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The mode dependence of current-induced magnetic excitations in spin valves is studied theoretically. The
torque exerted on the magnetization by transverse spin currents as well as the Gilbert damping constant are
found to depend strongly on the wavelength of the excitation �spin wave�. Analytic expressions are presented
for the critical currents that excite a selected spin wave. The onset of macrospin �zero wavelength� vs finite
wavelength instabilities depends on the device parameters and the current direction, in agreement with recent
experimental findings.
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I. INTRODUCTION

Less than a decade ago, Berger1 and Slonczewski2 argued
that an electric current sent through multilayers of normal
metals �N� and ferromagnets �F� can excite the ferromag-
netic order parameter and even reverse the magnetization.
The theoretical predictions have been confirmed by many
experiments on F�N�F nanostructured spin valves.3,4 The
physics of collective ferromagnetic excitations driven by out-
of-equilibrium quasiparticles is complex and fascinating. In
magnetic memories, current-induced magnetization switch-
ing might turn out to be superior to its magnetic-field-driven
counterpart.

Current-induced magnetic excitations are driven by the
spin transfer torque acting on the magnetic order parameter
when a spin current polarized normal to the magnetization is
absorbed by the ferromagnet.1,2,5,6 The transverse spin cur-
rent extinction is a quantum mechanical dephasing effect be-
tween electrons at the Fermi energy with different precession
lengths. In Co, Ni, and Fe this happens on an atomistic
length scale.5,6 By conservation of angular momentum, the
absorbed spin current acts as a torque on the ferromagnetic
condensate. At a critical spin current, this torque becomes
strong enough to set the magnetization into motion, possibly
leading to a complete reversal of the magnetization direction.

One discussion that started with the prediction of the
current-induced magnetization dynamics remains to be
settled. Berger defines the critical current at the onset of
spin-wave excitations, whereas Slonczewski considers a
rigid coherent rotation of the whole magnet �macrospin
model�. In the latter scenario, the critical current corresponds
to a torque that just overcomes the Gilbert damping. In our
view, the differences in these pictures are to some extent
semantic, since the macrospin model is identical to the low-
est energy spin wave. The physical question addressed here
is the wavelength of the spin wave that is most easily ex-
cited. We find that there is no universal answer and that the
preferential excitation mode is a complicated function of de-
vice parameters and current direction. Nevertheless, our
theory agrees well with experiments that observe both types
of excitations.12

Most theories of spin transfer torques and critical currents
are based on macrospin precessions in spin valves.2,6 Indeed,
sufficiently small magnetic clusters support a single domain
magnetization and the magnetic-field-induced magnetization
reversal is well described by a coherent rotation according to
the Stoner-Wohlfarth model.7 From a theoretical point of
view, the validity of macrospin models is essential for under-
standing the nonlinear physics underlying the entire magne-
tization dynamics by dynamical systems theory and the
probabilistic treatment in the “presence” of noise.9 In a
single ferromagnetic film sandwiched by normal layers, the
torque on the macrospin domain necessarily vanishes. How-
ever, biased N�F�N structures are unstable with respect to
spin waves with shorter wavelengths.10,11 In spin valves, we
may, therefore, expect a competition between macrospin and
shorter wavelength spin-wave excitations. Experiments on
spin valves12 have indeed been interpreted in terms of both
types of excitations, depending on the current direction �and
the spin accumulation pattern�. It is our purpose to under-
stand and model these data in order to assess the dependence
of the excitation modes on device parameters. Another mo-
tivation to study the competition between different excitation
modes is the need to find criteria for the breakdown of
simple models for the magnetization that provide a guide for
the necessity of full-fledged micromagnetic calculations.13

Our work extends Refs. 10 and 11 on single layers to spin
valves. We derive analytical expressions for bias-driven spin
transfer torques, enhanced Gilbert damping constants8 and
critical currents for magnetic excitations as a function of
wave vector. We predict a rich “phase diagram” in the cur-
rent vs magnetic field plane.

Our paper is organized as follows. Section II introduces
our model for the spin-valve pillar. We also present the as-
sumptions used in computing the charge current, the spin
current, the spin transfer torques, and the enhanced Gilbert
damping governed by spin pumping. Furthermore, a sche-
matic description of the necessary ingredients for the calcu-
lations is outlined. Section III presents the computational de-
tails for readers interested in a deeper knowledge on how our
results have been obtained. Our results are presented and
discussed in Sec. IV. In that section, we also compare our
results with the measurements by the New York University
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�NYU�/IBM collaboration and find a semiquantitative agree-
ment. We conclude our paper in Sec. V.

II. MODEL AND ASSUMPTIONS

We consider N�F�N�F�N spin-valve pillars in Fig. 1�a� in
the semiclassical transport regime where magnetoelectronic
circuit theory applies.5 Disregarding spin flips in F is al-
lowed for sufficiently thin F films and considerably simpli-
fies the calculations. We also consider normal metals thinner
than the spin-diffusion length. A possibly spatially dependent
pillar cross-section, not discussed below any further, can be
treated by simply scaling the resistance parameters.

We compute the spin transfer torques, the enhanced Gil-
bert damping, and the critical current for magnetic excita-
tions in the following way. The charge and spin accumula-
tion pattern and the charge and spin current through the
system is computed by treating the N�F�N�F�N spin valve
layer by layer. Our calculations includes scattering due to
bulk impurities within each layer and scattering due to the
band-structure mismatch between adjacent metals, e.g., inter-
face resistances. Both bulk impurity scattering and interface
mismatch are important in, e.g., understanding the giant
magnetoresistance effect in magnetic multilayers. Bulk im-
purity scattering is taken into account by solving the diffu-
sion equations in the bulk of each material. Spin and charge
current through four interfaces between the normal metals
and the ferromagnets are determined by the interface scatter-
ing matrix between the adjacent materials which gives rise to
the interface resistances that we take into account.

We will show below that our results for the spin transfer
torques, the enhanced Gilbert damping, and the critical cur-
rent for magnetic excitations can be expressed in terms of the
resistance parameters of the electronic circuit in Fig. 1�b�.
Let us first introduce the resistances that are important for the
calculations and the results: Starting from the left in Fig.
1�b�, we introduce a bulk resistance times the cross-section
for the bulk of the left normal metal, Rl=�Nl

tNl
, where �Nl

is
the resistivity of the normal metal and tNl

is the thickness of
the normal metal layer in the transport direction. Similarly,
starting from the right, we introduce the bulk resistance
times the cross-section for the bulk of the right normal metal,
Rr=�Nr

tNr
and the bulk resistance times the cross-section for

the bulk of the middle normal metal, Rm=�Nm
tNm

. The inter-
esting physics arises due to the spin-dependent scattering
within the bulk of the ferromagnetic layers and at the inter-
faces between the normal metals and the ferromagnetic lay-

ers. The spin-dependent resistances Ri
s �i=1,2, s= ↑ ,↓� in

the ferromagnetic elements consist of interface and bulk con-
tributions: Ri

s=2RFi/N
s +�Fi

s tFi
, where RFi/N

s is the spin-
dependent resistance times the cross-section of a single F �N
interface assumed to be identical on both sides of film i. �Fi

s

and tFi
are its spin-dependent resistivity and thickness. When

the magnetizations are collinear, the spin-dependent resis-
tances in the ferromagnets with the resistances in the normal
metals are sufficient to describe the transport of charge and
spin. When the magnetizations are noncollinear, the flow of
spins directed perpendicular to the magnetization in the fer-
romagnets must also be quantified. The mixing conductance
Gi

↑↓ determines the absorption of spins transverse to the mag-
netization direction and consequently the spin transfer
torque.5 We find it convenient to introduce a mixing resis-
tance Ri

↑↓=1/ �2Gi
↑↓� so that all our results can be presented

in terms of resistances.
The charge and spin currents are not only induced by the

applied bias, but also by spin pumping due to a moving
magnetization that opposes the magnetization dynamics.8 Ef-
fectively, when a layer magnetization precesses, it acts as a
source of a spin current transverse to the magnetization di-
rection and proportional to the precessional frequency, which
should be included in the self-consistent computation of the
charge and spin currents in magnetoelectronic circuits. When
spin waves are excited in one of the layers, the sources of
spins are nonuniform. This leads to a wave vector depen-
dence of the enhanced Gilbert damping. These contributions
can be computed by using the same equivalent circuit, Fig.
1�b�, as for the bias voltage induced charge and spin current
and depend on the same resistance parameters. The wave-
vector-dependent enhanced Gilbert damping turns out to be
governed by the magnitude of the spin-pumping current out
of the ferromagnet and the resistance between the ferromag-
net and either the voltage reservoirs or other spin sinks for
the emitted spin current.

We wish to compute the critical currents for the magnetic
instabilities in driven spin-valve pillars by linearizing the
equations that govern and the magnetization dynamics close
to the equilibrium configurations. In this way, we can find the
critical currents for magnetic excitations, but we cannot un-
ambiguously predict what happens when the current is in-
creased beyond the critical current. To the latter end, one
needs to go beyond the linear instability regime and study
the full micromagnetic behavior of each individual ferromag-
net as well as the transport of spin and charge self-
consistently. This is beyond the scope of the present work.
We would like to emphasize that even in the linear regime,
the dynamics of the ferromagnets and the transport of spin
and charge have to be treated self-consistently. It is the self-
consistent feedback of the spin flow from a nonuniform do-
main back into the ferromagnet that destabilizes the mon-
odomain configuration in a the single layer ferromagnet.10

We are mostly interested in spin valves that have a rela-
tively large in-plane magnetic field along the magnetization
direction as, e.g., studied by the NYU/IBM collaboration.
Therefore, we proceed from equilibrium configurations of
monodomain magnetizations in parallel or antiparallel to
each other. Out of equilibrium, spin waves can be excited

FIG. 1. Spin valve �a� with circuit resistance elements sketched
in �b�.
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transverse or parallel to the transport direction. For suffi-
ciently thin ferromagnets, the critical current for the trans-
verse excitations are lower than the critical current for lon-
gitudinal excitations.10,11 Here we only consider small
transverse instabilities of the magnetization direction in Fou-
rier space, �m1

��q� and �m2
��q�, where q is a two-

dimensional vector in Fourier space transverse to the trans-
port direction, and compute the perturbed charge and spin
currents through the system. The perturbed spin currents in-
duce spin transfer torques on the ferromagnetic layers. Also,
a precessing ferromagnet emits spin current into the adjacent
materials than can enhance the Gilbert damping. We compute
the critical current at which a magnetic mode with a given q
becomes unstable. Longitudinal magnetic excitations along
the transport direction �as studied, e.g., in Ref. 11� are thus
disregarded. We will comment on this thin-layer assumption
when applying our theory to the NYU/IBM experiments in
Sec. IV.

III. CALCULATION OF CURRENT

We introduce charge V�c� and spin V�s� potentials in the
normal metals close to the N �F interfaces. These potentials
depend on the two-dimensional coordinate �= �x ,y� along
the interface transverse to the transport direction z. In our
notation, j1l

�c� �j1m
�c�� denotes the charge-current density inci-

dent from the left �middle� normal metal and going through
ferromagnet 1 with magnetization along unit vector m1, and
j2m
�c� �j2r

�c�� denotes similarly the charge-current density inci-
dent from the middle �right� normal metal and going through
ferromagnet 2 with magnetization along unit vector m2. The
directions of the magnetizations also depend on the trans-
verse coordinate � allowing spin-wave excitations in the
transverse direction, m1=m1��� and m2=m2���. The charge
current along the N �F interface thus depends on the trans-
verse coordinate �. The charge currents on the two sides of
the first and second ferromagnet–normal-metal interface are

j1l
�c� = �G1

↑ + G1
↓��V1

�c� + �G1
↑ − G1

↓��V1
�s� · m1, �1�

j1m
�c� = j1l

�c�, �2�

j2m
�c� = �G2

↑ + G2
↓��V2

�c� + �G2
↑ − G2

↓��V2
�s� · m2, �3�

j2r
�c� = j2m

�c� , �4�

where �V1
�c�=V1m

�c� −V1l
�c� and �V2

�c�=V2r
�c�−V2m

�c� are the charge
voltage drop over the ferromagnets 1 and 2. The spin voltage
drop �V1

�s�=V1m
�s� −V1l

�s� and �V2
�s�=V2r

�s�−V2m
�s� are defined

analogously. Charge current is conserved on traversing the
ferromagnet, which is reflected in the conditions j1l

�c�= j1m
�c� and

j2m
�c� = j2r

�c�. The spin-dependent conductances Gi
s �i=1,2 and

s= ↑ ,↓� consist of interface and bulk contributions: 1 /Gi
s

=Ri
s=2RFi/N

s +�Fi

s tFi
, where RFi/N

s is the spin-dependent resis-
tance times the cross-section of a single F �N interface as-
sumed identical on both sides of film i. �Fi

s and tFi
are its

spin-dependent resistivity and thickness. Similarly to the
charge current, we express the spin current density incident

from the left �middle� normal metal and going into ferromag-
net 1 as j1l �j1m� and the spin-current density incident from
the middle �right� normal metal and going into ferromagnet 2
as j2m �j2r�. The spin-current density is expressed in terms of
parallel ��� and transverse components ���,

j1l
�s� = j1l

�s��m1 + j1l
�s��, �5�

j1m
�s� = j1m

�s��m1 + j1m
�s��, �6�

j2m
�s� = j2m

�s��m2 + j2m
�s��, �7�

j2r
�s� = j2r

�s��m2 + j2r
�s��. �8�

The parallel components are

j1l
�s�� = �G1

↑ − G1
↓��V1

�c� + �G1
↑ + G1

↓��V1
�s� · m1, �9�

j1m
�s�� = j1l

�s��, �10�

j2m
�s�� = �G2

↑ − G2
↓��V2

�c� + �G2
↑ + G2

↓��V2
�s� · m2, �11�

j2r
�s�� = j2m

�s��. �12�

The component of the spin-current parallel to the magnetiza-
tion direction is conserved on traversing the ferromagnet
which is reflected in the conditions j1l

�s��= j1m
�s�� and j2m

�s��= j2r
�s��.

The transverse components of the spin-current densities are
not conserved on traversing the interface due to the absorp-
tion of transverse spin flow5

j1l
�s�� = − 2G1

↑↓m1 � V1l
�s� � m1, �13�

j1m
�s�� = 2G1

↑↓m1 � V1m
�s� � m1, �14�

j2m
�s�� = − 2G2

↑↓m2 � V2m
�s� � m2, �15�

j2r
�s�� = 2G2

↑↓m2 � V2r
�s� � m2, �16�

where it is assumed that the mixing conductance is the same
for the interface between the left �middle� normal metal and
ferromagnet 1 �2� as for the interface between the middle
�right� normal metal and ferromagnet 1 �2�, and the small
imaginary part of the mixing conductance Gi

↑↓ has been
disregarded.5 The spin-torque densities on ferromagnets 1
and 2 are determined by the absorption of the transverse spin
currents

�1 = j1l
�s�� − j1m

�s��, �17�

�2 = j2m
�s�� − j2r

�s��. �18�

From the expressions for the spin-current densities �5�–�8�
and the flow of spins transverse to the magnetizations
�13�–�16�, we can express the spin-transfer torque densities
in terms of the spin accumulations in the normal metals:

�1 = − 2G1
↑↓m1 � ��V1l

�s� + V1m
�s� � � m1� , �19�

�2 = − 2G2
↑↓m2 � ��V2m

�s� + V2r
�s�� � m2� . �20�
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We consider normal metals thinner than the spin-diffusion
length, but even then spin flip may often not be neglected.
Equations �1�–�8� should be matched to solutions of the dif-
fusion equations for charges and spins

�2V�
�c� = 0, �2V�

�s� = V�
�s�/l�

2 , �21�

where �N� is the resistivity and l� the spin-diffusion length
in each normal metal layer with index �= l ,m ,r. We denote
the direction along the spin-valve pillar, e.g., the transport
direction z. The charge and spin currents in the transport
direction are

j�
�c��z� =

1

�Ni

�V�
�c�

�z
, j�

�s��z� =
1

�Ni

�V�
�s�

�z
. �22�

The thicknesses of the left, middle, and right normal metals
are Ll, Lm, and Lr, respectively. We assume that the left and
right normal metals are attached to reservoirs where charges
and spins are in local equilibrium. We choose local coordi-
nates, zl, zm, and zr, for each normal metal so that �1� in the
left normal metal zl=0 corresponds to the contact between
the left side normal metal and the left reservoir and zl=Ll
corresponds to the Nl �F1 interface, �2� in the middle normal
metal zm=0 corresponds to the right side of the F1 �Nm inter-
face and zm=Lm corresponds to the left of the Nm �F2 inter-
face, and �3� in the right normal metal zr=0 corresponds to
the right side of the F2 �Nr interface and zr=Lr corresponds to
the boundary between the right normal metal and the right
reservoir.

Conservation of spin and charge requires continuity of
spin and charge flow in the bulk of the normal metals close
to the left and to the right of the N �F interfaces and through
the interfaces

j1l
�c� = jl

�c��zl = Ll�, j1l
�s� = jl

�c��zl = Ll� , �23�

j1m
�c� = jm

�c��zm = 0�, j1m
�s� = jm

�c��zm = 0� , �24�

j2m
�c� = jm

�c��zm = Lm�, j2m
�s� = jm

�c��zm = Lm� , �25�

j2r
�c� = jr

�c��zr = 0�, j2r
�s� = jr

�c��zr = 0� . �26�

On the outer, left, and right normal metal layer, the boundary
conditions are fixed charge voltage and zero spin potentials
defining the magnetically active device region. At the left
reservoir, we have

Vl
�c��zl = 0� = V/2, Vl

�s��zl = 0� = 0, �27�

and at the right reservoir, we have

Vr
�c��zr = Lr� = − V/2, Vr

�s��zr = Lr� = 0. �28�

The charge and spin accumulations are uniquely determined
by �1�–�8�, �21�, and �22�, conservation of charges and spins
close to the N �F interfaces in the normal metal �23�–�26�,
and the boundary conditions on the outer normal metal layers
�27� and �28�.

We start from a parallel or antiparallel spin valve configu-
ration in which magnetizations and spin accumulations are
collinear to x. In this initial configuration, the transport equa-

tions are easy to solve since both the spin accumulations and
magnetizations directions are collinear throughout the whole
circuit, and there are not transverse components to the spin
current. The current through the system is then obtained by
Ohm’s Law.

We now consider small instabilities in the magnetization
normal to the x axis in Fourier space: mi=x+�mi

��q�. To
linear order in the excitations, the charge current and voltage
become j�c�= j�c0�+�j�c��q� and V�c�=V�c0�+�Vc�q�. We de-
compose the linearized spin potentials into longitudinal and
transverse parts, �V�s�=x�V�s��+�V�s��, expressing the spin-
transfer torque density �1= j1l

�s��− j1m
�s�� ��2= j2m

�s��− j2r
�s��� in

terms of contributions from electrons hitting Fi from the left
and right: �1=�1l+�1m ��2=�2m+�2r�

�1l = 2G1
↑↓�V1l

�s0��m1
� − �V1l

�s��� , �29�

�1m = 2G1
↑↓�V1m

�s0��m1
� − �V1m

�s��� , �30�

�2m = 2G2
↑↓�V2m

�s0��m2
� − �V2m

�s��� , �31�

�2r = 2G2
↑↓�V2r

�s0��m2
� − �V2r

�s��� . �32�

Solving the diffusion equations in each normal metal, we can
also find the charge currents to linear order in the instability
close to the N �F interfaces

�jl
�c��Ll� = Gl

qLl

tanh qLl
�V1l

�c�, �33�

− �jm
�c��0� = Gm

qLm

tanh qLm
��V1m

�c� −
�V2m

�c�

cosh qLm
� , �34�

�jm
�c��Lm� = Gm

qLm

tanh qLm
��V2m

�c� −
�V1m

�c�

cosh qLm
� , �35�

− �jr
�c��0� = Gr

qLr

tanh qLr
�V2r

�c�, �36�

where 1/Gl=Rl=�Nl
Ll, 1 /Gm=Rm=�Nm

Lm, and 1/Gr=Rr

=�Nr
Lr are the resistance of the left, middle, and right normal

metal layers, respectively. The expressions for the spin cur-
rents are obtained by replacing j�c�→ j�s� and V�c�→V�s�. The
equations for the desired charge and spin potentials can be
obtained by noticing that expressions for �j�c� and �j�s�� form
a closed set of equations independent of �m� with a trivial
solution: �V�c�=�V�s��=0 and �j�c�=�j�s��=0. Only transverse
spin currents j�s�� are, therefore, induced by small magneti-
zation fluctuations. Finding the solutions of the linear equa-
tions for the unknown �V1l

�s��, �V1m
�s��, �V2m

�s��, and �V2r
�s�� is

straightforward, but tedious. We present the results in Sec.
IV.

IV. RESULTS AND DISCUSSION

In order to manage the complex analytical spin-transfer
torque expressions, we introduce the following standard no-
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tation for the ith ferromagnet: average resistance,

Ri
* = �Ri

↑ + Ri
↓�/4, �37�

and polarization,

Pi =
Ri

↓ − Ri
↑

Ri
↑ + Ri

↓ . �38�

The resistance contrast between the parallel �P1P2�0� and
antiparallel �P1P2�0� configurations is

�R = Rap − Rp =
4R1

*R2
*�P1P2�

�Rl + R1
* + Rm + R2

* + Rr�
. �39�

The polarization of the current is

Pt =
R1

*P1 + R2
*P2

Rl + R1
* + Rm + R2

* + Rr

. �40�

The charge current is denoted j�c�.

A. Spin-transfer torques

The spin-transfer torque on ferromagnet 1 has contribu-
tions from electrons hitting it from the left normal metal and
from the middle normal metal,

�1 = �1l + �1m. �41�

Similarly, the spin-transfer torque on ferromagnet 2 has con-
tributions from electrons hitting it from the middle normal
metal and from the right normal metal,

�2 = �2m + �2r. �42�

The spin-transfer torques �1 and �2 are proportional to the
charge current j�c� and the instabilities in the magnetizations
�m1

� and �m2
�. We express the spin-transfer torque �1l

=L1l�m1
�j�c� on the first ferromagnet exerted by electrons

coming from the left and �2r=L2r�m2
�j�c� on the second fer-

romagnet due to electrons from the right as

�1l = L1l�m1
�j�c�, �43�

�2r = L2r�m2
�j�c�. �44�

We find

L1l =
Rl�f l�0� − f l�q��

Rlfl�q� + R1
↑↓ Pt. �45�

Expression for L2r is obtained by changing sign and substi-
tuting l by r and 1 by 2. Here f�x�=tanh�x� /x, f l�q�
= f�xl�q��, and xl�q�= �q2+ ll

−2�1/2tNl, where tNl is the left nor-
mal metal thickness and ll its spin-diffusion length. In par-
ticular f l�0�	1 �and similarly for fm, fr, and xm, xr�. These
torques acting on a single ferromagnetic layer vanish in the
long wavelength limit as in Ref. 10. The new physics is
contained in the wave-vector-dependent torques �1m and �2m.
In the expressions,

�1m = �L1m�m1
� + K1m�m2

��j�c� �46�

and

�2m = �L2m�m2
� + K2m�m1

��j�c�, �47�

the spin-transfer torques due to spin currents between the
two ferromagnets are found as

L1m =
− �n1 + n2xm

2 + n3/fm�/R*

Rm
2 + R1

↑↓R2
↑↓xm

2 + Rm�R1
↑↓ + R2

↑↓�/fm

, �48�

where

n1 = − Rm
2 �P1R1

* + P2R2
*� , �49�

n2 = R2
↑↓�P1R1

*�R2
* + Rm + Rr� − P2R2

*�Rl + R1
*�� , �50�

n3 = n1R2
↑↓/Rm + n2Rm/R2

↑↓, �51�

introducing R*=Rl+R1
*+Rm+R2

*+Rr. The expression for L2m
is similar to that for L1m, with an overall sign change and the
substitution l↔r and 1↔2. K1m and K2m govern the dy-
namic coupling between the ferromagnets, but do not affect
the instabilities of individual ferromagnets and are, therefore,
not discussed here. In the limit of long-wavelength excita-
tions, q→0, our results reduce to previous ones.5,14

Let us discuss the spin-transfer torques �45� and �48� in
simple limits.

�i� When the ferromagnet 2 and the right normal metal are
absent in the circuit, e.g., when R2

*=0, R2
↑↓=0, and Rr=0, we

naturally obtain a similar result as the spin torque on the first
ferromagnet exerted by electrons coming from the left �45�10

L1m = −
Rm�fm�0� − fm�q��

Rmfm�q� + R1
↑↓ Pt. �52�

When, additionally, the system is symmetric around ferro-
magnet 1, Rl=Rm, the total spin-transfer torque on ferromag-
net 1 vanishes, L1l+L1m=0.10

�ii� For symmetric junctions in a parallel magnetic con-
figuration Rl=Rr, R1

↑↓=R2
↑↓, R1

*=R2
*, and P1= P2. For mac-

rospin �q=0� excitations,

L1l = 0, �53�

L1m = Pt/2, �54�

illustrating that the spin-transfer torque is exerted by elec-
trons coming from ferromagnet 2 that hit ferromagnet 1 from
the right and is governed by the polarization of the entire
spin-coherent region Pt �Ref. 14�. At short wavelengths,

L1l = Pt
Rl

R1
↑↓ , �55�

L1m = − Pt
Rm

2R1
↑↓ , �56�

so that

L1 = L1l + L1m = − Pt
Rm − 2Rl

2R1
↑↓ . �57�

For the dynamics of a single ferromagnet, it is the asymme-
try in the diffusion process to the left and to the right of the
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ferromagnet that determines the sign of the short-wavelength
spin-transfer torque.10 We see that for spin valves, it is the
asymmetry of the complete device that determines whether
short-wavelength modes can be excited; when Rm=2Rl they
cannot. This condition �Rm=2Rl� corresponds to a com-
pletely symmetric spin valve, where two identical effective
“ferromagnets” consist of, e.g., Rl, ferromagnet 1 and half of
ferromagnet Rm, and half of ferromagnet Rm, ferromagnet 2
and Rr. In the limit Rl=0, there is no short-wavelength spin-
transfer torque from electrons that hit ferromagnet 1 from the
left and vice versa when Rm=0, we find �1m�q→0�→0. On
the other hand, the macrospin, torque in symmetric junctions
only depends on the global polarization for symmetric
junctions.14 We thus proved the conjecture in Ref. 12 that the
spin-transfer torque L1m can change its sign as a function of
q when Rm�2Rl for symmetric spin valves. In that case, the
magnetization moves as a macrospin for one current direc-
tion but short-wavelength spin waves are excited when the
current is reversed. In general, we find that when the normal-
metal bulk resistance asymmetry is smaller than the interface
spin-mixing resistance, the macrospin spin-transfer torque is
larger than the short-wavelength spin-transfer torque. For
strongly asymmetric structures, L1m is negative also for
long-wavelength excitations.14

B. Enhanced Gilbert damping

The critical current for the onset of magnetic instabilities
depends also on spin pumping by a moving magnetization
that opposes the dynamics.8 Spin pumping by ferromagnet i
into neighboring normal metals 	Gi

↑↓mi��mi /�t enhances
the Gilbert damping 
1=
1

�0�+
1l� +
1m� and 
2=
2
�0�+
2m�

+
2r� , where 
1
�0� and 
2

�0� are the damping parameters in the
isolated ferromagnets. Spin pumping via the left normal
metal to the left reservoir gives10


1l� =
�*

8�M1V1

RK

R1
↑↓ + Rlfl�q�

, �58�

where �* is the gyromagnetic ratio, Mi and Vi are the mag-
netization and volume of ferromagnet i, and RK=h /e2 is a
conductance quantum. The enhancement due to spin pump-
ing via the middle normal metal to ferromagnet 2 comprises
a new result


1m� =
�1RK�R2

↑↓xm
2 + Rm/fm�

Rm
2 + R1

↑↓R2
↑↓xm

2 + Rm�R1
↑↓ + R2

↑↓�/fm

. �59�

Both 
1l� and 
1m� can be understood in terms of an effective
resistance against pumping spins out of the ferromagnet.
Spin pumping to the left is limited by the wavelength-
dependent effective total resistance R1

↑↓+Rlfl. In the long-
wavelength limit, the resistors are in series, R1

↑↓+Rl. In the
short-wavelength limit, the effective resistance is reduced
due to the inhomogeneous spin distribution. Spin pumping to
the right, in the long-wavelength limit governed by R1

↑↓

+Rm+R2
↑↓ is also reduced in the short-wavelength limit. For

the second ferromagnet, we compute 
2=
2
�0�+
2l� +
2r� with

identical expression as above with 1↔2 and l↔r.

C. Critical currents for magnetic excitations

Including spin-transfer torques and enhanced damping,
the magnetization dynamics obey a generalized Landau-
Lifshitz-Gilbert equation

�mi

�t
= − �mi � Heff +

�*

2eMitFi
�i + 
imi �

�mi

�t
. �60�

The effective magnetic field Heff is the functional derivative
of the total magnetic energy U due to external magnetic field,
magnetic anisotropy, and spin-wave stiffness. To the lowest
order in the excitation amplitude, U=−mi

�0� ·xH
+K1�u1 ·�mi

��2+K2�u2 ·�mi
��2, where the applied magnetic

field H is assumed to be along the initial magnetization di-
rection. K1�q� and K2�q� are wave-number-dependent spin-
wave stiffnesses that for q=0 reduce to the anisotropy con-
stants along axes u1 and u2. A configuration in which
ferromagnet 1 is aligned parallel with the external magnetic
field becomes unstable when j�c�� j1

+, whereas an antiparallel
magnetization becomes unstable when j�c�� j1

−. We compute
the critical currents at T=0 requiring that the damping torque
is exactly canceled by the spin-transfer torque

j1
± =


1
�0� + 
1l� + 
1m�

L1l
± + L1m

±

2e



M1tF1

�±

�* , �61�

introducing the ferromagnetic resonance frequencies �±

=H± �K1+K2� /2. L1l
± and L1m

± denote spin-transfer torques
computed for positive �negative� polarization, P1= ± �P1�.
When the torques change sign as a function of the wave
vector, the ferromagnet can be unstable against macrospin
excitations when the current is flowing in one direction, but
spin waves are excited when the current is reversed, as
pointed out above. Similar expressions hold for j2

±, the criti-
cal current for ferromagnet 2.

D. Comparison with NYU/IBM experiments

We are now in position to discuss the experiments in
Ref. 12. A good measure of the efficiency of the spin-transfer
torques is the critical current �ji /�H at high magnetic fields
when anisotropies K1 and K2 do not play a role.16 The
magnetoresistance, enhanced Gilbert damping, spin-transfer
torques, and switching current all depend strongly on
the detailed device parameters. We adopt resistance
parameters collected by the Michigan State University group
for Co/Cu systems,15 i.e., �Co

* =75 n� m, bulk polarization
�=0.46, �Cu

* =6 n� m, RCo/Cu
* =0.51 f� m−2, and an

interface polarization �=0.77. The mixing conductance that
agrees with first-principles band-structures calculations and
ferromagnetic resonance experiments is RCo/Cu

↑↓ =1.0 f� m−2

�Ref. 8�. The magnetically active region is
10Cu�3Co�10Cu�12Co�35Cu, where the numbers denote the
thickness of the layers in nanometers. The right normal metal
thickness is chosen smaller than the geometrical since the
nanopillar widens.12

Before going into details, we summarize our results for
the NYU/IBM samples in Fig. 2, which are in semiquantita-
tive agreement with the experiments. Starting in a parallel
configuration, there is a macrospin instability for ferromag-
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net 1 at positive currents. We belive that for large currents
the macrospin excitation leads to a magnetization reversal
into an antiparallel configuration, but this should be corrobo-
rated by micromagnetic calculations. A further increase in
the current leads to a spin-wave instability in ferromagnet 2.
Similarly, for currents in the opposite direction �negative cur-
rents�, we predict a spin-wave instability for ferromagnet 2
�Ref. 17�. The theoretical Gilbert damping constant is plotted
in Fig. 3 for a bulk Gilbert damping 
Co

�0�=0.003 for both
ferromagnets. Spin pumping is important, giving rise to an
enhanced Gilbert damping constant of the thin ferromagnet
that increases with wave vector. Both spin pumping and
spin-transfer torque increase with the interface to volume
ratio. Ferromagnet 1 is easier to excite, but its enhanced
damping partially compensates this effect, thus allowing ex-
citations of both ferromagnets to compete. Numerical results
for the critical current �j1 /�H at high magnetic fields are
displayed in Fig. 3 for the thin ferromagnet 1 and the thick
ferromagnet 2 for the parallel configuration. For positive cur-
rents, experiments find switching of the thin ferromagnet
presumably to an antiparallel configuration when �j�c� /�H
=0.6�1012 A m−2 T−1 �Ref. 12�. This value is extracted
from the line in their contour plot of d2V /d2I showing the
onset of magnetic excitations. Indeed, for positive currents,
macrospin excitations occur first with lowest critical currents
that agree well with experiments. Furthermore, we expect
spin-wave excitations for the thick ferromagnet 2 at opposite
currents, again in good agreement with experiments.12 Addi-
tionally �but not shown here�, we calculate that after the thin
ferromagnet 1 switches, ferromagnet 2 also becomes un-
stable against spin-wave excitations for positive currents,
supported by experiments as well.

Residual quantitative discrepancies between experiments
and theory are believed to be caused by uncertainties in the
material and devices parameter and details in the micromag-
netic structure. We have used measurements, e.g., for the
bulk resistivities from the MSU group and it is likely that
due to a different sample preparation technique, the NYU/
IBM samples have different resistivities. Furthermore, the
thickest ferromagnet is 12 nm in the NYU/IBM measure-
ments, which is at the boundary where spin-wave excitations
along the transport direction become of importance in this
layer, which reduces the accuracy of the predicted value of
the critical current in the thick layer.11 Given these uncertain-
ties, we consider the semiquantitative agreement encourag-
ing.

V. CONCLUSIONS

In conclusion, we report a theory of macrospin vs spin-
wave excitations in spin valves that explains recent observa-
tions using only independently determined material and de-
vice parameters. The rich phase space of magnetic
excitations is classified in terms of macrospin and finite
wavelength spin-wave excitations that depend on the resis-
tance distribution in the magnetically active region. For sym-
metric junctions, macrospin instabilities are strongly favored.
Finite wavelength spin-wave excitations are pronounced in
asymmetric spin valves with relatively high normal metal
resistances comparable to that of the ferromagnets. Since the
results are in agreement with recent experiments, we are con-
fident that our insights are helpful to explore the magnetiza-
tion dynamics in the full parameter space spanned by cur-
rents, external magnetic fields, and device design.
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FIG. 3. Upper: Gilbert damping in thin ferromagnet 1 �upper
curve�, thick ferromagnet 2, and in bulk �dashed line� vs qtNm.
Lower: Critical current �j /�H in units of 1012 A−2 T−1 of thin fer-
romagnet 1 �solid line� and thick ferromagnet 2 �dashed line� vs
qtNm.

FIG. 2. Phase diagram for ferromagnet 1 and 2, starting in a
parallel configuration, as a function of current.
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