness and susceptibility scales as 1/L? with a
universal prefactor.

The rest of the paper is organized as follows. In Sec. II we
discuss the quantities that we have calculated and their QMC
[stochastic series expansion (SSE)] estimators, as well as
their expected finite-size scaling forms. In Sec. III we first
briefly review our approach to deal with subleading finite-
size corrections and then present the results of the analysis.
We give a brief summary and conclusions in Sec. I'V.

II. CALCULATED OBSERVABLES AND THEIR CRITICAL
SCALING PROPERTIES

We have used the SSE QMC method with operator-loop
updates.?® This approach is based on sampling diagonal ma-
trix elements of the power series expansion of exp(—BH),
where 3 is the inverse temperature. We use L X L X 2 lattices
with periodic boundary conditions in the x and y directions,
with even L up to 42. In order to ensure convergence of all
calculated quantities to their ground-state values, we carried
out simulations at inverse temperatures 3,=2" with integer n
taken large enough so that results for 8, and (,_; agree
within statistical errors. Examples of the convergence are
shown in Fig. 2.

A. Binder moment ratios Q;

The magnetic moment ratios Q; introduced by Binder?!
have the very useful property of being universal at the criti-
cal point, because all nonuniversal scale factors cancel out
along with the length dependence. This follows from the
finite-size scaling hypothesis for the ordered moment (here
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FIG. 2. (Color online) Convergence as a function of inverse
temperature B=2" of the squared sublattice magnetization to its
ground state value for three different lattice sizes. The inset shows
the behavior for L=16 on a more detailed scale.

the staggered magnetization). The kth power of the staggered
magnetization scales as

(m|5y, = LB M (eL), (3)

where L is the linear system length, 8 and v are critical
indices in their standard notation, and 7 is the reduced cou-
pling constant, which we define here in terms of the coupling
ratio g as t=(g—g.)/ g.. M(x) are the scaling functions. Con-
sequently, the moment ratios

2%
(m™)

2k
(m >L
are dimensionless scaling functions. At the critical point,
0,(0,0) are universal constants.

We have computed the first two Binder ratios, which we
define as

Qi(t,L) = 4)

) X
(mly  2(m?])?”

Cm s(md)Y
= 2T 3 ()

where m® is the z component of the staggered magnetization
operator

0, &)

0, (6)

=z =

m*=

N
E Si(=1)"™i=mcos(O). (7)
i=1

Here, N=2L? is the number of lattice sites. Since the O(3)
spin-rotational symmetry is not broken in the simulations in
the ordered phase (i.e., an average over all angles © is ob-
tained) we have included the appropriate factors to compen-
sate for the rotational averaging of m® in Egs. (5) and (6).

In Fig. 3 we show the ratio Q, for both bilayer systems as
a function of g for lattices of different linear length L. One
can clearly see the curve crossings, indicating a quantum
critical point, but it is apparent that there are sizable correc-
tions to their location. We will analyze these crossing-point
shifts in Sec. III.
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FIG. 3. The Binder ratio Q, is plotted as a function of the
coupling ratio for the (a) full and (b) incomplete bilayers. Results
for even L from 8 to 42 are shown (all except for L
=22,26,34,38). The slope of the curves increases with L.

Note that Q, at the crossing point is approximately the
same for both models, in accord with an expected universal
value as L— 0. Simulations done on 3D classical Heisenberg
models'®?02% gave a universal value in the range 1.35-1.40,
i.e., substantially larger than what we see in Fig. 3 (clearly
these values have not yet completely converged to their
infinite-size Q,, and the trend is for the crossing value to
increase with L, but we will show that they converge to O,
~1.29). This disagreement with the classical value is easily
accounted for by considering the way the sublattice magne-
tization is defined and computed in a quantum system: Al-
though the 2D system formally is mapped onto a 3D classi-
cal model, (|m?[*) is an equal-time expectation value, which
in the simulations is averaged over the third (imaginary time)
direction. This corresponds directly to taking expectation
values over individual layers in a 3D classical model. We are
not aware of any such calculation and hence cannot compare
directly with the corresponding classical universal value.
Nevertheless, as we will show in greater detail in Sec. III, the
crossing O, values for both our systems are fully consistent
with each other and hence support universality.

B. Spin stiffness p

In continuum field theory language, a stiffness p is de-
fined in terms of the increase in free-energy density f as a
boundary-condition twist ® is imposed on the order-
parameter field 6:

1 1
of(t.L) = EP(V 0)° = Ep(q)/L)z. (8)

The prefactor is the stiffness constant
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&,
=1"—. 9
p=Lm )
At a quantum critical point, it should scale as>°
p~ L7, (10)

where d is the dimensionality and z is the dynamic critical
exponent.

For the Heisenberg model, the spin stiffness p, is deter-
mined by imposing a twist directly in the Hamiltonian, modi-
fying the spin-spin interactions in one of the lattice directions
S;-S;—S;-R(®/L)S;, where R rotates the spin operator
about an appropriately chosen axis.’> In SSE simulations,
like in path integrals,®® the stiffness is directly obtained with-
out explicitly imposing a twist, as the second derivative of
the energy with respect to the twist at ®=0. This leads to an
estimator in terms of winding number fluctuations®?

3
pe= Wi+ w)IB, (11)

where the winding numbers are
we=Ng=NJIL (a=xy). (12)

Here N, (N,) is the number of operators S;'S; (S;S}) in the
sampled terms of the power series expansion, with i,j two
nearest-neighbor sites oriented along the lattice a (x or y)
axis. The definition (11) corresponds to the stiffness per unit
cell of the bilayer models.

In the case of the bilayer models we have d=2 and expect
z=1, and hence the scaling (10) becomes p,~ L~'. The quan-
tity p,L should thus be size independent at the critical point,
and also in this case one can expect curves for different L to
cross each other. Such crossings have previously been used
to approximately locate the critical point of the full bilayer.3?
In two dimensions, pL should be a universal number times
the spin-wave velocity.!”

Figure 4 shows our SSE results for p,L versus g for dif-
ferent lattice sizes. Again, one can see that the crossing
points move as L is increased, but, interestingly, much less so
for the incomplete than the complete bilayer. We will quan-
tify these differences in the finite-size corrections in Sec. III.

C. Uniform susceptibility x(g—0)

The temperature dependence of the uniform magnetic sus-
ceptibility

,3 N
Xfﬁmm% Mi=2 8%, (13)
i=1

is an often-used indicator of quantum criticality. Exactly at
g=g.. its general asymptotic scaling form is'®

x(T) ~ T (14)

This has been numerically confirmed at low T in previous
QMC simulations'>!'7 and series expansions** of the bilayer
and other critical Heisenberg systems.® Here we will con-
sider the corresponding finite-size scaling behavior, which
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FIG. 4. The spin stiffness multiplied by the system length L
versus coupling ratio for the (a) full and (b) incomplete bilayers.
The system sizes are the same as in Fig. 3. The slope of the curves
increases with L.

we obtain by substituting the finite-7" quantum critical corre-
lation length £~ 772,310 in the temperature dependence (14)
and then substituting L for £, giving y,~ L“¢. However, we
apparently have a problem here since for a finite system Y,
vanishes as 7—0, due to the conserved magnetization M*
and the singlet ground state. In order to carry out finite-size
scaling, we therefore consider the long-wavelength limit of
the wave-vector-dependent susceptibility x(q), which we ob-
tain in practice by taking g=2m/L. Thus we will test the
finite-size scaling form

x(qg — 0)=x(27/L) ~ L. (15)
The static spin-spin susceptibility in real space is given by
the Kubo integral

B
x(k, 1) = f dr(S()51(0)), (16)
0

which in SSE simulations is obtained in terms of spins in the
states propagated by the sampled operator sequences>>

_B_ (2 sm)(E s%m)
p=0

XD = n(n+1) =0

B (s :

+ 3\ 2 Silplsilel ) ). (17)
(n+1)"\,5

n is the number of Hamiltonian operators in the sampled
sequences and the index p refers to the state obtained after p
operators have acted. The Fourier transform that we are in-

terested in is
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FIG. 5. The long-wavelength susceptibility multiplied by the
system length versus the coupling ratio for the (a) full bilayer and
(b) incomplete bilayer. The system sizes are those listed in Fig. 3.
The slope of the curves again increases with L.

1 .
x(q) = ITTE eIy (k, D), (18)
k1

and since our models are symmetric with respect to a 90°
rotation, we take the long-wavelength susceptibility as

1 2 2
X.=x(g—0)= 5{){(7,0,0) +X<0,T,O>}. (19)

We again consider the form leading to curve crossings at
the critical point, i.e., we plot x,L, which should be size
independent at g.. Figure 5 shows the data that we will
anayze more carefully in the next section. Again we observe
crossing points, which shift significantly with L.

III. DATA ANALYSIS

We first discuss here a rough determination of the critical
coupling ratios of the two models, studying the asymptotic
behavior of the crossing points discussed above. This will
also serve as a first confirmation of mutual consistency of the
leading scaling forms for the three different quantities under
consideration. We then analyze the results in greater detail
using a finite-size scaling hypothesis including subleading
corrections.

A. Critical coupling from crossing points

We use the data presented in the previous section to ex-
tract the intersection points of fixed-L curves for system sizes
L and 2L (other size ratios give similar results). Our simula-
tions have been performed on a rather dense grid of g values,
and we can therefore reliably obtain the intersection points
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FIG. 6. (Color online) Convergence versus the inverse lattice
size of intersection points of curves for L and 2L, for the (a) full and
(b) incomplete bilayers. The error bars are are much smaller than
the symbols. The circles at 1/L=0 indicate the critical couplings
from the careful finite-size scaling analysis carried out in Sec. III B.

using fits of straight lines or second-order polynomials to
interpolate between the data points. In Fig. 6 we plot the
results versus the inverse system size. For both models, the
crossing points drift toward a common critical coupling in
the L — o limit, thus confirming the scaling laws discussed
in the previous section.

For both models, especially the incomplete bilayer, the
spin stiffness crossing point exhibits the most rapid conver-
gence (i.e., the weakest subleading corrections). It and the
susceptibility converge from above, while the Binder ratios
converge from below. We can hence bracket g, using these
results. However, a much more precise bracketing can be
obtained from the spin stiffness curves alone, noting that
they become very flat as L grows. With the curvature de-
creasing with increasing L, a straight-line extrapolation using
a few large-L points (we use four) should give a lower bound
for g., while the crossing point for the largest L should be an
upper bound. The critical couplings extracted this way are
g, €(2.5205,2.5232) and g, € (1.38870,1.38895) for the full
and incomplete bilayers, respectively. These values are fully
consistent with the best previous estimates, discussed in Sec.
I but the precision is significantly higher. The more rigorous
data analysis discussed below will further improve on the
accuracy.

Naively, one might expect that the asymptotic approach of
the crossing points to the critical coupling should be given
by the correlation-length exponent v, as g.,oss=8.+aL ™", as
is the case for fixed-size estimates of the critical coupling (or
the critical temperature), such as the location of the maxi-
mum of the order-parameter susceptibility or the specific
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heat (in the case of finite-7 transitions). However, a crossing
point cannot be regarded as a conventional fixed-L definition
of g., since two system sizes are involved and there can be
cancelation of the leading behavior defined in terms of the
individual lattices. Thus, we would in general expect the
crossing points to converge faster than L~!/”. Binder has dis-
cussed the corrections to the cumulant crossing-points,3! and
in a recent article’”” we have presented a different way of
analyzing crossing points in general (i.e., not only for Binder
ratios but also for other quantities that are size independent
at g.) which takes subleading finite-size corrections into ac-
count explicitly. There we also showed some results for the
spin stiffness crossings of the full bilayer model. Here we
will not analyze the crossing points in any greater detail, but
instead consider the scaling of the full fixed-L curves shown
in the figures of Sec. II. Such “data collapse” makes better
use of the full range of simulation results and can also be
carried out with subleading corrections taken into account.?’

B. Finite-size scaling with subleading corrections

The scaling ansatz typically used to analyze finite-size
data A(r,L) for a quantity A at reduced coupling r=(g
—-g.)/g. on a lattice of length L is

A(t,L) = LYV f,(eL"), (20)

where « is a critical exponent which depends on the quantity
A, ie., A(t,L=%)~r* This form can be used to collapse
data in a neighborhood of =0, by graphing A(¢,L)L™"" ver-
sus tL'", adjusting g, «, and v to obtain the tightest collapse
of the data onto a single curve.

In Ref. 27 we started from renormalization group theory
and derived an extension to Eq. (20) that includes both
“shift” and “renormalization” corrections

A(t,L) =L""(1 + cL™?) g ,(tL""" + dL™%'"). (21)

Here, ¢ is the subleading irrelevant RG eigenvalue, which
causes a shift in the critical coupling, and w is an effective
exponent that accounts for corrections due to the inhomoge-
neous part of the free energy and nonlinearity of the scaling
fields. The constants ¢ and d are nonuniversal and should be
regarded as fitting parameters along with the leading and
subleading exponents. From Eq. (21), we see that we can
now achieve data collapse by plotting A(z,L)L™"/(1
+cL™) versus x=1L""+dL~?" for different sizes L.

To carry out this type of analysis in practice, we note that
the scaling function g4(x) is well behaved and can be Taylor
expanded close to the critical point

gA(xX) = A(LL)L™YI(1 + cL™°) = g + q X + gox> + q3x°
Fgxt+ e (22)

For the Heisenberg bilayers, the critical indices « and v are
expected to be those of the 3D classical Heisenberg univer-
sality class. In the case of the ratios we are considering, «/v
are known integers which we hence do not have to adjust.
The current best estimate for the correlation length exponent
is ¥=0.7112(5),%° but in our analysis we keep it as a free
parameter, along with g, the subleading exponents w and ¢,
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FIG. 7. (Color online) The blue crosses (X) show the input
points of the optimization procedure. The red plusses (+) show the
output. The dashed black line indicates the magnified region corre-
spondig to the bottom-right plot in Fig. 8.

the constants ¢ and d, and the parameters of the polynomial
in Eq. (22). This amounts to a large number of fitting param-
eters, but it should be noted that the polynomial expansion of
the scaling function is essentially just an interpolation of the
data and hence is highly constrained; the freedom in the co-
efficients ¢; do not add significant freedom to the other
paramers of the fit (we use a quartic polynomial). Moreover,
the number of fitting parameters is dwarfed by the number of
data points to be fit (hundreds or thousands).

Nonlinear curve fitting has well-known problems associ-
ated with the convergence of the parameters to the globally
optimal fit. In our work we already know rather accurate
estimates for v and g., and at the first stage of the fits we
used those values as initial conditions. Once we obtained
rough estimates for ¢, w,d, ¢, we used the following proce-
dure: Performing bootstrap sampling of the raw data, we
carried out a large number (typically around 1000) of fits
with initial conditions for all the parameters taken at random
from inside a “box” in parameter space. This box is deter-
mined such that the fits converge well, but that the variation
in starting points is significantly larger than the final spread
of the resulting parameters. We then use the spread among
the bootstrap samples to calculate statistical errors. This pro-
cedure is illustrated in Figs. 7 and 8.

The scaling formula (21) is strictly valid only for large
lattices and a small range of couplings in the vicinity of g,
[although the range of validity should be larger than with the
leading-order form (20)]. The parameters obtained show
some dependence on the range of data included. In order to
eliminate as much as possible potential remaining effects of
further subleading corrections that are not captured by our
approach, we chose to use a rather narrow window in the
scaled coupling x=(g—g,)L""/g.+dL %", so that there is no
longer any statistically detectable dependence on the size of
the window. Our final results are based on x € [-0.25,0.25].
There are also other subtle issues in the fitting procedure,
e.g., for a given range of x, different number of data points
are available for the different lattice sizes, typically leading
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to relatively smaller statistical weight for the larger sizes
than the smaller sizes. We therefore made sure to include
only system sizes sufficiently large for the extracted param-
eters not to change appreciably when systematically exclud-
ing more of the smaller lattices. We kept only L=8 for the
results we report here.

We found both the Binder ratio and the spin stiffness to be
well behaved in the fitting procedures. The resulting col-
lapsed data for these quantities, i.e., their scaling functions
g4(x) in Eq. (23), are shown in Figs. 9 and 10. We do not
discuss results for O here as it behaves similarly to Q, and
is statistically strongly correlated to it. The long-wavelength
susceptibility also exhibits data collapse, however, with sub-
stantially larger fluctuations than p; and Q, (the prefactor d
appears to be rather large and difficult to determine accu-
rately, and thus it is difficult to fix the data window x
€ [Xmin>Xmax] in @ meaningful way). We have therefore fo-
cused on p, and Q, for the final high-precision statistical
analysis.

For the subleading exponents w and ¢ we obtain the fol-
lowing values: For the full bilayer, =1.14(3), ¢=0.8(2) in
the Q, scaling and w=1.0(3), ¢=1.2(2) in the p, scaling. For
the incomplete bilayer, w=1.0(4), ¢=1.3(2) in Q, and w
=1.9(2), ¢=1.8(2) in p,. All these subleading exponents
should be interpreted as effective ones, as they are to some
extent affected by the higher-order corrections that we have
neglected. In any case, we note that all subleading expo-
nents, with the notable exception of both w and ¢ obtained
from p, of the incomplete bilayer, are close to 1. The fact that
o and ¢ obtained from p, of the incomplete bilayer are close

4

to 2 suggests that in this case the leading corrections vanish
or are very small, and the extracted exponents instead reflect
predominantly the corrections of the next higher order.

We have also performed fits of the combined quantity
PsXu» Which is better behaved than y, alone. This quantity is
not statistically independent of p,, and we do not use it in our
final determination of g, and v (although doing so has almost
no effect on the final results). Rather, we focus on the value
of its scaling function at the origin in order to test for uni-
versality at the critical point. As a check, we compare this
with the product of the values obtained from the individual
p, and Yy, fits and find that they are consistent.

The final parameters and their statistical errors were de-
termined from the bootstrap samples. The distributions are
illustrated by density plots in Fig. 8. We list the values for g,
v, and the value of the respective quantities at the critical
point qo=0>(g.),ps(g.)L,... in Table I. The critical cou-
plings are consistent among all the fits, and the correlation
length exponent is marginally consistent (within 2-3 standard
deviations).

As seen in the table, the highest relative precision of g, is
obtained using Q, for the full bilayer and p, for the incom-
plete bilayer. The latter can probably be traced to very small
subleading corrections, as is evident already in Fig. 4. For
the full bilayer p, also has smaller subleading corrections
than Q,, but still we obtain a higher precision in g. using Q,.
What this may tell us is that small subleading corrections are
not necessarily advantageous—that what matters is how well
those corrections are described by the finite-size scaling
forms used. Alternatively, it may be a sign that our bootstrap
procedure is somehow underestimating the statistical uncer-
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3 i dard deviation of the probability distributions obtained in the boot-
; 129 / . strap analysis, as explained in the text.
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SEE] g g v %
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FIG. 9. (Color online) Data collapse of the Binder ratio for the
(a) full and (b) incomplete bilayer. The values of g, and v obtained
are listed in Table 1.

tainty in the nonlinear fitting of the O, data. Indeed, looking
at Table I, the result g.=2.52180(3) stands out as a little low
(although statistically consistent) in comparison with the
other estimates. In the complete bilayer (right-hand) plots of

120 F ""'\ @ J

115

poL /(1 + L)
=
1
4
L

1.05}F g -

"\
T ™
[ oot . .
v \'\
< .,
3 P

0.40 g 4

-0.2 -0.1 0.0 0.1 0.2
(9 — )/ g LM” + dL™%"
FIG. 10. (Color online) Data collapse of the spin stiffness ratio
for the (a) full and (b) incomplete bilayer. The values of g. and v
obtained are listed in Table I.

Fig. 8, the Q, distribution appears as a small satellite adja-
cent to the p, distribution, which is quite unlike the situation
in the incomplete bilayer, where there is considerable overlap
between the comparably sized Q, and p, distributions. We
will argue below that the statistical uncertainty is estimated
correctly but that there are remaining systematic errors due
to neglected higher-order finite-size corrections. The errors
can be as large or larger than the statistical ones.

Let us suppose that the magnitude of the statistical uncer-
tainties has been correctly determined. Then the best esti-
mates of the critical couplings are just the statistically
weighted averages of the O,- and p,-extracted values listed
in Table I: g,=2.52181(3) and 1.38882(2) for the full and
incomplete bilayer, respectively. If the uncertainties in the
complete bilayer Q, fit are underestimated, then a better es-
timate of the critical coupling is g,=2.5220(1), which can be
arrived at either by averaging the p, and y, estimates, or by
averaging those of Q,, p,, and x,, under the assumption that
the g, error bar for Q, is of the same order of magnitude as
for p;.

In Fig. 11, we plot the (potentially) universal quantities
Q, and p,x,L?, evaluted at the highest-precision estimates of
the critical points [g,=2.52181(3) and 1.38882(2)] by inter-
polating between measured data points, as a function of in-
verse system size. Even making the most naive extrapolation
to L=oo, it is clear that these quantities tend to values that
differ between the two bilayer models by no more than 1%
for Q,(g,) and 10% for p,(g.). It is unlikely that two wholly
independent quantities would just happen to exhibit such a
coincidence. Hence we do not take the small deviations as an
indication of a potentially different universality class in the
incomplete bilayer (due to incomplete cancelation of Berry
phases>319-36) when the layer-exchange symmetry is not
present. More likely is that these quantities indeed are uni-
versal and that the two models are in the same universality
class. In that case, it is clear from Fig. 11 that what discrep-
ancies do exist can be substantially reduced by using a criti-
cal coupling in the complete bilayer that is closer to 2.5220
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FIG. 11. (Color online) The Binder ratio (top panel) and the
product of the spin stiffness and the long-wavelength susceptibility
(bottom panel) are plotted as a function of inverse system size for
various possible values of the critical couplings. The data points
represent interpolations to the hypothetical g. values. The solid
lines and corresponding cones of graduated shading illustrate fits of
the data for the most precise overall estimates g.=1.38882(2), g.
=2.52181(3), and the fits at deviations of 2, 4, 8, and 16 error bars.
Note that the scaling is not expected to be strictly 1/L, and all lines
should be regarded as suggestive.

than 2.52181. Making similar allowances in the incomplete
bilayer, we should acknowledge that the discrepancy can also
be reduced by taking a value lower than 1.38882.

Thus, it appears that we must conclude that the nonlinear
fits that we have carried out above in some cases can deliver
too optimistic error estimates. We do not believe that this is
due to some fundamental problem with the fitting procedures
or our ways of analyzing the data, but rather is a conse-
quence of the fact that subleading corrections of higher order
than those that we have included here certainly are present.
The neglect of these corrections are compensated for in the
fits by slight shifts of the critical point (as well as in the
exponents, but since their statistical errors are much larger
such shifts are comparably small and probably of no signifi-
cance). Thus, there are systematic errors beyond the purely
statistical errors quoted in Table I, the magnitudes of which
are in general difficult to estimate. A self-consistency check
using universal quantities of two different models, which we
have carried out above, allows us to estimate the size of these
errors. We conclude that the systematic error is large relative
to the statistical error in the case of the scaling of Q, of the
full bilayer, and potentially of the same order as the statisti-
cal errors for the other quantities. Using conservative error
estimates, our final result for the critical couplings are then
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g.=2.5220(1) (full bilayer) and g.=1.3888(1) (incomplete
bilayer). Small shifts in the critical points, of the order of our
estimated errors, do not affect significantly the values of the
exponents.

For the correlation length, a weighted average of the four
results from p, and Q, listed in Table T gives v=0.7106(9).
Taking a statistical average of the four individual results for
v is motivated here (as in the case of the critical point aver-
ages) in spite of the fact that they are obtained in only two
different simulations. This is because the winding numbers
(giving p,) and the sublattice magnetization (giving Q,) are
very weakly correlated in the simulations. For the same rea-
son, we do not include the results from p,x,L> in the aver-
ages, as they are quite strongly correlated to those from p;
alone.

IV. SUMMARY AND CONCLUSIONS

We have carried out finite-size scaling analyses of high-
precision stochastic series expansion QMC data for two S
=1/2 Heisenberg bilayer models. Using three different quan-
tities, the Binder order parameter moment ratio, the spin
stiffness, and the long-wavelength magnetic susceptibility,
we have obtained very accurate estimates for the critical cou-
plings. We have stressed the importance of including sub-
leading corrections in the finite-size scaling analysis. All the
quantities considered then give mutually consistent results
for the critical couplings as well as for the correlation-length
exponent v. We have assumed that the dynamic exponent z
=1, and all our results are completely consistent with this
expectation.’

The inclusion of two different subleading corrections in
the data fits implies larger statistical fluctuations compared to
an analysis neglecting subleading corrections or taking them
into account less completely than we have done here. In spite
of the large freedom of the fits with several exponents, we
noted a marginal inconsistency in the values of two universal
numbers—the Binder ratio and the precator of the 1/L? scal-
ing of the spin stiffness times the long-wavelength
susceptibility—calculated for the two models. We have
shown that these inconsistencies can be explained by small
shifts of the critical couplings, which are most likely due to
neglected higher-order finite-size corrections. We would like
to point out that such effects are not entirely surprising, be-
cause the system sizes we have studied, L up to 42, are rather
modest (compared to lattice sizes commonly used in classi-
cal Monte Carlo studies) and the numerical precision of our
raw data is high. By investigating the effects of shifting the
critical coupling by a small amount we were able to estimate
the systematic errors due to the higher-order corrections. Our
final estimates for the critical couplings are g.=2.5220(1)
and 1.3888(1) for the full and incomplete bilayers, respec-
tively.

Because of the consistency checks—analyzing two uni-
versal quantities that were not included in the actual fitting
procedures—we are confident that our reported error bars
reflect both statistical and potential systematic errors well.
We also note that the different quantities we have considered
correspond to averaging functions of very different proper-

014431-9



WANG, BEACH, AND SANDVIK

ties of the configurations generated in the simulations—the
staggered magnetization in the case of the Binder ratio, the
winding number in the case of the spin stiffness, and the
long-wavelength magnetization in the case of the susceptibil-
ity. The consistency among all the results obtained also con-
tribute to our confidence in the procedures.

Knowledge of the critical couplings to this level of accu-
racy should be useful for studies of various aspects of quan-
tum criticality at low temperature in these systems, as one
can avoid, to a higher degree than previously, effects from
the eventual crossover to renormalized classical or quantum-
disordered behavior as deviations from g, become relevant
as T—0.

For the correlation length exponent we obtain v
=(0.7106(9), which is consistent within error bars with the
currently most accurate estimate of the 3D classical Heisen-
berg exponent v=0.7112(5) obtained from classical 3D
Heisenberg simulations in Ref. 20. Although we have not
quite reached the accuracy for v obtained in the most recent
classical simulations® (although our final error bar is actu-
ally only approximately twice as large), the precision is still
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sufficiently high to further increase the confidence in the be-
lief that the universality class of the transition is that of the
3D classical Heisenberg model. The previously best (to our
knowledge) determination of v for the transition in a 2D
Heisenberg system is 0.70(1).!> The very close agreement of
the universal Binder ratio at g. also speaks in favor of the
same universality class for both lattices. As further evidence,
we note that the combination p,y,L* also appears to take a
universal value, as predicted.'® While the agreement in this
case is somewhat less impressive (with uncertainties more
than an order of magnitude larger), the consistency of the
values taken directly from p,y,L> and those derived from a
combination of the individual p,L and y,L fits (see Table I)
lends added confidence.
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