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We calculate the temperature dependence of the boundary susceptibility �B for the quantum ferromagnetic
Heisenberg chain by a modified spin-wave theory �MSWT�. We find that �B diverges at low temperatures
�−T−3 and therefore more rapidly and with opposite sign than the bulk susceptibility �bulk�T−2. Our result for
�B is identical in leading order with the result for the classical system. In next leading orders, however,
quantum corrections to the classical result exist which are important to obtain a good description over a wide
temperature range. For the S=1/2 case, we show that our full result from MSWT is in excellent agreement
with numerical data obtained by the density-matrix renormalization group applied to transfer matrices. Finally,
we discuss the quantum to classical crossover as well as consequences of our results for experiment in some
detail.
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I. INTRODUCTION

Although the classical and the quantum version of the
ferromagnetic Heisenberg model have the same ground state,
it is not obvious in how far the low-temperature properties of
these systems are also similar. The Hamiltonian for the quan-
tum ferromagnetic chain with open boundary conditions
�OBCs�, spin S and N sites in a magnetic field h along the z
direction is given by

H = − J�
n=1

N−1

SnSn+1 − g�
n=1

N

hSn
z , �1�

where J�0 is the coupling constant and g the g factor. The
classical version of this model can be obtained by introduc-
ing new unit vector operators sn=Sn /S.1 These new operators
commute in the limit S→�, leading to the classical Hamil-
tonian

H = − Jc�
n=1

N−1

snsn+1 − gc�
n=1

N

hsn
z . �2�

To allow for a comparison between the quantum and the
classical Hamiltonian for different spin values S we have set
Jc=JS2 and gc=gS.

The finite temperature properties of the classical model
�2� were calculated several decades ago for OBCs,1 as well
as periodic boundary conditions �PBCs�.2 Whereas the first
correction to the free energy per lattice site fPBC for PBCs is
O�1/N2�, the free energy per lattice site fOBC for OBCs con-
tains a term O�1/N�,

fOBC = fbulk +
1

N
FB. �3�

Here we will study the coefficient of the O�1/N� contribu-
tion FB for N→�, i.e., the boundary contribution to the free
energy for an infinitely long chain. This boundary or surface
free energy FB then yields O�1/N� contributions to all other
thermodynamic quantities such as, for example, the suscep-
tibility. From Fisher’s results1 one finds that the classical
bulk susceptibility behaves as

�bulk
c = � � fbulk

2

�2h
�

h=0
= gc

2� 2Jc

3T2 −
1

3T
� �4�

whereas the classical boundary susceptibility �O�1/N� con-
tribution	 is given by

�B
c = � �FB

2

�2h
�

h=0
= − gc

2� 2Jc
2

3T3 −
4Jc

3T2 +
1

3T
� . �5�

�B
c therefore diverges more rapidly and with opposite sign

than �bulk
c .

A very different behavior for bulk and boundary suscep-
tibility has also recently been observed for the quantum an-
tiferromagnetic S=1/2 XXZ chain with anisotropy 0��
�1.3–5 For this system it is known that the bulk susceptibil-
ity is finite for T→0 with the T=0 value of �bulk depending
on the anisotropy �. �B�T�, on the other hand, is finite only
for 0���1/2 whereas it diverges for 1 /2���1 when
T→0. By a combination of different techniques like
bosonization, conformal field theory, Bethe ansatz, as well as
numerical results, a complete picture of the low-temperature
properties of �B has been obtained.3–5,27 These results are not
only of theoretical interest but might also be relevant for
realizations of quasi-one-dimensional antiferromagnets such
as, for example, Sr2CuO3, in particular, when such com-
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pounds are doped with a moderate amount of nonmagnetic
impurities. In such a case the spin chain will be partitioned
into finite chains with essentially free boundaries and knowl-
edge of the boundary contributions will be essential to un-
derstand experiments on such systems.

For the quantum S=1/2 ferromagnetic chain the standard
bosonization approach and conformal field theory are not
applicable because the dispersion relation is quadratic in-
stead of linear. The model is, however, still integrable and
thermodynamic properties can in principle be calculated ei-
ther by the thermodynamic Bethe ansatz6 �TBA� or by the
Bethe ansatz applied to quantum transfer matrices �QTMs�.7
The bulk susceptibility has indeed been obtained by an
analysis of the TBA equations. In the first analysis of this
kind by Schlottmann8 it has been proposed that �bulk
�J /T2ln�J /T�. A later numerical analysis of the TBA,6,9,10

however, showed that �bulk�J /6T2 at low temperatures as in
the classical case but with corrections to this leading term
which are different from Eq. �4�. In addition it has been
found that the leading term as well as the quantum correc-
tions can be obtained by a modified spin-wave theory
�MSWT�.6,11 It has later been shown that the classical and
quantum ferromagnetic chains obey the same scaling laws at
low temperatures.12 Furthermore, the critical theory control-
ling the low-energy behavior of both chains has been identi-
fied, which explains in more general terms why �bulk

c and
�bulk are identical at low temperatures.13

It is still unclear how the TBA has to be modified to allow
also for the calculation of boundary contributions. Some of
the difficulties one encounters are discussed in Refs. 5 and
14. Within the QTM approach an explicit formula for the
boundary free energy has been derived very recently.14 The
explicit evaluation of this formula, however, is still a formi-
dable task because it involves expectation values of an op-
erator in the dominant eigenstate of the QTM which are no-
toriously difficult to calculate.

For these reasons we will follow here a different route and
will use in Sec. II Takahashi’s MSWT, which has been so
successful for the bulk, to calculate the boundary suscepti-
bility. In Sec. III we then compare our result with numerical
data obtained by the density-matrix renormalization-group
applied to transfer matrices �TMRG�. In the last section we
discuss the quantum to classical crossover observed and
comment on the relevance of our results for experiment.

II. MODIFIED SPIN-WAVE THEORY

With the help of the Holstein-Primakoff transformation

Sn
+ = 
2S
1 − an

†an/2S an, Sn
z = S − an

†an �6�

the model �1� can be represented exactly in terms of bosons
an. Linear spin-wave theory is obtained if one replaces the
second square root in Eq. �6� by 1. Corrections to this simple
approximation can be calculated in principle in a systematic
way by expanding the square root in powers of 1 /S. In any
of these approximations it is important to notice that the
bosons have to obey a hard-core constraint restricting the
maximum number of bosons per site to 2S. In higher dimen-
sion it is often acceptable to ignore this constraint com-

pletely. In one dimension, however, this constraint is crucial
but hard to incorporate locally. Because the SU�2� symmetry
in a system with h=0 can only be broken at T=0 we might
instead try to introduce a potential V in the Hamiltonian,
which fixes the number of bosons to be S on the average so
that

1

N
�

n

�Sn
z� = 0 �7�

at any finite temperature. This approach has been used suc-
cessfully by Takahashi6 to calculate the free energy and the
susceptibility for a chain with PBCs. We will use the same
approach here for a system with OBCs to obtain the bound-
ary susceptibility.

Let us first rederive Takahashi’s result for PBCs in a
slightly different way. Expanding up to quartic order in the
boson operators in Eq. �6� and using a one-loop approxima-
tion for the quartic terms, we obtain for the Hamiltonian �1�
at zero magnetic field

H = JS��
k

��k�ak
†ak + V�

k

ak
†ak,

��k� = 2�1 − cos k� , �8�

where

S� = S −
1

2N
�

k

��k�nk. �9�

The average number of bosons nk is given by

nk ª �ak
†ak� = exp�JS���k�/T + v	 − 1�−1, �10�

where v=V /T. At temperatures T /J�1 the number of
bosons in high momentum states is small. The bosons in low
momentum states, on the other hand, will yield only a small
contribution to the sum in Eq. �9� so that we will set S�=S in
the following. According to Eq. �7�, the potential v then has
to be determined in such a way that

S =
1

N
�

k

nk. �11�

Differentiating the partition function for the Hamiltonian �1�
twice with respect to h one finds that the susceptibility is
given by �=g2 /T �n,m�Sn

zSm
z �. However, the spin-wave ex-

pansion we are using here breaks the SU�2� symmetry so
that we will calculate the susceptibility instead by

� =
g2

3T� 1

N
�
n=1

N

�
m�n

�SnSm� + S�S + 1�� . �12�

In this way the consequences of SU�2� symmetry breaking
are less severe due to the averaging over all three directions.
Using the constraint �11� one finds6

�SnSm� = � 1

N
�

k

cos�k�rn − rm�	nk�2

. �13�

The momenta for a chain of length N with PBCs are given by
k=2	l /N where l=0,1 , . . . ,N−1. For T /J
1 the most im-
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portant contributions to the sum in Eq. �13� come from k
�0,2	 and we can evaluate these contributions by using a
saddle-point integration

�SnSm� � � 1

2	
�

0

2	 cos�k�rn − rm�	
e�JS��k�+v − 1

dk�2

�14�

�� T

JS	
�

0

� cos�k�rn − rm�	
k2 + Tv/JS

dk�2

=
t

4v
exp�− 2
tv�rn − rm�� . �15�

In the last line we have introduced the abbreviation t=T /JS.
To understand why the saddle-point approximation for the
integrand in Eq. �14� is indeed sufficient here we make the
following observation: Eq. �14� can be evaluated alterna-
tively by closing the integration contour in the upper or
lower half of the complex k plane, depending on the sign of
rn−rm. The residues closest to the real axis then yield
Eq. �15�. Next-leading residues give contributions O�
T
�exp�−
T	�. These would result in terms O�1/
T� in the
susceptibility, which are neglected in the ongoing.

From the constraint �11� one can easily determine the po-
tential v as a series in 
t. The result is6


v =

t

2S
+ q� 
t

2S
�2

+ q2� 
t

2S
�3

+ O�t2� , �16�

where q=�1/2� /
	. When we rewrite the correlation func-
tion �15� in terms of the normalized spin operators sn and the
coupling constant Jc as given in the introduction and use
only the leading term from Eq. �16� we find

�snsm� = exp�− �rn − rm�T/Jc� �17�

for all values of S. In particular, the correlation length at
T /J
1 is always given by �=Jc /T. Furthermore, Eq. �17�
also agrees with the result for the classical model.1 Note,
however, that this is no longer the case if one takes the next-
leading terms in Eq. �16� into account.

To calculate the susceptibility we have to evaluate the
sum in Eq. �12�. For PBCs each distance �rn−rm �
=1, . . . ,N /2 appears 2N times. The susceptibility in the ther-
modynamic limit can therefore be obtained by

�PBC = lim
N→�

g2

3T� t

2v�
r=1

N/2

e−2r
tv + S�S + 1��
=

g2

12JS
�t−1/2v−3/2 − v−1 + 4S�S + 1�t−1 + O�e−N�	 .

�18�

The first term agrees exactly with the result obtained by
Takahashi,6 however, we find here in addition the second and
third term, which are absent in Takahashi’s result. Note that
these terms exactly cancel each other for S→�. The differ-
ences between our result and Takahashi’s result can be ex-
plained as follows: Whereas in Ref. 6 the sum in Eq. �12� is
carried out without approximating the correlation function

�13� we have taken here only the long-distance asymptotics
of �SnSm� into account as obtained by the saddle-point ap-
proximation in Eq. �15�. Interestingly, the terms in the sus-
ceptibility up to O�1/T� remain unaffected, i.e., these terms
are not influenced by the behavior of the correlation function
at short distances. In fact, we might trust our spin-wave ap-
proximation only in the long-wavelength limit where the
spin-wave interaction is small. In our one-loop approxima-
tion this becomes clear when considering Eqs. �8� and �9�.
When all momenta involved are small, the sum in Eq. �9� is
also small and S��S. In this limit the Hamiltonian �8� be-
comes equivalent to the one for ideal noninteracting spin
waves.

For these reasons we cannot expect that the MSWT gives
reasonable results if we try to calculate local quantities for
OBCs near the boundary. We observed that neither a local
constraint �Sn

z�=0 nor the correlation function �SnSm� can be
calculated without inconsistencies. For example, if we calcu-
late the correlation function for OBCs explicitly we find a
constant term which vanishes only if we set v= t /4S2 exactly.
However, the condition �11� still requires corrections to v as
given in Eq. �16�.

Far enough away from the boundaries, on the other hand,
the correlation function will still behave as in Eq. �15�. When
we perform the sum in Eq. �12� using again this long-
distance asymptotics for �SnSm� but in a way appropriate for
OBCs we will already obtain a O�1� correction to the sus-
ceptibility without taking the modifications to the correlation
function near the boundary into account. We conjecture that
for low temperatures, this term yields �B. The physical pic-
ture behind this procedure is as follows: We can combine
two open chains each of length M −1 to one periodic chain of
length N=2M, where the two additional sites do not couple
with their neighbors. We then carry out the sum in Eq. �12�
only over one half of the periodic chain, thereby discarding
correlations between this subsystem and the rest. Doing so
we ignore local differences between PBCs and OBCs.

What makes us confident that this is indeed sufficient to
obtain the leading terms in a low-temperature expansion
for the boundary susceptibility �B is that the leading term
�−1/T3 is universal in the sense that it does not depend on
S. Especially, it is the leading term of �B for both S=1/2 and
S=�.12,13 The classical result for the correlation function
�17� has been first obtained by Fisher1 for an open chain.
That is, in the classical limit the exponential decay of the
correlation function does depend only on �rn−rm� and not on
rn ,rm alone, although translational invariance is broken!

We therefore conjecture that the leading terms in a low-
temperature expansion of the susceptibility for a quantum
chain with OBCs are given by

�OBC =
g2

3T� t

4vN
�

n � m
n,m=1

N

e−2�rn−rm�
tv + S�S + 1��
=

g2

12JS
�t−1/2v−3/2 − v−1 + 4S�S + 1�t−1

−
1

2N
t−1v−2 + O�e−N�� . �19�
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In particular, the boundary susceptibility is given by

�B = −
g2

24JS
t−1v−2 = − g2 2S3

3Jt3�1 − q
2
t

S
+ q2 3t

2S2 + ¯ � .

�20�

Note that the leading term is identical to the leading term in
the classical result �5� when J ,g are replaced by Jc ,gc. This
confirms our expectations. To test if the procedure proposed
here gives indeed the right corrections to the classical result,
we will check formula �20� against numerical data for the
S=1/2 quantum model in the following section.

III. NUMERICAL RESULTS

In a system with OBCs the one-point correlation function
�Sz�r�� is no longer a constant because translational invari-
ance is broken. We define

C�r� = �Sz�r��OBC − m , �21�

where m is the magnetization per site in the system with
PBCs and r is the distance from the boundary. The local
boundary susceptibility is then given by �B�r�
=�C�r� /�h�h=0 and the total boundary susceptibility �B can
be obtained by

�B = �
r=1

�

�B�r� = N��OBC − �PBC� . �22�

This means that we can calculate �B by considering only a
local quantity which is particularly useful in numerical cal-
culations where it is difficult to obtain the O�1� contribution
directly. Particularly suited for this purpose is the density-
matrix renormalization group applied to transfer matrices
�TMRG� because the thermodynamic limit is performed ex-
actly. The idea of the TMRG is to express the partition func-
tion Z of a one-dimensional quantum model by that of an
equivalent two-dimensional classical model which can be de-
rived by the Trotter-Suzuki formula.15,16 For the classical
model a suitable transfer matrix T can be defined which al-
lows for the calculation of all thermodynamic quantities in
the thermodynamic limit by considering solely the largest
eigenvalue of this transfer matrix. Details of the algorithm
can be found in Refs. 17–20. The method has been extended
to impurity problems in Ref. 21. In particular, the local mag-
netization at a distance r from the boundary of a system with
N sites can be obtained by

�Sz�r�� =
�n

��L
n�T �Sz�T r−1T˜T N−r−1��R

n�

�n
��L

n�T N−1T˜��R
n�

, �23�

where ��R
n� ���L

n � � are the right �left� eigenstates of the

transfer matrix T , T˜ is a modified transfer matrix containing
the broken bond, and T �Sz� is the transfer matrix with the
operator Sz included. Because the spectrum of T has a gap
between the leading eigenvalue �0 and the next-leading ei-
genvalues, Eq. �23� reduces in the thermodynamic limit to

lim
N→�

�Sz�r�� =
��L

0�T �Sz�T r−1T˜��R
0�

�0
r��L

0�T˜��R
0�

. �24�

Therefore only the leading eigenvalue and the corresponding
eigenvectors have to be known to calculate the local magne-
tization in the thermodynamic limit. Far away from the
boundary �Sz�r�� becomes a constant, the bulk magnetization

m = lim
r→�

lim
N→�

�Sz�r��

= lim
r→�

�n
��L

0�T �Sz�T r−1��R
n���L

n�T˜��R
0�

�0
r��L

0�T˜��R
0�

=
��L

0�T �Sz���R
0�

�0
. �25�

To obtain numerically the susceptibility profile �B�r� we cal-
culate C�r� for small fields h�10−4, 10−5 by using Eqs. �24�
and �25� and then taking the numerical derivative.

Here we want to study the quantum model �1� with
S=1/2, J=1, and g=2. First, we want to test our numerical
results by calculating the bulk susceptibility and comparing
with Eq. �18�, which agrees with the TBA.6 The result is
shown in Fig. 1 and the agreement at low temperatures is
excellent. Note also that although the leading terms in the
low-temperature expansion for the classical and the quantum
model are identical, extremely low temperatures are neces-
sary to see the classical scaling for the S=1/2 quantum
model.

The boundary susceptibility is shown in Fig. 2 in com-
parison to the classical result as well as to formula �20� con-
jectured for the quantum case. The excellent agreement con-
firms our conjecture for the S=1/2 case. As Eq. �20� also
agrees with the classical result in the limit S→� we expect
that our result is valid for all S.

Finally, we show in Fig. 3 susceptibility profiles �B�r� for
different temperatures. As the total boundary susceptibility is

FIG. 1. �bulk as a function of temperature. The circles denote the
numerical data obtained by TMRG, the dashed line is the classical
result from Eq. �4�, and the solid line Takahashi’s result �18� ob-
tained by MSWT.
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given by Eq. �22� which, on the other hand, should be equal
to Eq. �20� we can even determine an analytic formula for
�B�r� and find

�B�r� = − g2e2
tv − 1

24JS
t−1v−2e−2r
tv. �26�

This formula is in excellent agreement with our numerical
data �see dashed lines in Fig. 3�. The deviations at large
distances r where �B�r� is small are due to numerical errors.
For the fields h�10−5 used here, �B�r��10−2 corresponds to
a local magnetization C�r��10−7 which becomes compa-
rable with the accuracy of the calculation. Note also that
according to Eq. �26� the one-point correlation function
�Sz�r�� will decay for small magnetic fields with exactly the
same correlation length as the bulk two-point correlation
function �Sz�r�Sz�0��. This connection between one- and two-

point correlation functions has also been found for the anti-
ferromagnetic XXZ chain.5

IV. CONCLUSIONS

We want to emphasize that the boundary susceptibility
calculated here is not a finite-size quantity. It is defined as N
times the difference in susceptibilities between a periodic
chain and a chain with OBCs in the thermodynamic limit
N→�. In fact, when we calculated �PBC and �OBC in Sec. II
we ignored terms �exp�−2N
tv�. For a finite chain with
OBCs this is a valid approximation if T /J�1/4N and our
results can be directly applied if this condition is fulfilled. At
temperatures T /J�1/N, where finite-size corrections are
sufficiently small to be ignored, we find a �25% reduction
of the total susceptibility in the open compared to the peri-
odic system. This effect should therefore be relevant in sus-
ceptibility measurements on systems with nonmagnetic im-
purities when the temperature T /J becomes comparable to
the concentration of impurities �inverse average chain
length�.

In this context we want to mention that the low-T behav-
ior of �PBC following from Eqs. �16� and �18� has been ob-
served experimentally.22,23 Furthermore, controlled doping of
quasi-one-dimensional ferromagnets with both magnetic24

and nonmagnetic25 defects is possible. Most interestingly,
susceptibility measurements of diluted two-dimensional fer-
romagnets have revealed a one-dimensional behavior at the
percolation threshold,26 and an unexplained lowering of the
susceptibility under the percolation threshold at low tempera-
tures. It would certainly be interesting to try to understand
these experiments in more detail in the light of the results
presented here. In addition, we like to point out that our
numerical data show that at T /J�0.02 the local susceptibil-
ity at the site closest to the boundary will be reduced by
more than 40% and that a sizeable reduction �more than
10%� will extend over a distance of about 25 lattice sites
from the boundary �impurity�. We therefore expect that it
should be possible to test our predictions for the local sus-
ceptibility directly by nuclear magnetic resonance Knight
shift experiments.

Finally, we want to address the question at which tem-
perature scale the crossover from quantum to classical be-
havior occurs. Clearly, the system behaves classically at
length scales much smaller than the correlation length
�=1/2
tv�Jc /T where all spins are practically aligned. The
length scale for fluctuations is set by the spin-wave wave-
length ��
Jc /TS. So we expect classical behavior when
�
�, which is true for all S at sufficiently low temperatures.
As expected, � becomes smaller with increasing S whereas
the correlation length � does not change. Therefore the cross-
over temperature will increase with the spin quantum num-
ber S.

In summary, we have used a modified spin-wave theory—
where a chemical potential guarantees zero magnetization at
zero magnetic field for any finite temperature—to calculate
the boundary susceptibility �B for the open spin-S quantum
ferromagnetic chain. We found that �B can be expanded in
powers of 
T and that the leading term is given by �B�

FIG. 2. Boundary susceptibility �B as a function of temperature.
The circles denote the numerical data obtained by TMRG, the
dashed line is the classical result from Eq. �5�, and the solid line is
our result �20� from MSWT.

FIG. 3. �Color online� Susceptibility profile �B�r� at a distance r
from the boundary for different temperatures T=0.013, . . . ,0.8. The
dots represent the numerical, the dashed lines the theoretical result
according to Eq. �26�.
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−1/T3 in agreement with the classical result. The quantum
corrections to this classical result are, however, important to
obtain a good description over a wide temperature range. We
have verified our formula for the S=1/2 case by comparing
with numerical data obtained by the density-matrix renor-
malization group applied to transfer matrices and have found
excellent agreement. We have even been able to derive an
analytic formula for the local boundary susceptibility �B�r�,
which we also checked numerically. Most important, we
have shown that �B at low temperatures is “universal”, in the

sense that it is completely determined by the long-distance
asymptotics of the two-point correlation function �SnSm�.
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