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Spherical 2+p spin-glass model: An analytically solvable model
with a glass-to-glass transition
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We present the detailed analysis of the spherical s+p spin-glass model with two competing interactions:
among p spins and among s spins. The most interesting case is the 2+ p model with p =4 for which a very rich
phase diagram occurs, including, next to the paramagnetic and the glassy phase represented by the one step
replica symmetry breaking ansatz typical of the spherical p-spin model, another two amorphous phases.
Transitions between two contiguous phases can also be of a different kind. The model can thus serve as a
mean-field representation of amorphous-amorphous transitions (or transitions between undercooled liquids of
different structure). The model is analytically solvable everywhere in the phase space, even in the limit where
the infinite replica symmetry breaking ansatz is required to yield a thermodynamically stable phase.
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Spin glasses have become in the last thirty years the
source of ideas and techniques now representing a valuable
theoretical background for “complex systems,” with applica-
tions not only to the physics of amorphous materials, but also
to optimization and assignment problems in computer sci-
ence, to biology, ethology, economy, and finance. These sys-
tems are characterized by a strong dependence from the de-
tails, such that their behavior cannot be rebuilt starting from
the analysis of a “cell” constituent but an approach involving
the collective behavior of the whole system becomes neces-
sary. One of the features usually expressed is the existence of
a large number of stable and metastable states or, in other
words, a large choice in the possible realizations of the sys-
tem and a rather difficult (and therefore slow) evolution
through many, detail-dependent intermediate steps, hunting
its equilibrium state or optimal solution.

Mean-field models have largely helped in comprehending
many of the mechanisms yielding such complicated structure
and also have produced new theories (or combined among
each other old concepts pertaining to other fields) such as,
e.g., the spontaneous breaking of the replica symmetry and
the ultrametric structure of states. Among mean-field models
spherical models are analytically solvable even in the most
complicated cases. Up to now mainly spherical models with
one step replica symmetry breaking (1RSB) phases were
studied, because of their relevance for the fragile glass
transition.'~* The possibility of the existence of full replica
symmetry breaking (FRSB) phases in spherical models was
first pointed out by Nieuwenhuizen’ on the basis of the simi-
larity between the replica free energy of some spherical mod-
els with multispin interactions and the relevant part of the
free energy of the Sherrington-Kirkpatrick (SK) model.®” A
complete analysis, however, was not provided up to now.
The problem has been considered some years later® in con-
nection with the possible different scenarios for the critical
dynamics near the glass transition,” therefore analyzing only
the dynamical behavior in the 1RSB phase. A more general
example of disordered models with continuous variables dis-
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playing a FRSB frozen phase are those describing the ran-
dom manifold problem, see, e.g., Refs. 10-13.

The model we present here, the 2+ p spherical spin glass
model, displays four different phases: together with the rep-
lica symmetric, 1RSB, and FRSB phases another phase also
occurs. The evidence for the existence of such a peculiar
amorphous phase was first presented in Ref. 14 and, for what
concerns the organization of the states, it seems to yield the
properties of a glass up to the first level of the ultrametric
tree (i.e., inside and just outside a valley of the free energy
landscape) and those of a spin glass above.

Concentrating on the study of amorphous materials, in
recent years some evidence has been collected for the exis-
tence of amorphous to amorphous transition (AAT), in cer-
tain glass-forming substances. One way of looking at an
AAT has been to consider the kinetics of the coordination
transformation occurring in strong glasses such as the vitre-
ous germania (GeO,, from fourfold to sixfold coordination
raising the pressure) and silica (SiO,, from tetrahedral to
octahedral coordination).!> Exactly as for the liquid-glass
transition also this transition is not a thermodynamic one, but
it amounts to a qualitative change of the (slow) relaxation
dynamics, apparently expressing a recombination of the
glass structure (see also the numerical simulations of Ref. 16
for a different point of view). Another kind of pressure in-
duced AAT takes place in densified porous silicon, where the
high-density amorphous Si transforms into a low density
amorphous Si upon decompression.!” A similar transition
also takes place in undercooled water.'

Theoretical models have been introduced to describe an
AAT. As, for instance, a model of hardcore repulsive colloi-
dal particle subject to a short-range attractive potential that
induces the particle to stick to each other.'*-2! In the frame-
work of the mode coupling theory (MCT) it has been shown
that the interplay of the attractive and repulsive mechanisms
results in the existence of a high(er) temperature “repulsive”
glass, where the hardcore repulsion is responsible for the
freezing in of many degrees of freedom and the kinetic ar-
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rest, and a low(er) temperature “attractive” glass that is en-
ergetically more favored than the other one but only occurs
when the thermal excitation of the particles is rather small.
Such theoretical and numerical predictions seem to have
been successfully tested in recent experiments.>>~>* Another
model where AAT is found is the spherical p-spin model on
lattice gas of Caiazzo et al.®® where an off-equilibrium
Langevin dynamics is considered, thus going beyond the
MCT assumption of equilibrium. The model we consider
here might, as well, be a good mean-field representative of
an amorphous-amorphous transition.

The goal of this paper is to give a detailed discussion of
the different solutions describing the low-temperature phase
of the spherical 2+p spin glass model. As it happens in sys-
tems with a phase described by a 1RSB solution one must
distinguish between the “static solution” obtained from the
partition function and the “dynamic solution” obtained from
the relaxation dynamics. To keep the length of the paper
reasonable we shall consider in detail only the static ap-
proach and introduce the dynamic solution with the help of
the complexity.? The complete dynamic approach will be
presented elsewhere.

In Sec. I we present the spherical 2+p spin-glass model.
In Sec. II its static behavior is studied with the help of the
replica trick?’ and the Parisi replica symmetry breaking
scheme:2® four different phases occur, together with the rela-
tive transitions between them. The nature of the phases is
thoroughly discussed and analytical exact solutions for order
parameters, transition lines, and thermodynamic functions
are provided all over the parameter space. In Sec. III the
existence of an exponential number of energetically degen-
erate pure states is considered by analyzing the complexity
function. The connection between the “marginal condition”
(maximum of the complexity in free energy) and the dynami-
cal solution leads, in Sec. IV to the discussion of the latter in
those cases where it differs from the static one. In Appen-
dixes A and B we show, respectively, the Parisi antiparabolic
equation for the 2+p model, and its analytical solution. In
Appendix C some basic features of the behavior of the much
simpler s+p model (s, p >2) are given.®?° Eventually, in Ap-
pendix D, it is given the proof that no other phases different
from those presented here can exist for the spherical 2+p
spin-glass model.

I. THE MODEL

The spherical 2+p spin-glass model is defined by the
Hamiltonian

1N 1N

i<j 11<--~<1p

J(p) o SRR O-ip’ (1)

ll'“lp

where p is an integer equal or larger than 3 and o; are N
continuous real spin variables which range from —% to +%
subject to the global spherical constraint
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2 ol =N. (2)
i=1
The coupling strengths ]l({’,)_.i (p=2,3,...) are quenched in-
y4

dependent identical distributed zero mean Gaussian variables
of variance

N 1 J>
P
( ifl'z...ip) - 2Np_l, l] < < lp' (3)

The scaling with the system size N ensures an extensive free
energy and hence a well defined thermodynamic limit N
— o0, Without losing in generality one may take either J, or
J,, equal to 1 since this only amounts in a rescaling of the
temperature 7. To keep the discussion as simple as possible
in this paper we shall not consider the effect of an external
field coupled linearly with the spin variables o;.

The properties of the model strongly depend on the value
of p. For p=3 the model reduces to the usual spherical
p-spin spin glass model in a field® with a low-temperature
phase described by a 1RSB solution. For p>3 the model
exhibits different low-temperature phases which, depending
on the temperature and the ratio J,/J, between the strength
of the nonharmonic and the harmonic parts of the Hamil-
tonian, are described by 1RSB and/or FRSB solutions.

II. THE STATIC SOLUTION

The static solution is obtained from the minimum of the
free-energy functional computed from the partition function.
The model contains quenched disorder and hence the parti-
tion function must be computed for fixed disorder
realization3%-32

Z\J?,J P = Tr, exp(- BHLJ?,J?); o)) (4)

with B=1/T. We have explicitly shown the dependence of
the Hamiltonian on the realization of the random couplings
to stress that Zy is itself a function of the couplings realiza-
tion. The trace over the spins is defined as’

40 N N
I1 do,a(E o7 - N) (5)

i=1

Tr,=2 \W

—oo =]

and includes the spherical constraint (2). As a consequence
Tr,(1) is equal to the surface of the N-dimensional sphere of
radius N'/? and its logarithm gives the entropy of the model
at infinite temperature.

The partition function Zy is a random variable, therefore
the quenched free energy per spin is given by

1
q)N:_N_ﬁanN[JZ’JP]’ (6)

where here and in the following (---) denotes the average
over the realizations of all couplings in the Hamiltonian

()= J dPLIP VPP -). (7)

The thermodynamic limit N—o of the free energy @
=limy_.Py is well defined and is equal to the limit
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—limy_., In Z,[J®,J®]/Np for almost all coupling realiza-
tions (self-average property).

The analytic computation of the quenched free energy,
i.e., of the average of the logarithm of the partition function,
is quite a difficult problem, even in simple cases as nearest
neighbor one-dimensional models. Since the integer mo-
ments Zj, of the partition function are easier to compute, the
standard method to evaluate Eq. (6) uses the so-called “rep-
lica trick” by considering the annealed free energy ®(n) of n

noninteracting identical “replicas” of the system,3!-33
1
®(n) = - lim— In (Zy[JP,JP])". 8
(n) N B (Z\L. D ()

The quenched free energy @ is then recovered as the con-
tinuation of ®(n) down to the unphysical limit n=0,%*

(Z\JP,JP])" - 1

® =— lim lim =1lim®(n). 9)
N—on—0 N,B}’l n—0
In the last equality we assumed that the replica limit n—0
and the thermodynamic limit N— o can be exchanged. The
existence of such a limit has been recently rigorously
proved. 333

The replica method gives a simple way of performing the
disorder average, at the expense of introducing an effective
interaction among different replicas in the n-dimensional
replica space. The interested reader can find a detailed pre-
sentation of the replica method for disordered systems in
Refs. 31 and 32 and for the particular case of spherical mod-
els in Ref. 3.

Applying the replica method the integer moments of the
partition function of the spherical 2+p spin-glass model can
be written, neglecting all unnecessary constants and terms
irrelevant for N — oo, as’

Zy=e™ | T dggpele, (10)

q>0 a<p

where s(o0)=(1+1In27)/2 is the entropy per spin at infinite
temperature and G[q] the functional

1.n

1 1
Glql= EE 8(qap) + 5 Indet g, (11)
ap
glx)= &xz + EE)c” (12)
2 P

with ,=(BJ,)*p/2.
The symmetric n X n real matrix g,z is the replica overlap
matrix

N
1
qaﬁ=]T]§ ofof, ap=1,....n. (13)

The spherical constraint (2) implies that the diagonal ele-
ments of the matrix ¢ are all equal to 1: ¢,,=q=1.

In the thermodynamic limit N—oco the integrals in Eq.
(10) can be evaluated by the saddle point method and the
quenched free energy per spin @ reads
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—B@:s(oo)+limlG[q], (14)
n—0n

where G[q] must be evaluated on the solution of the saddle
point equation which, in the n— 0 limit, reads

A(qap) + (g7 ap=0,

where we have introduced the additional function

a#* B, (15)

A =20, (16)

Stability of the saddle point calculation requires that the
quadratic form

— 2 AN (qup)(894p)° + Tr(q ™" )7, (17)
ap

where 89 ,5=6q,5(=0q3,) is the fluctuation of g4 from the
saddle point value (15), must be positive definite.> Here and
in the following the “prime” denotes derivation with respect
to the function argument, i.e., A’ (x)=dA(x)/dx.

The structure of the overlap matrix g,z reflects the orga-
nization of the different thermodynamic states, called pure
states, in which each replica can be found. This, however,
does not follow from the replica calculation and therefore to
evaluate explicitly G[g] some ansatz on the structure of ¢
must be imposed.

A. The replica symmetric solution (RS)

The simplest ansatz is the one in which all replicas are in
the same pure state, so that g,z cannot depend on the replica
indexes

Gap=1=q)0,5+q. (18)

This is called the replica symmetric (RS) ansatz. This as-
sumption is reasonable for coupling strengths not too large or
high temperatures, i.e., u, and w, small enough. In both
cases, indeed, the system can explore almost the whole avail-
able phase space so that different replicas will be found in
the same pure state.

Inserting the RS form (18) of ¢,z into Eq. (11) one gets

2limGlgl=g(1) -g(@) +In(1 @)+~ (19)
n—0n 1_q

where ¢ is the solution of the RS saddle point equation

A(q)—(l_qﬁ=uzq+ﬂpq” - -y
In absence of external fields the saddle point equation always
admits the “paramagnetic” solution g=0. However, since
q/(1-q)* diverges as ¢— 1 and vanishes for g=0 for par-
ticularly chosen values of the parameters u, and wu, there
may also be solutions with 0<<g<1.
The RS solution is stable, i.e., the quadratic form (17) is
positive definite for n— 0, provided that the eigenvalue’’

=0. (20)
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Aj=-A(g)+

1 B o 1
21)

is positive. If ¢ #0 then dividing the saddle point equation
(20) by ¢ and adding the result to Eq. (21) one gets that the
requirement A;>0 is equivalent to

- p,(p=2)g">>0. (22)

This inequality cannot be satisfied for any ¢ >0, thus we are
left with the g=0 solution only.

For ¢=0 the eigenvalue A reduces to A;=1-pu,. There-
fore, in the (u,,u,) plane the paramagnetic RS solution ¢
=0 is stable everywhere below the u,=1 line, which repre-
sents the De Almeida-Thouless line*® of the model. The in-
stability of the paramagnetic solution is due to the presence
of the quadratic term in the Hamiltonian. If this is missing, as
for example in the spherical 3+p spin-glass model in which
the two-body interaction is replaced by a three-body interac-
tion, the paramagnetic solution is stable everywhere in the
phase space, similarly to what happens for the spherical
p-spin model without a field.?

B. The one step replica symmetry breaking solution (1RSB)

The stability of the RS solution g=0 does not depend on
M, However, from the analogies with the spherical p-spin
spin glass model we expect that for w, large enough a solu-
tion with a nonvanishing order parameter of the 1RSB type
might lead to a thermodynamically more favorable phase.

The 1RSB solution corresponds to group the n replicas
into n/m clusters of m replicas. Any two replicas a# 8
within the same cluster have overlap ¢;, whereas replicas in
different clusters have overlap g, <<q;. As a consequence the
nXn q matrix breaks down into (n/m) X (n/m) blocks of
dimension m X m. If the element g,z with a# B belongs to
one of the diagonal block then g,5=q,, otherwise q,z=q.
The overlap matrix for the IRSB ansatz can be conveniently
written as

Gap=(1=q1)8ap+ (g1 = qo)€ap+ qo> (23)
where the matrix € is defined as

if @ and B are in a diagonal block,

1
- 24
Cap { 0 otherwise. (24)

By plugging this form of g,z into the Eq. (11) one obtains

211m G[q] g(1) - g(qy) +mlg(qy) - g(qo) ]+ ——

( 0)
P+ g, (29
where, for later convenience, we have defined®
x(q)=1-gq, (26)
x(qo) = 1 =gy +m(q; - qo). (27)

The saddle point equations for g, and ¢; in the limit n
—0, obtained either from Eq. (15) or directly from station-
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arity of Eq. (25) with respect to variations of g, and ¢,, read

(QO) (0)2 0 (28)
— 40
A A — =
(01) = Ago) - X(%)X(QO) (29)

The solution of these equations depends on the value of m
that, in the limit n— 0, is restricted to the interval O=m
=<1. In principle any value of m which leads to a stable
IRSB solution can be chosen. However in the spirit of the
saddle point calculation performed to evaluate the free en-
ergy we choose for any value of u,’s the value of m which
minimizes the functional G[¢].*° This leads to the additional

equation
g(q‘)_g(%)*[ :|(Q1 qo)+—1 [X(‘“)}
mx(o) x(qo (90)

=0. (30)

The stability analysis of the 1RSB saddle shows that in
the limit n— 0 the 1RSB solution is stable as long as the
IRSB eigenvalues’’

1
AP == A (g) + ——. (31)
! W a)?
3) ’ 1
Ay’ ==AN(q)+—— (32)
X(q0)

are both positive.

The saddle point equation (28) admits always the solution
qo=0. It may also have solutions with 0<<g,<<1, however,
by using arguments similar to those that lead to the inequal-
ity (22) for the RS solution, one can show that in absence of
external field any 1RSB solution with g,>0 is unstable since
it has a negative A(()S).‘”

The IRSB saddle point equations for g; and m can be
solved for any p using the same procedure used for the
spherical p-spin spin-glass model. The first step is to obtain
g(g,) from Eq. (30) [with g,=0] and divide it by ¢,A(q,).
Then, by using the saddle point equation (29) [with g,=0] to
express A(q;), one ends up with the equation

g(qy)
2—————= s 33
1A (q,) ) (33)
where
l-y+Iny
2(y) =~ Zy—(1 )2 (34)

is the auxiliary z function introduced by Crisanti and
Sommers® (CS) for the solution of the spherical p-spin-glass
model, and

014412-4



SPHERICAL 2+p SPIN-GLASS MODEL: AN...

Xq) _ 1-4
X(q))  1-q,+mg’
By using y and m as free parameters Eq. (29) [with g,=0]

and Eq. (33) can be solved for (u,,u,). A straightforward
algebra leads to

y= 0<y=<l. (35)

__p [1-z(y)]
(P-2) g (1-q))(1-q, +mq))

— 4
P e L) NET

1 [pz(y) - 2]
_(p—2)(1—q1)(1—q1+mq1)
_(1=y+my)*[pz(y) - 2]
oy (p-2)

Hp

M2

(37)

By fixing the value of m in the interval [0, 1] and varying y
these equations represent the parametric equations of the so-
called m lines in the (u,,u,) plane. By definition y can take
any value between 0 and 1 included, however, from Eq. (37)
we see that since z(0)=0, u, becomes negative for y suffi-
ciently close to 0. Setting u,=0 from Eq. (37) one gets

pz(y)—2=0 (38)

which gives the minimum value y,;, of y. The CS z function
(34) is a monotonous increasing function of y varying in the
range 0 <z=1, as a consequence, u, is always non-negative.

A second condition on y comes from the stability analysis
of the 1RSB solution. A simple inspection shows that A(ll)
>A(()3 ) so that the condition which marks the limit of the
stability of the IRSB solutions is Aff):O, ie.,

1
Mz:(l—ih"'m%)z. (59
Using Eq. (37) one gets the equation
pz(y)=2-(p-2)y=0 (40)

whose solution gives y.., the maximum value of y for the
IRSB solution.

Both boundary values y,;, and y.,, are functions of p
only. For example, for p=3, we have

Vmin=0.354993 -+, yoa=1 (41)
while for p=4

Ymin = 0.195478 -+, y.,=0.389571---. (42)

The fact that for p=3 the maximum is y_,,=1 makes the 2
+3 model different from any other 2+p model with p >3, as
we shall see in a while.

From the stability condition A}’ >0 it follows that if the
quadratic term in the Hamiltonian were missing, as for the
already mentioned 3+p model, then the 1RSB solution
would be stable everywhere. In the Appendixes C and D we
shall show that indeed in this case the 1RSB solution is the
only possible nontrivial solution, in addition to the RS solu-
tion.
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FIG. 1. The RS and 1RSB phases for the 2+4 model in the
(p4, p2) plane. The thick lines are the transition lines between dif-
ferent phases.

1. The transition lines between the paramagnet and the
1RSB-glass phase

To find the transition lines which bound the 1RSB phase
we start by noting that the m lines do not cross and that the
value of u, for which the IRSB becomes unstable increases
as m decreases, see Eq. (39). Moreover, all m-lines start from
M,=0. As a consequence the first m line one encounters in
moving from the RS phase at fixed u, <1 and increasing u,
is the m line with m=1. This line, which marks the transition
between the RS (paramagnetic) phase and the 1RSB (glass)
phase, starts on the u,, axis at the point w,= g, (Ypin,m=1)
and goes up to the point w,=m,(Ymax-m=1) and w,=1, as
can be easily seen from Eq. (39) evaluated for m=1.

The transition between the RS (¢=0) and the 1RSB (¢,
#0, go=0) phases is not due to an instability but occurs
because the 1RSB solution leads to a thermodynamically
more favorable state. Since we are dealing with the replica
trick, this means that the 1RSB solution yields a value of the
free energy functional (14) larger than the RS solution.*

This mechanism resembles that of ordinary first order
transitions, and indeed the order parameter ¢, jumps discon-
tinuously from zero to a finite value, and vice-versa, at the
transition. However, the free energy remains continuous
across the transition—at m=1 the free energies of the two
solutions are equal—and no discontinuity occurs in its first
derivatives.

The 1RSB solution becomes unstable when Af)3)=0. This
leads to a second transition line whose parametric equation
in the (u,,u,) plane is obtained by setting y=y,,, into Eqgs.
(36), (37) and varying m from 1 to 0. For m — 0 the values of
both w, and w, diverge but

& - (1 - ymax)p_z[2 - (P - 2)ymax]
(p - 2)ymax P

lim
m—0 My,

(43)

and hence the 1RSB phase does not cover the full “low-
temperature” phase of the model.

In Fig. 1 the transition lines found so far are shown to-
gether with the m lines with m=0.7,0.5. In the figure p=4,
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FIG. 2. The phase diagram of the 2+3 model in the (w3, ;)
plane. The thick lines are the transition lines between the RS and
1RSB phases. In particular the thick dashed line, the m line with
m=1, is the discontinuous transition while the horizontal thick full
line is the continuous transition.

but any p >3 leads to a qualitatively similar scenario.
The case p=3 is special because inserting y=y,,,=1 into
Egs. (36), (37) one ends up with

Mz=m, pp=1, 0s=m=<1. (44)

Along this line ¢;=0, see, e.g., Eq. (35), and the 1RSB so-
lution reduces to the RS solution. We have seen that the RS
solution becomes unstable for w,=1 thus the critical line
(44) marks the transition between the RS and the 1RSB
phases. The transition is continuous in both the free energy
and the order parameter ¢;. The transition lines for the 2
+3 model are shown in Fig. 2. In conclusion the 2+3 model
presents only one “low-temperature” phase of 1RSB type
and, in this respect, is equivalent to the spherical p-spin spin-
glass model in a field.?

C. The one-full replica symmetry broken solutions (1IFRSB)

From Fig. 1 one clearly sees that for p>3 the RS and
IRSB solutions do not cover the whole phase space of the
2+p model. In the region where both the RS and IRSB
solutions are unstable the organization of pure states has a
more complex structure which cannot be described by a
simple 1RSB ansatz which groups them into n/m equivalent
clusters. Therefore, to describe this region one must allow
for clusters of different type. To this end each one of the n/m
clusters is divided into m/m; subclusters of size m,. If the
procedure is repeated R times, dividing at each step the
smallest clusters into yet smaller clusters, one has the R-RSB
ansatz in which the replica symmetry is broken R times. The
overlap g,z between two replicas depends on the number of
divisions separating the offspring clusters to which the rep-
licas a and B belong from the common ancestor cluster.

A simple way proposed by Parisi®® to parametrize the
overlap matrix g, for R steps in the replica symmetry break-
ing consists in dividing ¢ into successive boxes of decreasing
size p,, with po=n and pg,;=1, and assigning the elements
qqp Of the matrix ¢ so that
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4o = danp=r=94r T'= 0,....R+1 (45)

with 1=gg,1>qgr>""q;>qo- The notation oM B=r means
that o and 8 belong to the same box of size p, but to two
distinct boxes of size p,,; <p,.

Inserting this form of g,s into Eq. (11) one gets with
standard manipulations

R

2
~Glgl=g()+ > (P, = pre)g(g) +In(1 - gg)
r=0

R .
T . L (46)
=0 Pr 9r+1

where §, is the replica Fourier transform of g,,***

R+1

qAr = Z ps(qs - qs—l) . (47)

s=r

The number R is arbitrary. Setting R=0 or R=1 one re-
covers, respectively, the RS and the 1RSB expressions, the
latter with m=p,, while for R— cc one gets the ®-RSB solu-
tion or full replica symmetry broken (FRSB) solution. In this
limit the differences p,.;—p, become infinitesimal and the
set of overlaps {qy, ... ,qg} is replaced in the limit n— 0 by a
nondecreasing continuous function ¢(x) defined on the inter-
val x€[0,1].

The free energy functional (46) for the Parisi R-RSB an-
satz can be conveniently expressed by using the function

R

x(q) =po+ 2 (1 =)0~ q,) (48)
r=0

which equals the fraction of pair of replicas with overlap g,z
less or equal to g. With this definition, and replacing the
sums by integrals, one obtains, after a little algebra

1 qar
2G[q]= f dgx(q)A(g) + f - 49 +In(1 - gg).
n 0 0 '
f dq'x(q")
q
(49)

This expression is valid for any R, and hence also for the
FRSB solution. In the limit R— o, g, becomes continuous
and we can define g(x) as the inverse of x(g). It can be
shown that dx(q)/dg gives the probability density of
overlaps.28:44

It is easy to verify that taking for ¢(x)=0 or g(x)=g, 6(x
—m) the above functional reduces to those found with the RS
and 1RSB ansatz, respectively.®

The FRSB solution with a continuous ¢(x) was introduced
to describe the spin-glass phase of the SK model,?® and since
then it has been found in many other related models. A con-
tinuous order parameter function g(x) is, however, not gen-
eral enough to describe the state of the 2+p model with p
>3 in the whole parameter space. From the stability analysis
of the 1RSB solution we see indeed that the instability oc-
curs because the eigenvalue A(()3) vanishes. This eigenvalue is
associated with fluctuations that involve the overlaps of one
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FIG. 3. Schematic form of the order parameter function ¢(x) in
the 1FRSB phase.

cluster as a whole with the other clusters as a whole.?
Roughly speaking these fluctuations are similar to fluctua-
tions in the RS phase with single replicas replaced by the
clusters of m replicas considered as single entities. As a con-
sequence we expect that, as it happens for the fluctuations in
the RS phase, a nonzero overlap g, between clusters would
stabilize the fluctuations. The solution, however, cannot be of
IRSB type since we have seen that any 1RSB solution with
qo 7 0 is unstable.

Based on the analogy with the instability of RS solution
with clusters playing the role of single replicas, it turns out
that the correct ansatz for the 2+p model with p>3 is a
mixture of 1RSB and FRSB, which we have called the
IFRSB solution,'* described by a discontinuous order pa-
rameter function in the interval [0, 1] of the form

() = q1, for x >m, (50)
a q(x), forx<m,

where ¢(x) is a nondecreasing continuous function in the
semiopen interval x € [0,m), with lim,_,,-q(x)=¢,<g; and
q(0)=0,*" see Fig. 3. For gy=q, one recovers the FRSB
solution.*® In Appendix D we show that the IFRSB solution
is the only other possible non-trivial solution, in addition to
the IRSB (modeling a mean-field glass) and the FRSB (mod-
eling a spin-glass) ones, for the 2+p model with p>3. It is
interesting to note that this solution also follows by solving
numerically in the whole interval [0, 1] the Parisi equations
derived from the stationarity of the functional (49) with re-
spect to order parameter function g(x), see Appendixes A, B.
The partial differential equation is solved numerically by
means of a pseudospectral technique, see, e.g., Ref. 47, with-
out fixing a priori any special ansatz for g(x).

The free energy functional for the 1FRSB ansatz can be
obtained either by inserting the explicit form (50) of g(x)
into Eq. (49), or by taking in Eq. (46) pg=m, qr=q1, qr_1
=qg, and pr—pg_; finite as R— . In both cases one ends up
with
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q

26la1= (1) ~sla) +nlsta) gl + | daxt@nia)

0

q0 d m-—1 1
+J da_ me L g+ S ). (1)
0 X(C]) m m

where
40
X(q)=1—fh+m(ql—qo)+f dq'x(q'). (52)
q

Stationarity of the free energy functional ® with respect
to g(x) and ¢, leads to the 1FRSB saddle point equations

q dq
A(g) = , <g<
(q) JO 2@ 0sg=gqo (53)

and

41— 40

Ag) - Algy) = .
(01) = Mao) X(q1)x(q0)

(54)

Finally maximization with respect to m leads to the addi-
tional equation

- A(‘Io)} (g1 = 4q0)
mx(qo)

s m]
m? ln[x(cm) ' (5)

The 1FRSB saddle point equations (54) and (55) are for-
mally equal to the IRSB saddle point equations (29) and (30)
and hence can be solved for any p with the help of the CS z
function. Indeed by using Egs. (54) and (55) it is easy to
verify that

g(qy) — g(qo) =~ {—

8(q1) —8(q0) — (g1 — g)A(qo) _
(- alA) —Algg] 0 OO

where z(y) is given by Eq. (34) and y is defined as

_Xxa) _ -4
x(qo)  1—qy+m(q,—qp)
The saddle point equation (53) is not easy to use as it

stands. Differentiating both sides with respect to ¢g to elimi-
nate the integral one gets the more manageable form

0sys<1. (57)

1
AN(g)=—=7.
(q) Q) (58)

Equations (54), (56), and (58) evaluated for g=¢, can be
solved for (u,,u,) as function of m and t=g/q;. After a
straightforward algebra one ends up with

[ =y+my(-9F 1

M=y (1= y) (1 -0 [ = (p= D2+ (p—- 201
(59)
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=y +my(1-0P (1= - 11 -0
BT - (== D2+ (p-2) ']
(60)

where for any 0<z=< 1, y is the solution of the equation

p(1=0)[1=(p -1+ (p-2)""Tz(y)
—[p-2-pt+ptt—=(p-2)Ty-2+p(p- 12
—2p(p-2)""'+(p-1)(p-2)"=0. (61)

Equations (59)—(61) are the parametric equations of the
IFRSB m lines which are drawn in the (u,,u,) plane by
fixing the value of m in the interval [0, 1] and varying ¢ from
0 to 1. The 1FRSB m line begins for =0 at the boundary
with the 1RSB phase and ends for =1 where the 1FRSB
solution goes over to the FRSB solution. The values of y for
this limiting case are

t=0=pz(y)-2-(p-2)y=0, (62)

t=1=y=1. (63)

By comparing Eq. (62) with Eq. (40) one recognizes that the
value of y for =0 is equal to the maximum allowable value
of y for the IRSB m lines. As a consequence 1FRSB m lines
and the 1RSB m lines with the same m match continuously at
the transition point between the two solutions.

By evaluating Eq. (58) for g=¢ it is easy to see that the
eigenvalue A(()3) [Eq. (32)] is identically zero in the whole
IFRSB (and FRSB) phase, in agreement with the marginal
stability of FRSB solutions.*® The eigenvalue A(ll) [Eq. 31)]
remains positive in the whole 1FRSB phase and vanishes for
t=1 where the 1FRSB solutions disappear in favor of the
FRSB solution.

The continuous part g(x) of the order parameter function
can be obtained from Eq. (58). Indeed from this equation it
follows that

q0
1‘Q1+m(41—610)+f dq'x(q") =
q Vg + p,(p— g2

(64)

which differentiated with respect to ¢ leads to the sought
solution

_#p_(p=D(p-2)g""
2 [pa+ py(p = Dg" 21>

We note that as ¢g— 0 the probability density of the overlaps
dx(q)/dq goes as g’~* so that it diverges for 3<p<4, is
finite for p=4 and vanishes for p >4 (see Fig. 4).

Unlike the SK case*® the function g(x) for the 2+ p model
with p>3 is not a linear function of x for x<<1. From the
solution (65) it is easy to see that

x(q 0<g=<gq, (65)

1/(p-3)

q(x) ~x , x—0 (66)

so that only for p=4 one recovers a linear behavior.'* As a
consequence dq(x)/dx vanishes for x—0 for 3<p<4 and
diverges for p>4.
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FIG. 4. The probability distributions of the overlap are plotted
for different values of p. The values for the other parameters are
Ho=2, u,=3, and ¢y=0.2. The qualitative picture for small ¢’s only
depends, anyhow, on the value of p. Referring to the vertical axis,
from top to bottom the P,(g) for p=3.5, 4, 4.5, 5, and 5.5 are
reproduced. At p=3.5 (top curve) the P(g) diverges at ¢=0, for p
=4 it goes to a finite value. When p >4 it tends to zero as ¢—0.

The function g(x) for a generic p can be obtained by
expanding the right-hand side of Eq. (65) in powers of g”~2
and then inverting the series. As an example we give the first
few terms for the cases p=4,"

W2 R 13l 303l
qx)=""x+—"7 3 7 X
3y Oy T2 1296,y
4025
2R 94 0(:10) (67)
1036844
and p=5,
P 2 1372
17
g(x) = 1 P2 in, H2 o T [ 72+ 0().
s 1265 144 N 6us
(68)

The continuous part of the order parameter functions ends
for g=gq, at the point x,=x(g). In the 1FRSB phase x, is
always smaller than m and becomes equal to it at the bound-
ary line with the FRSB phase. In Fig. 5 we show the value of
X, as function of the difference ¢, —q, for a fixed value of m.
For values of x between x. and m the order parameter func-
tion ¢(x) remains constant and equal to g, and then jumps to
¢, as x goes through m, see Fig. 6.

1. The transition lines among the amorphous phases
(IRSB, 1FRSB, and FRSB)

We have seen that the 1FRSB m lines are the continua-
tions into the 1FRSB phase of the 1RSB m lines. As a con-
sequence, as the IRSB m line with m=1 marks the transition
between the 1RSB phase and RS phase, so the IFRSB m line
with m=1 marks the transition between the 1FRSB phase
and the FRSB phase. The transition is discontinuous in the
order parameter since ¢;—¢q, does not vanish at the transi-
tion, but the discontinuity appears for m=1 and the free en-
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FIG. 5. x.=x(qq) versus the g;—q, in the 1FRSB phase for p
=4 and m=0.5,0.7, 1.

ergy and its derivatives remain continuous across the transi-
tion.
The 1FRSB m line with m=1 ends at the critical point

(r=1)

s 2 pP
“np-np-op-r
1L (py
“2‘(p-2)(3)’ 7o
where
-3
go=q1="—. (71)
p

For u,> ,u; the transition between the 1FRSB phase and the
FRSB takes place continuously in the order parameter func-
tion with ¢;—¢gy— 0 and x,—m at the transition. The con-
tinuous transition between the 1FRSB and the FRSB phases
occurs on the line of end points of the 1FRSB m lines. In-
serting r=1 into Egs. (59), (60) one easily gets the parametric
equations of the critical line

T ] T I T
05— —
B —— q1
04— : —
q(x) 03} .

02— : _

:
:
Lo

0.1 P _
Lo

FIG. 6. The order parameter function g(x) in the IFRSB phase
of the 2+4 model. In the figure m=0.8, uy=3, and u,=14.
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FIG. 7. The static phase diagram of the 2+4 model in the
(4, 117) plane.

2(p=3+3m)
- , 7
= - D - 2(p =37 72
p(p—3+3m)?
My=—" >, (73)
27m*(p —2)
where 0=m = 1. Along this line x,=m, A(11)=0, and
p-3
=g =——"—, 0=m=<1. 74
q0=41 p—3+3m m (74)

Finally the 1FRSB phase is bounded by the transition line
with the IRSB phase. Indeed by setting =0 into Egs. (59)
and (60) one recovers the parametric equations of the IRSB
instability line AS):O and ¢(=0. The transition is continu-
ous in both free energy and order parameter function since
qo— 0 continuously as the transition line is approached from
the 1FRSB side.

All the transition lines, together with the m lines with m
=0.7 and m=0.5, and the phases of the 2+p model with p
>3 are shown in Fig. 7. In the figure p=4, but the phase
diagram does not change qualitatively with the value of p,
provided that it remains larger than 3.

In the limit p — 3 the 1FRSB and FRSB phases shrink to
zero while the transition lines separating the two phases col-
lapse smoothly onto the vertical line (0, u,) with u, =1 and
the horizontal line (1, u,) with 0<u,<1 where gy=¢,=0,
see Fig. 8. One then smoothly recovers the phase diagram of
the 2+3 model, Fig. 2.

From Fig. 8 we see that the continuous transition line
between that 1IFRSB and the FRSB phases displays a point
of vertical slope in the (u,,,u,) plane. Along the continuous
transition line between the 1FRSB and FRSB phases the
point of vertical slope is attained for

2p-3
L2 (75)
3p-2

m® =

where
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10

FIG. 8. Border lines of the 1FRSB and FRSB phases for p
=3.01 and p=3.1.

w_ (p=2)4p-3)
4 - 7
() _ p(p-2)(4p - 3)2

M= -3 )

and gy=¢,=(p—2)/p. This point exists for any p>3.
Similarly the point of infinite slope along the transition
line between the 1FRSB and the 1RSB is attained for

(o) 2(1 - ymax)
m ZN  Jmaxs

- (P - Z)ymax | (78)

where y,..« 1S given by the solution of Eq. (40). For this value
one has

() _ (p-2)4p-3)F
4 - -3 79
() _ ppymax(l — ymax)

lu’2 - 4(p _ 2)[7_2 s (80)

and ¢¢=0, ¢;=(p—2)/p. This point exists only for 3<p
<3.5197---.

D. The full replica symmetry broken solution (FRSB)

For the FRSB solution the order parameter function g(x)
is continuous. The equations for the FRSB phase are easily
obtained from those of the IFRSB by setting gp=¢; and m
=1 so that only the continuous part of the order parameter
function survives. In the FRSB phase the function x(g) is still
given by Eq. (65) but with gy=g, solution of [see Eq. (58)]

A'<q1>=(1_17. (81)

The order parameter function g(x) in the FRSB is shown in
Fig. 9.
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FIG. 9. Order parameter function g(x) in the FRSB phase. In the
figure for p=4, uy=2, and u,=1.5.

By defining 7=u,—1 from Egs. (81) and (65) it follows
that when the RS instability line u,=1 is approached from
the FRSB side then

g~5 120" (82)

and

(= 1)<P-2><z>”‘3, -0t (83)

YTy 2

It is easy to see that for a generic p the expansion of g, in
powers of 7 coincide with that of 1-1/y1+7 up to order
O(77?) not included. For example for p=4 one has

3
q, ~ §+ g(lu,4— 1)’7‘2+ 0(73) (84)
while for p=5
3 1
L LT CIN S

and so on.

The transition between the FRSB and RS phases occurs
for w,=1 where both ¢, and x,=x(g,) vanish and the FRSB
solution goes over the RS solution ¢g=0. The transition line
(m,,1) ends at the crossing point with the m line with m
=1. The transition between the FRSB and the RS phases is
continuous in the order parameter function and hence in the
free energy.

III. COMPLEXITY

The 1RSB and 1FRSB ansatz both contain the parameter
m which gives the location of the discontinuity in the order
parameter function. Strictly speaking the replica calculation
does not give a rule to fix it. Going back to the expression of
the moments of the replica partition function, (10), one in-
deed sees that the replica calculation requires that for any
overlap matrix g,z the free energy functional must be ex-
tremized for N— o with respect to the elements of the ma-
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trix. However, it does not say anything about the structure of
the matrix g, This means that in the IRSB (and 1FRSB)
ansatz the free energy functional ® must be extremized with
respect to ¢; [and g(x)] but not necessarily with respect to m,
since it is related to the matrix structure. This raises the
question of which value of m has to be taken when there
exist different values of m, all of which lead to a stable
solution. In the solution discussed so far the value of m
yielding the maximum of the free energy*® was chosen.

The free energy functional, (14) evaluated on the stable
saddle point solution gives the free energy of a single pure
state. As a consequence, choosing for m the value which
maximizes the free energy functional is thermodynamically
correct, provided that the logarithm of the number of differ-
ent pure states with the same free energy, called complexity
or configurational entropy, is not extensive. If the configura-
tional entropy is extensive, it gives a contribution to the ther-
modynamic free energy which must be considered when
computing the extrema. In other words if the number of
states is extensive the extrema of the thermodynamic free
energy follow from a balance between the single state free
energy and the configurational entropy. This is what happens
in systems with a 1RSB phase, as first noted in the p-spin
model,’'? and changes the condition for fixing the value
of m.

We shall not give here the details of the direct calculation
of the complexity for the 2+p model, but rather we shall use
the shortcut of deriving it from a Legendre transform of the
replica free energy functional with respect to m. To be more
specific the complexity %1 in the 1IRSB and 1FRSB phases
is obtained as the Legendre transform of Bm®(m) where
®(m) is the replica free energy functional (14) evaluated
with the 1RSB or 1FRSB ansatz keeping m as a free param-
eter:

21(f) = max[ Bmf — Bmd(m)]. (86)

We shall use for the complexity the notation 21 to stress
that it is obtained from the Legendre transform. Strictly
speaking this is the complexity density, even if it is custom-
ary to call it just complexity. In the Legendre transform, Eq.
(86), f is the variable conjugated to m

fe Imd(m) (87)
om

and its value equals the value of the free energy inside a

single pure state for the given value of m. Introducing this

expression into the Legendre transform one gets the follow-

ing relation:

o
Sir(f) = Bm* i a(m) ) (88)
mlmp

where m(f) is the value of m found by solving Eq. (87).
By using the expression (51) for the functional G[q] the
complexity of the 1FRSB solutions of the 2+p model reads

PHYSICAL REVIEW B 73, 014412 (2006)

25 1(m) =—m?[g(q,) — g(q0)] - ln[ xa) }
x(q0)
— mm + mz(ql - qO)A(qO)’
x(q0)

where ¢, and g, must be evaluated as function of w,, u,, and
m using the saddle point equations (54) and (58). Alterna-
tively we can use Eq. (54) to eliminate m in favor of ¢; so
that the expression of the complexity for the 1FRSB solu-
tions becomes

[A(g)) = Algo)l(1 - g,)*

22LT(Q1) =1-In

(g1 = q0)
~ (41— q0)
[Alg)) - Algo)](1 - 1)
A -A 2
|5 1 “(-q) (q1) — Alq0)
—q q1 =40
8(q1) = 8(q0) = (g1 — g0)A(q))
, 89
[Ag) - Al (59
where g, is given by the solution of
1-q)[Alg)) - Algy)?
o+ ,U«p(P— 1)%;—2: (1-q)TA(gq) (40)] (90)

(41— q0)°

and ¢, is such that ®(q,)=f, i.e., m(q;)=m(f).

The complexity for the 1RSB solution is obtained just
setting ¢o=0 into the IFRSB complexity [and neglecting Eq.
(90)]. A simple check of the IRSB complexity consists in
verifying that for u,=0 one recovers the complexity of the
spherical p-spin model.>?

By varying g, one selects IRSB or 1FRSB solutions with
different m. As a consequence not all values of g; between 0
and 1 are allowed but only those which lead to stable solu-
tions must be considered. This means non-negative eigenval-
ues A(ll) and A(()3) for 1RSB solutions and non-negative eigen-
value A(ll) for 1FRSB solutions. The eigenvalue Ag) is
identically zero for 1FRSB solutions. The requirement that
only solutions with non-negative A(ll) are physically accept-
able is also known as the Plefka’s criterion.’*>> Here it
comes out naturally from the stability analysis of the replica
saddle point, however it can be shown to have a more gen-
eral validity.

The complexity ;1 is the logarithm of the number of
states of given free energy, divided by the system size N. It
is, therefore, clear that in the thermodynamic limit only so-
Iutions with a non-negative complexity must be considered.
All others will be exponentially depressed and hence are ir-
relevant.

The static solution discussed in previous sections was ob-
tained by imposing d®(m)/dm=0. The complexity 21 is
consequently zero for the static solution, and the number of
ground states is not extensive.

The solution with the largest complexity, of both 1RSB or
1FRSB type, is the one for which A(ll) vanishes, i.e., 3
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FIG. 10. 3 1(q,) as function of g; in the region where only
1RSB solutions are stable and have non-negative complexity. Only
the part of the curve 2y 1t(g;) =0 is shown. The thick line shows the
relevant part of the curve. The dashed line corresponds to unstable
solutions. The point marked “dynamic” is where A(ll) vanishes and
corresponds to the solution of largest complexity. The figure is for
the 2+4 model with u,=3 and u,=10.
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In Figs. 1012 we show the behavior of % 1(g,) in the three
relevant regions where (i) only IRSB solutions have non-
negative complexity and are stable, (ii) both IRSB and
IFRSB solutions have non-negative complexity and are
stable, and (iii) both 1RSB and 1FRSB solutions have non-
negative complexity but only the latter are stable.

The condition of maximal complexity (91) is known as
the “marginal condition” since for A(ll)=0 the saddle point is

0.008 — : ] . T . .
1-FRSB

0.006 [ .

®
AP =0 ]

0.002 |- A >0 -
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L I I I I L
0.6 0.65 0.7 0.75 0.8

q

FIG. 11. 3;1(g;) as function of g; in the region where both
1RSB and 1FRSB solutions are stable and have non-negative com-
plexity. We have indicated explicitly which part of the curve corre-
sponds to each solution. Only the part of the curve 3 1(q;)=0 is
shown. The thick line shows the relevant part of the curve. The
dashed line corresponds to unstable solutions. The point marked
“dynamic” is where A(ll) vanishes and corresponds to the solution of
largest complexity. The figure is for the 2+4 model with u,=3 and

=T

FIG. 12. 3;1(q,) as function of ¢, in the region where 1RSB
and 1FRSB solutions have non-negative complexity but only the
latter are stable. We have indicated explicitly which part of the
curve corresponds to each solution. Only the part of the curve
3.1r(¢1) =0 is shown. The thick line shows the relevant part of the
curve. The dashed line corresponds to unstable solutions. The point
marked “dynamic” is where A(ll) vanishes and corresponds to the
solution of largest complexity. The figure is for the 2+4 model with
,LL2=3 and ,LL4=4.

marginally stable. In the relaxation dynamics the eigenvalue
A(ll) is related to the decay of the two-times correlation func-
tion to the “intermediate” value ¢, and hence the marginal
condition comes naturally as in the condition for critical
decay.®>? For this reason the solution of maximal complexity
is also called the “dynamic solution” as opposed to the
“static solution” discussed so far which, on the contrary, has
vanishing complexity. In the FRSB phase A(ll) is identically
zero and the two solutions, static and dynamic, coincide.

IV. THE DYNAMIC SOLUTION

In this paper we shall not give here the full derivation of
the dynamic solution, and of the marginal condition (91),
starting from the relaxation dynamic equations but rather we
shall rely on the fact that the dynamic solution can be ob-
tained from the replica calculation just using the marginal
condition instead of stationarity of the replica free energy
functional with respect to m.>"3% It can be shown that this
shortcut applies also to the IFRSB solution.’” The same mar-
ginal condition used to identify the dynamic transitions can
be obtained from the purely static Thouless-Anderson-
Palmer approach.’*-61 The static and dynamic solutions
differ only for what concern the 1RSB and 1FRSB phases,
therefore here we shall only discuss shortly the main differ-
ences in the phase diagram which follows from the 1RSB
and 1FRSB dynamic solutions.

A. The dynamic 1RSB solution

The equations of the dynamic 1RSB solution are given by
Eq. (29) with ¢,=0 and by the marginal condition (91). Solv-
ing these equations for (u,,u,) and using g, as a free pa-
rameter one gets the parametric equations of the dynamical
1RSB m lines
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My = -3 mz ’ (92)
(P =2 (1= q))*(1 - q, +mq,)
_ (p=2)(d-gqy)—mgq,
B gl U-qiimg) O

For any 0=m=1 the maximum allowable value of ¢, is
fixed by the requirement that u, =0, while the minimum by
the requirement that the eigenvalue Ago)’ Eq. (32) with g,
=0, be non-negative. In the dynamic approach this eigen-
value controls the long time relaxation of the two-times cor-
relation function’> and hence must be non-negative. A
straightforward calculation shows that

p-3 <q = p—2

———<q s, (94)
p—-3+m p—2+m

with 0sm<1.

1. The dynamic transition line between the paramagnet and the
1RSB-glass phase

The dynamic transition line between the RS and the 1RSB
phases is given by the dynamic 1RSB m line with m=1.
Inserting m=1 into Egs. (92) and (93) one obtains the para-
metric equations of the transition line

1
C(p-27 (1 -q)*

My (95)

(p-2)-(p-1Dq
(p-2)(1-¢q))?

with (p=3)/(p-2)<q,<(p-2)/(p=1). In the (u,,u,)
plane the line begins on the w, axis at the point

Mo = (96)

(p-1!
M= o M2 =0 (97)
and goes up until the point
(p-2)>
Iu’p= (p_3)p_3’ Iu’2= 15 (98)

where A;O) vanishes. The transition between the RS and the
dynamic 1RSB phase is discontinuous in the order parameter
q; since it jumps from zero, on the RS side, to a finite value
on the m line with m=1.

The dynamic 1RSB phase is bounded by the critical line
of equation A;0)=0 which marks the transition between the
dynamic 1RSB and the dynamic 1FRSB phases. The explicit
form of the equation of this transition line is obtained by
inserting ¢, =(p—3)/(p-3+m), see Eq. (94), into the equa-
tions of the dynamic 1RSB m line and reads

B (p-3+m)
T =27 -3y

(99)
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FIG. 13. Phase diagram u,-u4. Counterclockwise the RS,
1RSB, 1FRSB, and FRSB phases are plotted, separated by the static
phase transition lines (full curves). The PM/IRSB and the 1RSB/
1FRSB transitions also occur in the dynamics and the relative lines
are drawn as dashed curves. Their continuation as FRSB/1FRSB
transition lines are the dynamic (dashed) and static (full) m=1 lines,
computed in the 1FRSB ansatz. They merge at the “end point” (see
inset). For a comparison, we also plot the dynamic and static m
lines with m=0.5. They merge on the FRSB/1FRSB phase transi-
tion line above the end point. As m decreases from one, the whole
continuous FRSB/1FRSB line is covered. Inset: the discontinuous
transitions FRSB/1FRSB (u,>1) and PM/IRSB (u,<1).

_(19—3+m)2

Mo = (p _ 2)2m2 (100)

with 0=m=1. As expected, the dynamic transition lines do
not coincide with the static ones but, in the (u,,,u,) plane,
they are displaced toward lower values of w, with respect to
the corresponding static transition lines, see Fig. 13.

B. The dynamic 1FRSB solution

The equations of the dynamic 1FRSB solution are given
by the saddle point equations (53) and (54) and by the mar-
ginal condition (91). As a consequence, the parametric equa-
tions of the dynamic 1FRSB m lines are still Egs. (59) and
(60) but with the value of y given by

1=(-DF T+ (p-2)
T o p-2-(p- D+

) (101)

where 0<t=¢,/qy= 1. The continuous part of the order pa-
rameter function is given by Eq. (65) with [see Eq. (57)],

H(1-y)

l-y+my(1-1) (102)

qo=1q,=

The dynamic 1FRSB m lines are drawn in the (u,,,u,) plane
by fixing the value of m and varying ¢ from O to 1.

1. The dynamic transition line between the 1RSB and the 1IFRSB
amorphous phases

By setting =0 into the equations of the dynamic 1FRSB
m lines and varying m from 1 to O one recovers the critical
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line ¢y=0 and Ag‘”:o which marks the boundary with the
dynamic IRSB phase. Indeed for t=0 Eq. (101) yields y
=1/(p-2) so that Egs. (59) and (60) reduce to the parametric
equations (99) and (100) of the critical line. Moreover on this
line ¢q;=(p-3)/(p—3+m), the same value found from the
dynamic 1RSB solution, therefore as it happens for the static
solution the dynamic 1FRSB m lines and the dynamic 1RSB
m lines with the same m match continuously on the critical
line Ago)=0 [and gy=0]. This transition is continuous since
qo goes to zero as the transition line is approached from the
1FRSB side while g, is continuous through the line.

The dynamic 1FRSB m line with m=1, continuation of
the IRSB m line with m=1 into the 1FRSB phase, marks the
boundary between the 1FRSB and FRSB phases. Along this
line the order parameter is discontinuous since g; jumps
from zero in the FRSB phase to a nonzero value on the line.
The discontinuity occurs at m=1 so that the free energy re-
mains continuous despite the jump in the order parameter.
The dynamic IFRSB m line with m=1 starts from the end
point (98) of the dynamic IRSB m line with m=1 and stops
at the same end point (69) and (70) of the static IFRSB m
line with m=1. From this point the transition between the
1FRSB phase and the FRSB phase occurs continuously in
the order parameter, i.e., with g;—gy—0 as the transition
line is approached from the 1FRSB side (see Fig. 13).

The continuous transition between the 1FRSB and FRSB
phases occurs along the critical line obtained by setting ¢
=1 into Egs. (59) and (60) and varying m from 1 to 0. From
Eq. (101) it follows that

y=1 —1%3(1 -0+0[(1-0)?%], t—1" (103)

so that the end point of the dynamic 1FRSB m line coincides
with the end points of the static IFRSB m line for any m, and
not only for m=1. Therefore, the dynamic and the static
continuous critical lines between the 1FRSB and the FRSB
phases coincide. Indeed, when studying the static solution
we have seen that along the continuous transition line be-
tween the 1FRSB and the FRSB solutions the eigenvalue
A(ll) vanishes so that the difference between the two solutions
disappears. On this line both solutions have zero complexity
and it remains equal to zero in the whole FRSB phase.

In Fig. 13 we show the full phase diagram of the spherical
2+p spin-glass model in the (u,,u,) space with both the
static and the dynamic critical lines. By noticing that both w,
and u, are proportional to 3% we see that the discontinuous
dynamic transition occurs at a temperature higher than that
of the equivalent static transition, as can be clearly seen from
Fig. 14 where the phase diagram in the 7/J,=1/\u, and
J 1 Jy=\2wm,/ (pu,) plane is shown.

P P

V. CONCLUSIONS

In this paper we have provided a detailed study of the
phase space of the spherical 2+ p spin-glass model using the
static approach of Ref. 3 which employs the replica method
to evaluate the disorder-averaged logarithm of the partition
function. By performing the Legendre transform of the rep-
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FIG. 14. Phase diagram 7-J,4 in J, units. Clockwise a paramag-
netic phase (PM), a glassy phase (G-I) described by means of a
1RSB ansatz, another glassy phase represented by a 1FRSB ansatz,
and a purely spin-glass phase (SG) computed in the FRSB ansatz
occur. The transitions to and from the two glasslike phases take
place both as dynamic (dotted lines) and as static (full lines). In
temperature the dynamic transition lines are always above the rela-
tive static lines.

lica free energy functional we have defined the complexity
function that, whenever it is extensive, counts the number of
equivalent different metastable states. This allowed us to dis-
cuss the dynamic solution as the solution which maximizes
the complexity. In both solutions, i.e., static and dynamic, the
model displays four different phases, characterized by differ-
ent replica symmetry breaking schemes, in which the system
can find itself as the thermodynamic parameters and the in-
tensity of the interaction is changed. One of the nice features
of this model is that it can be completely solved even in the
phase described by a full replica symmetry breaking. To our
knowledge, this is the first example of an exact analytical
FRSB solution.

The main result of the present study is the existence of
two phases exhibiting the qualitative features of glassy ma-
terials. One is the 1RSB solution, displayed by those systems
that are considered as valid mean-field models for the glass
state. Even though no connection with the microscopic con-
stituents of a real glass former can be set, the collection of
spins interacting through a p-body quenched disordered
bound behaves very similar to, e.g., the set of SiO, mol-
ecules in a window glass. The single breaking occurring in
the 1RSB solution corresponds, in a dynamic interpre-
tation®”-%* to a time-scale bifurcation between the fast pro-
cesses in a real amorphous material (the B-processes) and the
slow processes () responsible for the structural relaxation.

Another phase emerges in the study of the spherical 2
+p spin-glass model. Something not occurring in any Ising
spin-glass model.®> In a whole region of the phase space the
stable phase is, indeed, described by means of an overlap
function g(x) that is continuous up to a certain value g, and
then displays a step, as in the aforementioned 1RSB solution.
We call it the one step-full RSB solution (1FRSB). Exploit-
ing the static-dynamic analogy once again, in this phase, in
the relaxation towards equilibrium, a first time-scales bifur-
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cation takes place (“a— 3 bifurcation”) just as above, but it is
no more unique. As the time goes by a continuous set of
further bifurcations starts to occur between slow and even
slower processes, as in the case of a proper spin-glass.* In the
continuous part, any kind of similarity between (ultrametri-
cally organized) states is allowed but above ¢, the hierarchy
ends in only one extra possible value: the self-overlap, or
Edwards-Anderson order parameter q;.

The stability of the 1FRSB solution in the replica space is
not limited to a single, self-consistent, choice of the order
parameter (in particular the point discontinuity can change in
a certain interval) and this implies that in each point of the
phase diagram belonging to this phase there will be an ex-
tensive number of metastable states, having free energies
higher than the equilibrium free energy. In order for this
phase to appear a strong enough couple interaction must be
present (that is the source of the continuous, spin-glass-like
contribution) but the p-body interaction must have a broader
distribution of intensities than the two-body (J ,,>J2).

If this phase can be considered as a glassy phase different
from the 1RSB one, the phase diagram that we have com-
puted describes an amorphous-amorphous transition, with
the second glass having a much more complicated structure
outside the single valleys (for very long timescales in the
dynamic language). Whether there is a correspondence with
the amorphous-amorphous transition between hard-core re-
pulsive and attractive glassy colloids!®2!?3>* and at which
level the analogy can be set is yet to be clarified and further
investigation of the dynamic properties is needed in order to
make a link between the interplay of two-body and p-body
interaction in spherical spin glasses and the role of repulsive
and attractive potentials in colloids undergoing kinetic arrest.
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APPENDIX A: THE PARISI EQUATION AND THE
SOMMERS-DUPONT FORMALISM

The Parisi equation for the 2+p spin-glass model is more
easily obtained starting from the free energy functional in the
replica space written as

:Bﬂ:q )‘] - q(oc) - hi%_z g(Qaﬁ) + hm E )\aBLIaB

- hm (A1)

InTr exp( -> )\aﬁaaaﬁ>,
n—0n aB

where the matrix A,z is the Lagrange multiplier associated
with the replica overlap matrix g4, see Eq. (13). In particu-

lar the diagonal element \,,=\ is the Lagrange multiplier
that enforces the spherical constraint ¢,,=1. Stationary of
flg.\] with respect to variations of N,z and g,z leads to the
self-consistent equations (a # 8)

)\aﬁ = A(qaﬁ)’ (Az)
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Tr,0%* exp(E N EU“UB)
aB

Tr, exp(z )\aﬁo'“aﬁ)
aB

qaﬁ = (A3)

By applying the Parisi’s replica symmetry breaking
scheme an infinite number of times and introducing the func-
tions A(x) and g(x), 0=<x<1, one for each matrix, the free
energy functional (A1) for the spherical model can be written
as

1
ﬁf=—s(°°)—%lg(l)— f dxg(q(x))]
0

- [ 1 2ar
+ 5|]\—f0 dx)\(x)q(x)] - E ln(m)

) +00 dy ( 2 )
J_w V27A(0) P\ 7N 0) #0).

where ¢(0,y) is the solution evaluated for x=0 of the Parisi
equation

(Ad)

. 1.
¢x.y) == SM0[¢"(x.y) + x¢' (x,y)°] (A5)
with the boundary condition
y?
#(1,y) = 2— (A6)
N1) =

In writing the Parisi equation we have used the standard
notation in which an overdot denotes the derivative with re-
spect to x while the prime denotes the derivative with respect
to y.

The advantage of this equation is that it can be solved
numerically without specifying a priori the form of g(x) and
N\(x). The first problem one is facing when solving the Parisi
equation is that the functional (A1) must be extremized over
all possible solutions of the Parisi equations, which can be
numerically uncomfortable. This, however, can be overcome
using the Sommers-Dupont formalism.®® The idea is to intro-
duce a different functional whose value at the stationary
point coincides with the extrema of the free energy func-
tional (A1) over all possible solutions of the Parisi equations.

This is easily achieved by introducing the Parisi equation
into the functional via the Lagrange multiplier P(x,y). The
new functional is hence

1 y? :|
2M1)-X

1 +0 ) 1.
—f dxf dyP(x,y)[¢(x,y)+5>\(X)
0 —o

ﬂfv=ﬂf+J dyP(l,y){db(l y) -

X[¢"(x.y) +X¢’(x,y)2]}, (A7)
where Bf is the free energy functional (Al).

The functional Sf, is stationary with respect to variations
of P(x,y), P(1,y), ¢(x,y), ¢(0,y), the order parameter func-
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tions ¢(x) and \(x) and \. Stationarity with respect to P(x,y)
and P(1,y) just gives back Egs. (A5) and (A6), while sta-
tionarity with respect to ¢(x,y) and ¢(0,y) leads to the dif-
ferential equation for P(x,y):

P(x,y) = %X(x)[P”(x,y) = 2 P(x,y)m(x,y)]'], (A8)

where m(x,y)=¢'(x,y), with the boundary condition

2

_ 1 _
POy = V270 (0) eXp( 2)(0)

) =48(y), as N(0)—0.
(A9)

It can be shown that P(x,y) is the probability distribution of
the local field y at the scale g(x).

Finally stationarity with respect to g(x), A(x), and X gives

Ax) = Alg(x)], (A10)
g(x) = J dyP(x,y)m(x,y)?, (A11)

and
A1) =N= (A12)

1-¢(1)

From Eq. (A11) and the identification of P(x,y) with the
local field distribution it follows that m(x,y) represents the
local magnetization at scale ¢g(x) in presence of the local field
y. It obeys the differential equation

m(x,y) =- %X(X)[m"(x,y) +2xm(x,y)m’ (x,y)] (A13)

with initial condition

m(1,y) =[1-¢q(1)]y. (A14)

The partial differential equations (A8) and (A13) can be
solved numerically using the pseudospectral method devel-
oped in Refs. 47 and 49. In Fig. 15 we show the order pa-
rameter function g(x) found solving the equations for the 2
+4 model with u,=2 and u,=3. The IFRSB structure is
clearly seen. In Fig. 16 both the numerical and the analytical
solutions for P(x,y) are displayed.

APPENDIX B: SOLUTION OF THE PARISI-SOMMERS-
DUPONT EQUATIONS

It is not difficult to write the Parisi-Sommers-Dupont par-
tial differential equations for the 1FRSB case, see Ref. 67.
With obvious notation, the Parisi-Sommers-Dupont func-
tional with the 1FRSB ansatz reads
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FIG. 15. The numerical order parameter function g(x) for the
2+4 model with u,=2 and uy=3. The 1FRSB solution is clearly
seen.

+o0

1
dyP(m,y) { d(m,y) — =

2
va=ﬁf+f S Y ]
N = N=m(\; = Ng)

m + . 1.
_ J i f dyP(x,y)[¢<x,y>+5x<x>
0 —

X[¢'(x,y) + x¢'(x,y)2]] , (B1)

where Bf is the free energy functional

7= s(=) = S5~ (1 ~migay~ | dsglato)
i

(

+ %|:X— (I -m)\iq, - fm dx)\(x)q(x):|

0

11 ( 2t ) 1 | ( AN -\ )
——1n —|———1n —
2N =X/ 2Zmo AN =N =m(\ - \y)

y2

_J+OC —dy ex (— >¢(0 )
YO RN YOV At

The stationarity of Eq. (B1) with respect to variations of
P(x,y) and P(m,x) yields the Parisi equation (A5) with x
restricted to the interval [0,m] and initial condition

(B2)

2

Pn,y) =~ 53—
N =N=m(\ =\g)

(B3)

Similarly stationarity with respect to variations of ¢(x,y),
#(0,y), g(x), Nx) for O<x<m gives again Egs.
(A8)—(A11), while stationarity with respect to X leads back
to Eq. (A12) with A(1) replaced by \,.

For the 1FRSB ansatz there are three more equations. The
first two follow from stationarity with respect to ¢;, A; and
read

)\1 =A(q1)’ (B4)

014412-16



SPHERICAL 2+p SPIN-GLASS MODEL: AN...

0.8 : : 1 . 1 .
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P(x,y) 04

0.2

FIG. 16. Field probability distribution p(x,y) for the 2+4 model
with u,=2 and =3 evaluated from the numerical resolution of
the Parisi-Sommers-Dupont equations at x=0.4 and x=0.5. The un-
derlying full curve (barely visible) is the analytic solution given by
Egs. (B9) and (B14).

q1— 4o
(1-gp[1 g, -mlq;—qp)]

Finally stationarity with respect to m, the discontinuity point
in the order parameter function, leads again to Eq. (55). It is
not difficult to recognize in these equations the saddle point
equations for gy, ¢;, and m derived for the 1FRSB phase.

For the spherical model the Parisi-Sommers-Dupont equa-
tions can be solved analytically. Indeed defining

AN =M= (B5)

F(x):AI—X—m(M—)\O)—f dx'x'\(x")  (B6)

it is easy to verify that the solution reads

o " A
P = [F()*f . F(»}

(B7)
_y
s = o, (B8)
and
Pley) = — @ - ) (89)
B \27o(x)? P 20(x)*)’
where
o(x)? = F(x)? J A (B10)
0 F)
Inserting Egs. (B8) and (B9) into Eq. (A11) one gets
g(x) = f dx' :((x,)z (B11)

Taking the derivative of Egs. (B6) and (B11) with respect to
X it is easy to show that
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dF

ok =xdgq (B12)
which integrated yields the equality x(x)=1/F(x). Thus Eq.
(B11) becomes

q(x) = fx dx" N x(x')>. (B13)
0

Inverting this relation one gets back Eq. (53). We note that
changing the integration variable from x to ¢ in Eq. (B11)
one can show that F?(¢)=A’(g) so that the variance o(x)? of
the local field distribution (B9) can be written as

o(x)? = A'[q(x)]g(x).

This completes the solution of the Parisi-Sommers-
Dupont equations for the spherical 2+p spin-glass model in
the 1FRSB phase. The FRSB solution can be obtained taking
qo—¢q, and m— 1.

(B14)

APPENDIX C: THE SPHERICAL s+p SPIN-GLASS
MODEL

The spherical s+p spin-glass model is the generalization
of 2+p models in which the two-spin interaction is replaced
by a s-body spin interaction

I.N
H: 2 Jl(f')"iJvUil

i< <iy

()
O'iJ+ E Jil'“ipo-i ag; .

. . 1 14
ll<~“<l’)

(C1)

In the following we shall assume that s<<p, even if the
Hamiltonian is trivially invariant under the exchange of s and
p.

The study of the s+p model follows closely that of the
2+p with the replacement of g(x) by [see Eq. (12)]

Hs s My p

glx) = PR (C2)

As it happens for the 2+p models the RS solution with ¢
# 0 is unstable, however, different than these, the RS solu-
tion with ¢g=0 is stable everywhere in the (u,,u,) plane
since for g=0 the relevant eigenvalue A, Eq. (21), is iden-
tically equal to one for any s>2.

For w, and/or u, large enough a thermodynamically more
favorable 1RSB solution appears. This solution has ¢y=0
and ¢, given by the saddle point equation (29) [with ¢,=0].
For the static solution the value of m is fixed by Eq. (30), or
equivalently by Eq. (33), which follows from stationarity of
the free energy functional with respect to variations of m.
These equations can be solved for any s and p with the help
of the CS z function and one obtains the parametric equa-
tions of the static m lines:

_p (d-y+my)[2-sz2(y)]
Bo=p—symy( -y 2

(C3)
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s (I-y+my)'[pz(y) - 2]
Brp-gmya-y2 2

where y=(1-¢,)/(1-¢,+mq,). Notice that, as expected, the
expressions are symmetric under the exchange of s and p.

The 1RSB solution never becomes unstable since for s
>2 the eigenvalue A(3), Eq. (31), evaluated at ¢,=0 is al-
ways positive, and the eigenvalue A, Eq. (32), remains
positive for any u,=0.

As a consequence the limits on y are given by the condi-
tions

(C4)

2
,LLp:() = Z(y,up):;’ (CS)

2
=0 = z(y,)= e (Co)

The CS z function is an increasing function of y therefore if
s<p then yMp<yMY. For s=3 and p=4 we have
(C7)

Yu,=0.195478 -+, 'y, =0.354993---.

To find the dynamic transition line between the IRSB and
the RS phase equation (33) must be replaced by the marginal
condition (91). Using g, as the independent variable it is
easy to derive the parametric equations for the dynamic m
lines

1 (s=2+m)g,—(s=2)

= , C8

Fr = (p =) 21 = q)2(1 - g, + mqy) ()
__ L (p=2)-(p-2+m)qg,

(p-9) g7 (1-q)*(1 —q, +mgq,)’

Hs (C9)

The range of ¢, is fixed by the requirement that both u, and
M, be non-negative. This yields the boundary values

0 =2 (C10)
= = =,
o % s—2+m
p-2
_O —1 = . Cll
Ms q1 p_2+m ( )

In Fig. 17 we show the phase diagram for the s+p model
with s>2 and p>s. In the figure s=3 and p=4, however,
any choice of s>2 and p>s leads to a qualitatively similar
phase diagram.

APPENDIX D: THE RSB SOLUTIONS

In this Appendix we show that the spherical 2+p spin-
glass model admits only solutions of 1RSB, FRSB, or
1FRSB type. The procedure is the same as that of Appendix
2 of Ref. 3.

We start from the free energy functional for the R-RSB
ansatz [see Eq. (46)]
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FIG. 17. The phase diagram of the 3+4 model in the (w3, py)
plane. The thick dashed lines are the m line with m=1, i.e., repre-
sent the discontinuous transition between the RS and the 1RSB
phases.

2 ! ®
—Glq]= f dgx(q)A(g) + f 1—q +In(1 - gg),
n 0 0 oo
f dq'x(q")
q
(D1)
where
R
x(@)=po+ 2 (P =) OG—q,). (D2)
r=0

The saddle point equations are obtained by varying the
above functional with respect to x(g):

2 1
=8Glq]= f dqF(q)dx(q), (D3)
n 0
where
q dq'
F(q)=A(q) - f ; 5 (D4)
0 f / dq/lx(qll)
q
and
R
8x(q) =2 (3,1 — Op)0(q — q,)
r=0
R
~ 2 (Pra1 =) g~ q,)5q,. (D5)
r=0

By requiring stationarity of G[q] with respect to the ¢, and
the p, one gets, respectively,
(D6)

F(g,)=0, r=0,...,R,
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FIG. 18. Typical behavior of 1/\/A’(g) as a function of ¢ for
p>3.

qr
f dgF(q)=0, r=1,...,R. (D7)
qr-1

The function F(g) is continuous, thus Eq. (D7) implies that
between any two successive g, there must be at least two
extrema of F(g). If we denote these by ¢”, then the extremal
condition F'(¢")=0 implies that

fl 1
dqx(q) = RN
q VA,(Q )

(D8)
The left-hand side of this equation is a concave function, i.e.,
with a negative second derivative, since x(g) is not decreas-
ing with g. For the 2+p model A'(q)=p,+p,(p—1)g"2 so
that the right-hand side is concave for small ¢, provided p
>3, and convex for large ¢, see Fig. 18. For p=3 the right-
hand side is convex.

As a consequence Eq. (D8) admits at most two solutions
and hence only one step of replica symmetry breaking is
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possible. Moreover it must be g,=0. Indeed, from Eq. (D6)
and from the fact that in absence of external field F(0)=0 it
follows that

F(0) = F(q0) = F(g1) =0

which would imply the presence of at least three extrema,
which is not possible.

Up to this point the conclusions do not differ much from
those found for the p-spin model. Here, however, the pres-
ence of a concave part in the right-hand side of Eq. (D8) for
p >3 makes possible different solutions.

Equations (D6) and (D7) can be solved by a continuous
replica symmetry breaking solution with F(¢)=0 in a given
range of g since in this case both equations would be iden-
tically valid. For this solution Eq. (D8) must also be identi-
cally valid and this can only be true for 0 <g=<g,, where ¢,
is the value of ¢ for which 1/4/A’(g) changes concavity,
where both sides of the equation are concave functions of g.
Indeed if Eq. (D8) were valid also for values of g where the
right-hand side is convex this would imply that x(g) is a
decreasing function of ¢, which is not possible since
dx(q)/dq is the probability density of the overlaps. For the
same reason for p=3 a continuous replica symmetry break-
ing solution is not allowed since in this case the right-hand
side of Eq. (D8) is purely convex. The same applies to the
s+p models with s> 2, so that also these models admit only
a 1RSB phase.

The possibility of a continuous replica symmetry breaking
solution for g =< g, does not rule out the presence of discrete
replica breakings with ¢,>¢g,. These additional discrete
breakings must satisfy Egs. (D6) and (D7). Therefore since
the right-hand side of Eq. (D8) is convex for ¢> ¢, argu-
ments similar to those which led to the conclusion that for
the 243 model only 1RSB solutions are possible show that
at most only one more discrete break with g; > g is possible.
No other possible nontrivial solutions exist for the spherical
2+p spin-glass model so we conclude that the model admits
only solutions of 1RSB, 1FRSB, or FRSB type.

(D9)
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