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We report on the theoretical investigations into the recently discovered colossal entropy change in MnAs
under magnetic-field change in an isothermal process. The phenomenological model takes into account the
exchange-Zeeman interactions, magnetoelastic interactions, the external pressure effect, and the magnetic-field
dependence of the lattice entropy. The results show the fundamental role of the lattice entropy in the colossal
entropy change for the MnAs compound. The best model parameters and their variation with pressure were
determined.
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I. INTRODUCTION

Magnetic refrigeration is based in the magnetocaloric ef-
fect, which is the material ability of cooling when it is re-
moved from the external magnetic field in an adiabatic pro-
cess. Improvements in the overall magnetic refrigerator
performance are critically dependent on the magnetocaloric
properties of magnetic refrigerant materials, and since
the discovery of giant magnetocaloric effect in the
Gd5�SixGe1−x�4 alloys in 1997 by Pecharsky and
Gschneidner,1 much scientific effort has been devoted into
the investigation of the magnetocaloric effect. More recently,
different giant magnetocaloric materials were reported, e. g.,
MnAs1−xSbx,

2,3 MnFeP0.45As0.55, and La�Fe1−xSix� and its
hydrides.4–6 Theoretical progress, based on the Bean and
Rodbell model �which predicts a first-order magnetic phase
transition when the Curie temperature is strongly dependent
on lattice deformation� were performed in order to under-
stand the giant magnetocaloric behavior in Gd5�SixGe1−x�4,7

MnAs1−xSbx,
8 and MnFeP0.45As0.55.

9

The heating and cooling of any refrigerant material are
connected to the entropy change associated with an external,
controlled parameter change, and for a given refrigerant ma-
terial, a high-entropy change occurs in the temperature range
where the external parameter has stronger influence on the
order-disorder transition as stated by the second law of ther-
modynamics. In the case of magnetocaloric materials, the
external parameter is the magnetic field, the order-disorder
parameter is the magnetization, and around the Curie tem-
perature the peak occurs in the isothermal magnetic entropy
change, �S. For magnetic materials that present discontinu-
ity in the magnetization �first-order magnetic phase transi-
tion, high magnetic entropy change is expected, as is the case
of the giant magnetocaloric materials mentioned earlier.
Similar to magnetocaloric effect, some materials present iso-
thermal entropy and adiabatic temperature changes under
changing of pressure �the controlled external parameter�, the
so-called barocaloric effect.10 Müller et al.11 investigated
the cooling by application of pressure in the vicinity

of a pressure-induced structural phase transition in
Pr0.66La0.34NiO3. This material presents a rhombohedral to
orthorhombic phase transition around T=361 K, leading to a
different crystalline electrical field �CEF� levels scheme, and
therefore, to different entropy associated with the CEF levels
scheme. The role of pressure, in this material, is to enhance
the fraction of rhombohedral symmetry at the expense of the
fraction of the orthorhombic one, leading to entropy change
and, therefore, to the sample cooling. The influence of CEF
on the magnetocaloric effect was vastly investigated in rare-
earth compounds, such as �Dy1−xErx�Al2,12 YbAs,13 and
PrNi5.14,15 In these materials, experimental results showed an
anomalous magnetocaloric effect, which was explained in
the framework of the CEF theory.

The hydrostatic pressure influence on the giant magneto-
caloric compound Gd5Ge4 was investigated by Magen et
al.,16 measuring linear thermal expansion and magnetization
isotherms at selected applied pressures. The effect of pres-
sure is to induce a three-dimensional ferromagnetic order in
Gd5Ge4 because of the reduction of the interatomic distances
and therefore inducing the formation of the orthorhombic
O�I�-type structure at the expense of the fraction of ortho-
rhombic O�II�-type structure �in which the Gd5Ge4 crystal-
lizes�.

An early experimental improvement in magnetocaloric
material under pressure was reported by Morellon et al. in
Tb5Si2Ge2 by means of thermal expansion, magnetization,
and neutron powder diffraction experiments under hydro-
static pressure.17 The influence of the pressure on the
Tb5Si2Ge2 is to increase the Curie temperature at a rate faster
than the rate of a crystallographic transition, so that above a
critical pressure, Pc �8.6 kbar, a coupled magnetic-
crystallographic transition occurs, i.e., a monoclinic-
paramagnetic to orthorhombic-ferromagnetic first-order
phase transition takes place. Below the critical pressure, the
magnetic phase transition uncouples from the crystallo-
graphic one and the paramagnetic-ferromagnetic transition
occurs as a second-order phase transition on cooling. When a
hydrostatic pressure is applied in Tb5Si2Ge2, the peak in the
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magnetic entropy change increases from 13.4 J /kg K �at P
=0 kbar� to 22.1 J /kg K �at 10.2 kbar� for a magnetic field
change of �H=5 T. This increase in the entropy change was
shown to arise from the latent heat of the crystallographic
transition as predicted by Pecharsky et al.18

In this paper, we theoretically investigate the origin of the
recent discovered colossal magnetocaloric effect �CMCE� in
MnAs under hydrostatic pressure.19 The magnetocaloric ef-
fect measurements �S in MnAs were performed using the
magnetization method, placing the MnAs sample in a proper
pressure cell. The effect of the pressure is to decrease the
MnAs Curie temperature and increase the �S peak until a
critical pressure �Pc=2.23 kbar� and, beyond this PC value,
the CMCE effect starts to diminish. The maximum value of
the entropic CMCE reaches a peak value of �S
=267 J / �kg K� �at PC=2.23 kbar and T=281 K�, which is
7.3 times greater than the value for the optimally prepared
giant magnetocaloric material Gd5Si2Ge2, �36.4 J /kg K� at
TC=272 K�, for a magnetic-field change of �H=5 T.20 The
colossal �S=267 J / �kg K� value is far above the upper limit
for the �magnetic� entropy variation value, namely, R ln�2J
+1�, based on the hypothesis of magnetic-field independence
of the lattice and electronic contributions to the entropy. It is
also not possible to explain the colossal effect as being due
to the latent heat of the coupled crystallographic transition of
MnAs, once this contribution is far below the measured �S
values. The first model used to describe the magnetic state of
the MnAs, which takes into account the first-order magnetic
phase transition because of the strong magnetoelastic inter-
action, was proposed by Bean and Rodbell.21 In order to
explain the CMCE effect, we extended the Bean and Rodbell
assumption of the Curie temperature dependence on lattice
deformation, considering, in addition, the Debye temperature
dependence on lattice deformation through the Grüneisen
model parameters. The experimental results of the CMCE
effect were adjusted for different applied pressures, and the
best model parameters were determined.

The model parameters are dependent on the maximum
entropy variation at each fixed pressure, and from the first
application of the model, it was evident that the value for
ambient pressure was far from the average behavior of the
parameters obtained for the other pressures. For this reason,
we repeated the �S determination at ambient pressure, but
using finer temperature and field variations, and were able to
verify that the entropy effect is far greater than the value
previously reported �as can be seen in Fig. 1� and greater
than the magnetic limit, 103 J / �kg K�. We used this new data
for determining the values of the parameters of the modified
Bean and Rodbell model, as described below.

II. THEORY

The Gibbs free energy, for a ferromagnetic system de-
scribed by exchange interaction, under the molecular field
approximation, Zeeman effect, and distortion is given by

G = −
3

2
� J

J + 1
�NkBTC�2 − Hg�BJN� +

1

2K
�2 + P� − TS .

�1�

In Eq. �1� J is the ion total angular momentum in the lattice,
N is the number of magnetic ions per unit volume, kB is the

Boltzmann’s constant, �B is the Bohr magneton, �
=M /g�BJN is the normalized magnetization at absolute tem-
perature T, g is the Landè factor, H is the external magnetic
field, K is the compressibility, P is the pressure, and S is the
total magnetic entropy of the system. We neglected other
entropy contributions in the relation �1� since the main con-
clusion may be drawn from this simplified form.

The model considers the dependence of the exchange in-
teraction on the interatomic distance. This dependence is
phenomenologically described by considering the depen-
dence of the critical magnetic phase-transition temperature
on the volume change in the following way:21,22

TC = T0�1 + ��� . �2�

Here �= �V−V0� /V0 is the cell deformation, � measures the
slope of the critical temperature curve on the cell deforma-
tion, and T0 is the order temperature in the absence of the
deformation. The above free energy minimizes under the de-
formation

� =
3

2

J2

J�J + 1�
NKkBT0��2 − PK . �3�

Substituting the above equilibrium deformation into relation
�1� and performing the derivative with respect to �, the mag-
netic state equation is obtained.

� = BJ�Y� �4�

with

Y =
1

T
�3T0� J

J + 1
�� + �g�BJ

kB
�H +

9

5
� �2J + 1�4 − 1

�2�J + 1��4 �T0��3

− 3� J�PK

J + 1
�T0�	 , �5�

and

FIG. 1. Magnetocaloric effect for MnAs at room pressure mea-
sured with a finer temperature and magnetic field intervals.
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� =
5

2

�4J�J + 1��2

��2J + 1�4 − 1�
NkBKT0�2, �6�

where BJ is the Brillouin function. The last two terms in the
argument of the Brillouin function come from the elastic
deformation. The parameter � controls the order of magnetic
phase transition.7

The magnetic entropy can be obtained from the usual re-
lation

Smag�T,H,P;T0,�� = R�ln�Z� + T
� ln�Z�

�T
	 , �7�

where R is the gas constant and Z=sinh��2J
+1�Y /2J� / sinh�Y /2J�.

The lattice entropy is considered in the Debye approxima-
tion

Slatt�T� = − 3R ln�1 − exp�−
�D

T
�	

+ 12R� T

�D
�3


0

�D/T x3dx

exp�x� − 1
, �8�

where �D is the Debye temperature. The influence of the
pressure and magnetoelastic effect on the lattice entropy is
obtained using the Grüneisen relation23,24 defined by

��D

�D
0 =

�D� − �D
0

�D
0 = − 	� . �9�

In this equation, 	 is the Grüneisen parameter. Here, �D
=�D� �� , P�+C is the Debye temperature at pressure P and
magnetization �. The introduced constant C gives the suit-
able boundary condition, i.e., at low temperature ��=1� and
without external pressure we chose �D=�D

0 . In this way, the
pressure and magnetization dependence of the Debye tem-
perature is given by

�D = �D
0 �1 + 	�3

2

J2

J�J + 1�
NKkBT0��1 − �2� + KP�	

�10�

The total entropy is given by ST�T , P ,H�=Smag+Slat, and the
other contributions to the total entropy of the magnetic sys-
tem will be neglected. The isothermal and isobaric entropy
changes �ST, which occur for changes in the external mag-
netic field, can be directly determined

�ST�T,P� = ST�T,P,H2� − ST�T,P,H1� . �11�

The temperature, pressure, and magnetic-field dependence of
the total entropy is not trivial, since for a given set of model
parameters �T0 ,��, the magnetic state equation �
=��T ,H , P ,��, relation �4�, must be solved self-consistently.

III. RESULTS AND DISCUSSIONS

The model parameter T0=285 K was previously esti-
mated for MnAs,21 the compressibility, K=4.55

10−12 �dyn/cm2�−1,25 and the number of particles per unit

volume N=2.9
1022 cm−3, taken from Ref. 21, were con-
sidered in this work. Entering with g=2, J=1.72, �=13.2,
and pressure P=2.23 kbar into relation �6�, we get �=1.98
�this � value leads the magnetic system to order under first-
order ferro-paramagnetic phase transition

Using the above parameters in the magnetic state equa-
tion, relation �4�, the temperature dependence of magnetiza-
tion was obtained and is displayed in the inset of Fig. 2. The
sharp first-order transition appears at critical temperature,
TC=271 K for zero magnetic field, and for H=5 T a shift to
TC=278.8 K is observed.

The Debye temperature slowly decreases with tempera-
ture until TC, when an abrupt decrease occurs due to the
coupled magnetodeformation interaction under first-order
magnetic phase transition. The total entropy curves, i.e., the
magnetic plus lattice entropy versus temperature with H=0
and H=5 T are plotted in Fig. 2. The colossal increases in
the total entropy at TC �of about 100 J /kg K� are due to the
two combined and superimposed effects: �i� the large in-
crease in the magnetic entropy that occurs when the ordered
�ferromagnetic state� goes to the disordered �paramagnetic
state� in a first-order process and �ii� the abrupt decrease in
the Debye temperature at TC, which leads to an abrupt in-
crease of the lattice entropy. We emphasize that such total
entropy variation is too great to be accounted for by the
latent heat associated with the first-order transition.

We apply the above model to the experimental data of
�ST versus temperature in MnAs �Ref. 19� for a magnetic-
field change from H=0 to H=5 T under several hydrostatic
pressures, namely, P=0, 1.13, 2.23, 2.64 kbar. In Fig. 3, the
experimental data �open circles� and the theoretical calcula-
tions �solid lines� are displayed. The two model parameters,
	 and �, determined for each corresponding pressure are
shown in Table I, calculated for other values of the pressure
as well. The � values that appear in the last column come
from relation �6�, and in all cases, we obtain ��1, which
leads to the first-order magnetic phase transition. Note that
the parameter values in the sixth row, for P=2.23 kbar, are

FIG. 2. Temperature dependence of total entropy for MnAs,
under pressure P=2.23 kbar, in zero field and in applied field of
5 T. The inset shows the magnetization vs temperature.
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the same values used to construct the curves in Fig. 2. The �
parameters, determined by adjusting the experimental data,
slowly increase linearly when the pressure decreases, at a
rate of −0.42 kbar−1, as can be seen from Fig. 4. The increase
of � leads to an increase in TC. Nevertheless, even if we fix
the � parameter, the model confirms that the pressure leads
to a systematic decrease in TC, as observed experimentally.
In this way, the small linear change in � was considered to
improve the fit. Figure 4 shows that the � parameter also
varies linearly with the applied pressure at a rate of
−0.14 kbar−1. In the pressure range where the CMCE is in-
creasing, the 	 parameter also decreases linearly, at a rate of
−1.74 kbar−1, as shown in Fig. 4. This parameter, however,
starts to increase as the CMCE starts to decrease, so that the
maximum in the CMCE is accompanhied by a minimum for
this parameter as a function of pressure �Fig. 4�. The nega-
tive 	 parameter is responsible for the decrease of the Debye
temperature with the applied pressure, which leads to the

increase in lattice entropy. Therefore, the higher the modulus
of 	 is, the higher will be the peak in the �ST versus tem-
perature curve. As pressure increases, the CMCE starts do
decrease steeply, following the transition observed for the
Mn ion from a high- to low-spin state observed for this pres-
sure range. The 	 parameter varies accordingly to reproduce
these results. We note that the model reproduces the transi-
tion temperatures and the maximum values for the CMCE
well, but not the shape of the curves, indicating the model
needs improvements to better reproduce the experimental
data.

IV. CONCLUSION

Considering the total entropy dependence on the volumet-
ric deformation, which changes with magnetization, external
magnetic field, and pressure, it was possible to explain the
origin of the colossal magnetocaloric effect in MnAs under
hydrostatic pressure. The model reproduces the systematic
decrease of the Curie temperature very well with the pressure
as measured in MnAs, as well as the observed values of the
colossal effect measured for this compound. The best model
parameters were determined adjusting the �ST for several
pressures. The variation of the model parameters with pres-
sure are also obtained from the fittings to the experimental
data.
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FIG. 3. Temperature dependence of total entropy changes for
MnAs for a magnetic-field change from 0 to 5 T. The full lines
represent the theoretical results, and the circles represent the experi-
mental data.

TABLE I. The model parameters 	 and � for MnAs for different
pressures. The � parameter is determined from relation �6�.

Pressure �kbar� 	 � �

0 −7.0 13.6 2.16

0.38 −7.5 13.6 2.17

0.87 −9.7 13.6 2.17

1.13 −10.5 13.4 2.10

1.80 −10.5 13.4 2.10

2.23 −11 13.2 1.98

2.46 −10.5 12.0 1.70

2.64 −6.3 13.0 1.98

FIG. 4. Variation of the model parameters with pressure.
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