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Spin-wave modes in a thin submicron cobalt square with a closure domain structure are obtained by using
a micromagnetic equation of motion approach. In addition to modes with amplitude over the whole sample,
some low-frequency modes, localized at the center, corners, and diagonals of the square, are also found. In
analogy with the modes found in a circular vortex, the nonlocalized modes can be broadly classified into
radial-like and azimuthal-like modes, and their frequencies can be understood qualitatively in terms of the
dispersion relation of spin-wave modes of an unconfined film. Other modes that can be interpreted as the
combination of radial and azimuthal modes are also observed.
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INTRODUCTION

Recent progress in lithographic techniques allows the fab-
rication of high-quality, well-controlled, laterally defined
magnetic structures of micron and submicron sizes. Both the
static and dynamic properties of such structures with differ-
ent geometric shapes are being extensively studied.1–24 For
potential application in high-density storage devices, struc-
tures with closure domains have a significant advantage be-
cause they have small stray fields and thus reduce the inter-
actions between adjacent elements. The simplest closure
domain structure is a circular vortex with perfect cylindrical
symmetry. Its excitation spectrum has been studied both
theoretically6,11,19,20 and experimentally.18,21,23,24 A somewhat
more complicated structure is a square particle whose mag-
netic ground state is a vortex with fourfold symmetry. A few
normal modes of square vortex have been revealed
experimentally,15–17,24 but because of the resolution limits of
the experiments, the full excitation spectrum is not yet
known. To provide a deeper understanding of the properties
of a square vortex, we present a theoretical study of its mag-
netic normal modes.

In submicron-sized magnetic structures, both exchange
and dipolar interactions must be taken into account to calcu-
late normal modes. Although the problem is of general inter-
est from a fundamental standpoint, only recently12,14 have
methods for finding the magnetic normal modes in compli-
cated structures �e.g., particles in a vortex ground state� been
implemented. To date, no analytical theory has been estab-
lished to study the full spin-wave spectrum in a square vor-
tex. In this paper, we present a micromagnetic simulation of
the spin-wave modes in a cobalt square vortex.

The simulations required solving the Landau-Lifshitz-
Gilbert equation numerically as described in Ref. 12. The
sample we chose to study is a polycrystalline Co thin film
square with a lateral width of 305 nm and a thickness of
20 nm. The magnetic parameters used in the simulation are
typical for polycrystalline Co, with the saturation magnetiza-
tion Ms=1400 emu/cc, exchange stiffness A=3�10−6

ergs/cm, and zero anisotropy. In the simulations, the sample
was divided into cubic cells with the cell size equal to 5 nm.

At remanence the magnetic ground state of the sample is the
closure domain structure shown in Fig. 1.

In order to excite spin-wave modes in the stable ground
state, perturbations must be applied to the equilibrium con-
figuration. Using different perturbations in the simulations
serves two purposes. First, perturbations with different sym-
metries excite modes of different symmetries, and thus one
can use the form of the perturbation to select a particular
class of dynamic modes. Second, exciting only a subset of all
normal modes reduces the effects of overlap between modes
with similar frequencies. The simplest perturbation is to
change the ground-state magnetization profile by uniformly
tilting the magnetization in every cell by a small angle. How-
ever, to couple to modes with spatially different phases in a
particular magnetization component, we divided the square
along its diagonals into four triangles, or into four smaller
squares along the midpoint of the edges. In each of these
subregions the magnetization can be tilted by a different
angle. Another type of perturbation is to apply a short mag-
netic field pulse either in or out of the sample plane. After a
perturbation has been applied and the Gilbert damping coef-
ficient has been set to zero, the time evolution of the mag-
netization of each cell is calculated and stored. A Fourier
transform �FT� of the magnetization of each spin then yields
its frequency spectrum. The normal mode profile at each
frequency can then be reconstructed from the amplitude and
phase of the individual FTs. The nature of spin normal modes
in square elements has been addressed experimentally in
Refs. 15–17 and Ref. 24. Although our aim is to provide a
theoretical description of these results, the size of the squares
in those investigations ��1 micron� is larger than we are
currently able to simulate. Given our current computing
power, we chose to simulate particles 305 nm on a side and
20 nm thick. Hence, although our calculated frequencies are
not expected to match those measured in Refs. 15–17 and
Ref. 24, the type of modes is expected to be similar, and our
results should provide a qualitative guide. We also chose to
simulate Co particles because we anticipate that they should
provide a stronger coupling in our planned Brillouin scatter-
ing measurements. Figure 1�a� shows the results of a simu-
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lation of the closure domain structure, with a vortex at its
center. The magnetization in the ground state is in the film
plane everywhere except for the core region, where the mag-
netization is out of plane, as shown in Fig. 1�b�.

The square vortex has some similarity with the vortex
found in circular geometries. In the circular vortex the nor-
mal modes could be classified into a core mode, radially
varying modes, azimuthal varying modes, and combinations
of the latter two types.20,23 The aim of this investigation is to
determine how the reduced symmetry of the square affects
this classification. The square vortex structure can be viewed
as four triangular domains, each of which has a homoge-
neous magnetization in a different direction �Fig. 1�a��. How-
ever, the magnetization in the vortex core and in the four
90 degree domain walls, which include the four corners, is
strongly inhomogeneous and leads to inhomogeneous inter-
nal fields in these regions.

To discuss the results of this study, we classify the modes
into three groups:

�1� low-frequency modes localized in the regions with
inhomogeneous fields including the core, domain walls, and
corners;

�2� intermediate-frequency modes with amplitudes con-
centrated in the homogeneous regions of magnetization;

�3� high-frequency modes that resemble more closely the
radial and azimuthal character of the modes in a circular
disk.

An overview of the amplitude distribution in the three
categories is shown schematically in Fig. 2. In the next sec-
tion, we discuss how we have arrived at this classification
scheme.

RESULTS AND DISCUSSION

In this section we give a general overview of the types of
modes found in the square vortex and their frequency behav-
ior. A complete characterization of the normal modes of our
square vortex would require specifying the frequency and
amplitude of all 14 884 modes of our �61�61�4� cell par-
ticle. Since this would be both impractical and useless, we
restrict our presentation to a few selected modes that enable
a general classification scheme to be proposed. This scheme
provides a guide to the type and frequency of the modes that
can be expected in rectangular particles in a closure domain
state.

We first briefly review the method of Ref. 12, explaining
how we obtain mode profiles and their frequencies and how
we present the data. From a perturbed equilibrium ground
state we monitor the time evolution of the spin motion in
each cell. Since in the equilibrium state the magnetization of
most of the cells lies in the plane of the square, a convenient
description of a mode is its dynamical, out-of-plane compo-
nent of the magnetization, in this case, mz in the coordinate
system defined in Fig. 1�a�. From the FT of the mz motion,
one finds the amplitude Ai and phase �i in each cell i as a
function of frequency. For a given perturbation, there are
typically a number of frequencies where the amplitudes are
large; that is, several modes are excited and well resolved.
One can find a spatial profile of a mode at a particular fre-
quency � by plotting Ai cos��i� on a square grid representing
all the cells. This is equivalent to an instantaneous “snap-
shot” of the out-of-plane precession for a particular mode at

FIG. 1. �Color online� Equilib-
rium state of the Co square at zero
field: �a� in-plane magnetization
distribution in the vortex state; �b�
out-of-plane component of the
magnetization Mz; Nx and Ny are
the number of cells in x and y di-
rection, respectively. The magneti-
zation pattern is taken from the
second of four layers, but the
magnetization variation through
the thickness of the film is very
small.

FIG. 2. Sketches of amplitude distribution of different modes
observed in a square vortex. Black and white indicate different
phases; gray represents negligible amplitude. �a� Mode localized at
the core, the corners and diagonals; �b� modes mainly distributed at
the four triangular domains; �c� radial-like mode, azimuthal-like
mode, and combination of radial-like and azimuthal-like modes.
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frequency �. In the following discussion, we use this snap-
shot representation to describe the different normal modes
produced in our simulations.

Figure 3 shows a snapshot of mz for the lowest-frequency
mode we observed. The color bar on the left applies to all the
other snapshot pictures in the sense that redness indicates a
positive value and blueness a negative one. As a function of
time, the red and blue spots in the image rotate around the
center of the square. Clearly, this 0.3 GHz mode is strongly
localized at the center of the square and is equivalent to the
well-known mode of the precession of the vortex core in
circular disks. Since the frequency resolution in our simula-
tion is about 0.3 GHz, the frequency of this mode is accurate
only to ±0.15 GHz.

The next-lowest-frequency modes are those with large
amplitudes localized at the corners. In a square we may
therefore expect four modes of this type—one for each cor-
ner. For example, we could have four separate modes with
the power localized in a single corner in each mode. In the
absence of interactions, these four modes would be degener-
ate in frequency. However, because of the interactions be-
tween the precessing spins in the different corners, in this
case resulting primarily from the long-range dipolar interac-
tions, the real solutions will be linear combinations of the
single corner states. Figures 4�a�–4�c� show a set of modes
localized at the corners of the square. We find the following:
a mode with equal amounts of power in all corners and all
the corners moving in phase �Fig. 4�a��, a mode with equal
amounts of power in all corners, where the corners along one
diagonal are in phase with each other but out of phase with
the corners along the other diagonal �Fig. 4�b��, and two
modes where the power is localized at corners only along
one diagonal �Fig. 4�c� shows one of these modes�.

The corner mode frequencies are all very close, indicating
that the interaction between the corners is small. With our
frequency resolution �0.3 GHz�, the modes shown in Figs.
4�b� and 4�c� are not resolved. We can explain this behavior
with the following argument. For the all-in-phase mode an
individual corner sees the dipolar field produced by the three
other corners all pointing up at the same time. The sum of
these fields produces an additional restoring force that shifts
the frequency of this mode slightly upwards. For all the other
modes the dipolar fields from the other corners tend to can-
cel, and an individual corner sees a smaller restoring field.
For example, in Fig. 4�b� an individual corner sees two of the
remaining corners as up and one as down. Similarly in Fig.
4�c� an individual corner sees the field from the only other
active corner.

The mode shown in Fig. 4�c�, which is strongly localized
at the upper-left and lower-right corners, is degenerate with
the mode with amplitude at the two other corners. Because of
this degeneracy these modes can be combined with an arbi-
trary phase. In particular, a right- and left-circularly polar-
ized pair can also be chosen as the basis of these two modes.
In a real system it is not clear how imperfections in the
sample might select between the two possibilities.

Figures 4�d�–4�f� show the last type of localized mode
sketched in Fig. 2�a�. Here the mode amplitude is localized
primarily along the domain walls that lie along the diagonals.
As for the corner modes, the relative phase of the amplitude

along each diagonal gives rise to four modes with similar
frequencies. In this case the mode in Fig. 4�f� is doubly de-
generate. In all three modes shown in Figs. 4�d�–4�f� the
amplitude at each corner is out of phase with that on its
neighboring diagonal. The 13.2 GHz mode shown in Fig.
4�d� has all four corners in phase with each other but out of
phase with the four diagonals. Each corner �or diagonal� of
the 11.9 GHz mode shown in Fig. 4�e� is in phase with its
opposite one and out of phase with its neighbors. Figure 4�f�
shows another mode with different relative phases. This
mode can be interpreted as a combination of “circularly po-
larized” and “single diagonal” modes. All three modes have
slightly different frequencies, again primarily the result of
dipolar interactions. As we saw in the case of the corner
modes, the most in-phase mode, Fig. 4�d�, again has the
highest frequency.

So far we have discussed the low-frequency modes that
are localized in regions with an inhomogeneous equilibrium
magnetization including the vortex core, the corners, and the
diagonals of the square. We now turn to the type of modes
shown in Fig. 2�b� with the amplitude localized in the homo-
geneous magnetization regions. Figure 5�a� shows a mode
with its amplitude concentrated within the four domains.
There is no node in any direction in this mode because all
regions with nonzero amplitude are in phase. This mode can
therefore be viewed as the “uniform resonance” mode and is
expected to be the strongest mode in ferromagnetic reso-
nance experiments. From the earlier discussion on the corner
modes, one should also expect to find modes where the
power distribution is similar to that seen in Fig. 5�a�, but the
phase relationships between the excitations in each of the
four domains is not that of the uniform mode. We do, in fact,
find modes at slightly lower frequencies as expected, but
they appear to be hybrids, with modes of the type shown in
Fig. 2�a� with multiple nodes along each diagonal. Figure
5�b� shows another mode localized in the homogeneous re-
gions, but this mode has one node between the center and the
edge.

To understand the modes in our third category, we first
recall that the normal modes in a circular vortex with perfect
symmetry20,23 can be characterized as radial modes, azi-
muthal modes, and combinations of these two types. These
modes have been calculated theoretically20,23 and observed in
experiments.18 A square vortex loses the perfect symmetry of
a circular vortex but maintains a fourfold symmetry. In our
simulation of a square vortex, we again find some modes that
can be classified into radial �Figs. 6�a�–6�d�� and azimuthal
�Figs. 6�e�–6�g��. We discuss the behavior of these modes
below.

Figures 6�a�–6�d� show the radial-like modes observed in
our simulations. As shown in Fig. 6�a�, the amplitude of the
24.5 GHz mode is distributed at the center and around an
outer circle. Instead of being continuous along the azimuthal
direction as in a circular vortex, the mode is discretized in a
pattern consistent with the symmetry of the square vortex.
Since there is a phase difference of � between the central
and outer part, we can define a radial nodal line in this mode.
Figures 6�b� and 6�c� show the modes with two and three
nodal lines. Even the mode with four nodal lines is well
resolved in our simulation, as shown in Fig. 6�d�. The fre-
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quency of the radial-like mode increases as the number of
nodes is increased, as is seen in Fig. 7�a�. This result is
consistent with the behavior of spin-wave frequencies in an
extended magnetic film, as we shall see below.

Figures 6�e�–6�g� show several of the azimuthal-like
modes observed in our simulations. The key characteristic of
this class of modes is that the phase changes as one circles
around the center of the square. We characterize a mode by
counting the number of nodes around the circumference of
the square. Figures 6�e�–6�g� show the modes with 12, 20,
and 32 nodes, respectively. We have probably missed a lot of
azimuthal-like modes in our simulations. Nonetheless, a pat-
tern for frequency as a function of number of nodes emerges

clearly, as can be seen in Fig. 7�b�. The frequency of the
azimuthal-like modes initially decreases and then increases
as the number of nodes increases. Both dipolar and exchange
interactions play roles in this situation, as will be discussed
below.

To understand the frequency behavior of the radial-like
and azimuthal-like modes, we compare the results of Fig. 7
to the dispersion relation in ferromagnetic thin films. In each
plot, the first data point corresponds to the uniform mode
with no nodes. For the radial-like modes the frequency in-
creases monotonically as the number of the nodes increases.
This behavior is similar to the behavior of the Damon-
Eshbach mode25 with wave vectors perpendicular to the
static magnetization. With regard to the magnetization distri-
bution of the square vortex, the radial-like modes also
change phase in a direction perpendicular to the magnetiza-
tion. In the case of the Damon-Eshbach mode in an extended
ferromagnetic film, the dipolar fields cause the initial in-

FIG. 3. �Color� Snapshot of the dynamical out-of-plane compo-
nent of the magnetization mz for the lowest-frequency mode local-
ized at the vortex core. Note that the red and blue spots in the image
rotate around the center of the square with time, which is not dem-
onstrated by the snapshot at a particular instant. The color bar on
the right also applies to the following snapshot pictures in the sense
that redness means positive values and blueness negative values.

FIG. 4. �Color� Snapshots of the dynamical out-of-plane com-
ponent of the magnetization mz for modes localized at corners �a�–
�c� and along diagonals �d�–�f�.

FIG. 5. �Color� Snapshots of the dynamical out-of-plane com-
ponent of the magnetization mz for modes mainly distributed at the
four triangular domains �a�, �b� and for combination of radial-like
and azimuthal-like modes �c�, �d�.

FIG. 6. �Color� Snapshots of the dynamical out-of-plane com-
ponent of the magnetization mz for radial-like modes �a�–�d� and for
azimuthal-like modes �e�–�g�.
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crease in frequency as the number of nodes �or equivalently
propagation wave vector� increases. In the present case the
exchange interaction also contributes to the overall fre-
quency increase. For the azimuthal-like modes, the fre-
quency decreases at first and then increases as the number of
nodes increases. This behavior is similar to the behavior of
the backward volume modes, in which case the wave vector
is parallel to the static magnetization. The azimuthal-like
modes change phase around the center of the square, which
is parallel to the static magnetization of a square vortex. With
a small number of nodes, the dipolar interactions are impor-
tant, and the frequency decreases at first. This behavior is
similar to the negative dispersion observed experimentally
and calculated analytically with only the dipolar interaction
taken into account in larger circular vortices.20 With a larger
number of nodes, the exchange interaction becomes more
important, and the frequency increases. Although only a
small number of data points are shown in Fig. 7, the fre-
quency behavior of the radial-like and azimuthal-like modes
qualitatively mirror the features of equivalent modes in un-
confined ferromagnetic thin films.

In our simulations, we also observed modes that can be
interpreted as a combination of radial-like and azimuthal-like
modes, as shown in Figs. 5�c� and 5�d�. Both of those modes
change phase, not only radially, but also around the center.
Compared to the radial-like mode with just one nodal line as
shown in Fig. 6�a�, both of these modes have lower frequen-
cies as a result of the dipolar interaction.

MODE SYMMETRIES

The modes presented in the preceding section can also be
classified according to their symmetry determined by group
theory. The symmetry of the vortex ground state in a square
particle is C4. In assigning this symmetry it must be remem-
bered that the magnetization, being an axial vector, reverses
sign under improper symmetry operations such as reflec-
tions. Due to this it can be seen that mirror planes that appear
to be symmetry operations at first glance actually produce
either a change in chirality or of polarity and hence are not
symmetry operations of the magnetic ground state. The char-
acter table for the C4 group is shown in Table I and is par-
ticularly interesting since the two components of the E mode
are only degenerate if time reversal is a symmetry operation.
In the case of our magnetic sample this is not the case and

hence special care must be taken in assigning the modes.
We begin with the modes in Figs. 4�a�–4�c�. The mode

shown in �a� clearly has the full symmetry of the system and
hence is an A mode. The mode in �b� changes sign under C4
operations and is hence a B mode. The mode in �c� is, ex-
perimentally, one of a degenerate pair and hence is an E
mode. Strictly speaking Table I predicts that the two E
modes should be nondegenerate and chiral, differing only in
their ±� /2 phase difference along the two diagonals.

The modes in Figs. 4�d�–4�f� follow the same classifica-
tion as those in Figs. 4�a�–4�c�. Similarly the modes in Figs.
5�a� and 5�b� are of A and B symmetry, respectively, while
all those in Figs. 6�a�–6�d� belong to the A representation.
The modes in Figs. 6�e�–6�g� have B, B, and A symmetry
and those in Figs. 5�c� and 5�d� belong to the B and E clas-
sification. We note that within the accuracy of the simula-
tions all the E modes discussed above appear as pairs whose
frequencies are not resolved.

The most interesting mode is, however, the one in Fig. 3
that can be identified as one component of the E doublet. In
this case the pattern rotates clockwise as a function of time.
The other component of the E doublet in this case does not
exist: there is no equivalent mode that rotates counterclock-
wise. We stress that there is no reason why such a mode must
exist.

In this context of mode classification it is instructive to
consider the case of a square particle with a round or square
hole in the center. If the vortex core is eliminated with such
a scheme, the particle acquires C4v symmetry with its result-
ing character table also shown in Table I. In this case the E
modes are strictly degenerate and no intrinsically chiral
modes are expected to be present in the system. In this par-
ticular case there can be no mode similar in character to that
found in cylindrical dots and shown here in Fig. 3 for a
square particle.

COMPARISON WITH PREVIOUS EXPERIMENTS AND
SIMULATIONS

Excitations in a square vortex have been observed in sev-
eral experiments.15–17,24 Our simulation results confirm most
of the experimental observations. The vortex core precession

TABLE I. Character tables for C4 and C4v groups.

C4 E C2 C4 C4
3

A 1 1 1 1

B 1 1 −1 −1

E 1 −1 i −i

E 1 −1 −i i

C4v E C2 C4+− �x ,�y �1 ,�2

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 1 −1 1 −1

B2 1 1 −1 −1 1

E 2 −2 0 0 0

FIG. 7. �Color online� �a� Frequency of the radial-like modes as
a function of the number of radial lines; �b� frequency of the
azimuthal-like modes as a function of number of nodes.
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mode �Fig. 3� and modes localized at the corners of the
square �Fig. 4� obtained in our simulations were not ob-
served in any of the experiments.15–17,24 Motion of the vortex
core was observed in Raabe’s experiment �Fig. 2 of Ref. 17�,
but its resonance frequency was not determined. The fact that
the corner and core modes were missing in these experiments
on square vortices15–17,24 may be due to several reasons.
First, since the samples studied in those experiments were
larger than those simulated here, the frequencies may have
been too low to be resolved. The data in Raabe’s experiment
shows that the motion of the vortex core is indeed much
slower than that of the domain walls.17 Both the size and the
material of the samples studied in experiments imply even
lower frequencies than those in our simulations. Second, the
spatial resolution in the experiments was not fine enough to
resolve these highly localized modes. The third reason that
the corner modes are missing in experiments may be due to
the effect of edge roundness of the experimentally investi-
gated square samples. The corner modes observed in simu-
lations are localized in small regions of a few tens of nm,
which is comparable to the resolution of the lithographic
processing.

The domain wall modes, however, were observed in all
the experiments,15–17,24 and they have lower frequencies than
do the modes with amplitude over the whole square. This
fact is consistent with our results. As illustrated in our simu-
lations, the domain wall modes can have different phases
along the four diagonals. It is not clear which of these have
been observed in the experiments.

Different numbers of the nonlocalized modes were ob-
served in the experiments.15–17,24 In Park’s experiment,16

only one was resolved, and it corresponds to the uniform
mode with the out-of-plane component at the upper and
lower triangular domains out of phase. Up to five such
modes were observed in Perzlmaier’s experiment.15 Besides
the uniform mode, three “transversal quantized” modes are
equivalent to our “radial-like” modes and one “longitudinal
quantized” mode is equivalent to our “azimuthal-like” mode.
The relative frequencies of these modes are also consistent
between the experiment and our simulation. In Raabe’s
experiment,17 two modes with the same spatial distribution
but different frequencies and initial phases were observed.
This phenomenon cannot be explained on the basis of our
simulations. The experimental data shows that the in-plane
component at the upper and lower triangular domains is in
phase in these two modes.17 Thus, the out-of-plane compo-
nent at the upper and lower triangular domains should be out
of phase. Indeed, two possible modes satisfy this condition
with different phase patterns at the left and right triangular
domains. But the frequency of these two modes should be
degenerate, which is not consistent with the experiment. This
could be due to nonlinear effects, as suggested in Ref. 17. In
our simulations, the uniform mode with the out-of-plane
component of all four triangular domains in phase is well
resolved as shown in Fig. 5�a�. However, the modes concen-
trated in triangular domains but out of phase are not re-
solved. Considering the dipolar interaction among each do-
main, those modes are expected to have lower frequencies
than that of the in-phase mode. In this frequency range, there
exist many modes with the amplitude localized along the

diagonals. It is likely that the out-of-phase modes in the tri-
angular domains are hybridized with the diagonal modes, so
that the profiles of the out-of-phase modes are distorted and
cannot be resolved in the simulations. The hybridization ef-
fect should be more important in our relatively small sample
than the large samples in experiments,16,17 where out-of-
phase modes are indeed observed.

In Ref. 16 and Ref. 24, the magnetic normal modes of
square vortices were also studied theoretically using
micromagnetic simulations with larger sample sizes
�2 �m to 10 �m in Ref. 16 and 4 �m in Ref. 24� and dif-
ferent material parameters �permalloy in both Ref. 16 and
Ref. 24�. The cell size used in Ref. 16 �12.5 nm� and Ref. 24
�10 nm� are larger than that in our simulations �5 nm�. In
those simulations, two modes are reported, a lower fre-
quency mode concentrated in the domain walls, which is
similar to those reported by us in Figs. 4�d�–4�f�, and a
higher frequency mode concentrated in the domains.

SUMMARY AND CONCLUSIONS

Using a micromagnetic simulation approach, we have
studied the spin-wave modes in a submicron cobalt square
sample with a closure domain structure. Several different
modes were observed. Low-frequency modes are localized in
the inhomogeneous regions, namely, the core, the corners,
and the diagonals. The core mode is equivalent to the well-
known core precession mode in cylindrical dots. Both the
corner and diagonal modes form a closely spaced set of
modes with different phase patterns. These modes are not
present in cylindrical particles. The uniform mode is equally
distributed over the four closure domains. More complicated
modes can be classified into radial-like modes and azi-
muthal-like modes in analogy to the modes in a circular vor-
tex. Because of the reduced symmetry, those modes have
more internal structure than in a circular dot. The frequency
behavior of the radial-like modes and azimuthal-like modes
can be understood qualitatively in terms of the dispersion
relation of spin-wave modes of an unconfined film. We also
observed some other modes that can be interpreted as the
combination of a radial-like mode and an azimuthal-like
mode.

We have also reproduced the calculations of magnetic
normal modes in a square vortex using a dynamical matrix
approach as described in Ref. 14. The results of the two
approaches agree well with each other and the field depen-
dence of mode frequencies obtained by the dynamical matrix
approach will be discussed in a later paper.
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