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We consider the effect of the internal nuclear quadrupole interaction on quantum tunneling in complex
multiatomic two-level systems. Two distinct regimes of strong and weak interactions are found. The regimes
depend on the relationship between a characteristic energy of the nuclear quadrupole interaction �* and a bare
tunneling coupling strength �0. When �0��*, the internal interaction is negligible and tunneling remains
coherent determined by �0. When �0��*, coherent tunneling breaks down and an effective tunneling ampli-
tude decreases by an exponentially small overlap factor �*�1 between internal ground states of left and right
wells of a tunneling system. This affects thermal and kinetic properties of tunneling systems at low tempera-
tures T��*. The theory is applied for interpreting the anomalous behavior of the resonant dielectric suscep-
tibility in amorphous solids at low temperatures T�5 mK, where the nuclear quadrupole interaction breaks
down coherent tunneling. We suggest the experiments with external magnetic fields to test our predictions and
to clarify the internal structure of tunneling systems in amorphous solids.
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I. INTRODUCTION

A transition between two energy minima separated by a
potential barrier U occurs in different ways at high and low
temperatures. At high temperatures the motion between the
energy minima is classical, i.e., thermally activated, suggest-
ing that the particle acquires the energy U from the environ-
ment to overcome the barrier. This results in an exponential
Arrhenius factor exp�−U /T� for the transition rate. The clas-
sical transition rate decreases rapidly with decreasing the
temperature. At low temperature the above-described trans-
port crosses over into the weakly temperature-dependent
quantum tunneling. A tunneling transition rate is essentially
governed by the exponentially small and temperature-
independent factor exp�−2S�U� /��, where S�U� describes the
classical action for the motion through the inverted potential
barrier. The strong sensitivity of the tunneling exponent
against particle mass makes quantum tunneling more favor-
able for light particles as electrons, while the motion
of heavy nuclei is classical down to temperatures of order of
1 K. However, for T�1 K quantum tunneling displays itself
in the thermodynamic and kinetic properties of atomic sys-
tems. One impressive example is amorphous solids, in which
the low-temperature properties are governed by the two-level
systems �TLS’s�. These TLS’s are made of atoms or groups
of atoms, experiencing a tunneling motion between pairs of
energy minima separated by potential barriers.1 They con-
tribute to the universal thermodynamic and kinetic properties
in all known glasses as well as some other disordered mate-
rials for T�1 K �see Refs. 2–4�.

A TLS is described by the standard pseudospin 1/2
Hamiltonian

ĥTLS = − �0sx − �sz. �1�

Here �0 is a tunneling amplitude coupling two energy
minima and � is a level asymmetry. The quantity �0 is ex-
ponentially sensitive to external and internal parameters of
the system. This results in a logarithmically uniform distri-
bution of tunneling amplitudes for various TLS’s

P��,�0� =
P

�0
, P = const. �2�

This distribution of TLS’s leads to the universal temperature
and time dependencies for various physical characteristics of
amorphous solids, thus making “glassy” behavior very easily
recognizable. For instance, this includes the logarithmic re-
laxation in time of the specific heat1–4 and the nonequilib-
rium dielectric susceptibility.5 In addition, dielectric and
acoustic �a sound velocity� susceptibilities in glasses show a
logarithmic temperature dependence also associated with the
distribution Eq. �2�. Note that the exponential sensitivity of a
tunneling strength �0 to environmental interactions also
broadens noticeably the distribution of tunneling amplitudes
and relaxation rates in other systems, e.g., tunneling of a
large electronic spin in magnetic molecule Mn12Ac. The lat-
ter system shows a broad spectrum of relaxation times due to
interaction of electronic spins with nuclear spins.6,7 A broad
spectrum of relaxation times also has been reported in new
disordered magnetic alloys.8

The nature of the tunneling systems in amorphous solids
remains unclear in spite of the theoretical efforts attempting
various models.9–13 The main problem in the theory is a lack
of experiments which are capable of proving the advantage
of a specific model against the original phenomenological
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model1 based on Eq. �2�. The phenomenological approach
Eq. �2� can be used to explain a variety of experimental data,
while the interaction between TLS can successfully be
treated as a weak correction.13,14 Even the internal TLS
structure is unclear yet. For instance, nobody knows how
many atoms do participate in a single tunneling event. We
hope that understanding the nuclear quadrupole interaction
effects in glasses, which are sensitive to the internal TLS
structure, will help to resolve this question.

Recent experimental investigations of amorphous solids at
very low temperatures have revealed a number of qualitative
deviations from the predictions of the standard tunneling
model Eq. �2�. In particular, it is demonstrated in several
works13,15,16 that, for T�5 mK, the expected logarithmic
temperature dependence of the dielectric constant breaks
down and the dielectric constant becomes approximately
temperature independent. This result conflicts with the loga-
rithmically uniform distribution Eq. �2� of TLS’s over their
tunneling amplitudes. To resolve the problem, one can as-
sume that the distribution of TLS’s has a low-energy cutoff
at �0,min�5 mK. This assumption, however, contradicts the
observation of very long relaxation times in all glasses.
These times �a week or longer� require much smaller tunnel-
ing amplitudes5 than 5 mK �remember that the TLS relax-
ation time is inversely proportional to its squared tunneling
amplitude�.

We suggest the explanation of this controversial fact by
using the recent model of Würger, Fleischmann, and Enss17

who proposed that the nuclear quadrupole interaction affects
the properties of TLS’s at low temperatures by the mismatch
of the nuclear quadrupole states in different potential wells
�see Fig. 1�. This is very similar to the electronic spin tun-
neling suppression by the nuclear spin interaction in mag-
netic molecules.7 The significance of the nuclear quadrupole
interaction has recently been proven experimentally in glyc-
erol glass.18 This interaction helps to understand the anoma-
lous magnetic field dependence of dielectric properties in
entirely nonmagnetic dielectric glasses.16,19,20

We show that an effective tunneling amplitude of TLS
having an energy less than its nuclear quadrupole interaction
is remarkably reduced due to the mismatch of TLS nuclear
quadrupole states in its two energy minima, similarly to the
polaron effect. Consequently the spectrum of TLS tunneling
amplitudes �0 possesses a pseudogap below the nuclear
quadrupole interaction energy �*. Dielectric and acoustic
susceptibilities of glasses become temperature indepedent for
temperatures belonging to this pseudogap because there is no

TLS with �0�T to contribute. Thus our model explains the
experimental observations. In addition, we predict that the
application of a strong external magnetic field will reduce the
mismatch of different nuclear quadrupole states and thus re-
store the logarithmic temperature dependence of TLS sus-
ceptibilities. According to our theory dielectric glasses hav-
ing no nuclear quadrupole interaction should obey the
predictions of the tunneling model, which mostly agrees with
the experiment.

Since a low-temperature dielectric constant and a speed of
sound in glasses have a similar physical nature they should
have a similar behavior at low temperatures. Therefore the
saturation in the logarithmic temperature dependence of a
sound velocity should be seen at T�10 mK in materials pos-
sessing nonvanishing nuclear quadrupole moment. The situ-
ation with sound velocity measurements is, however, more
complicated because it is more difficult to perform the low-
temperature measurements for a sound velocity then for a
dielectric constant. There exists a few measurements that we
discuss together with the measurements of the dielectric con-
stant. The present theory is developed for the dielectric con-
stant, although our conclusions can be extended to the veloc-
ity of sound without major changes.

The paper is organized as follows. In Sec. II the model of
two-level systems affected by the nuclear quadrupole inter-
action is introduced. Then, we discuss qualitatively the
renormalization of tunneling amplitude by the nuclear quad-
rupole interaction depending on the relation between tinnel-
ing splitting �0 and a quadrupole interaction �*. In Sec. III
the expression for the resonant dielectric susceptibility is ob-
tained and the influence on the tunneling amplitude renor-
malization on the resonant part of the TLS dielectric constant
is described in the qualitative level. In Sec. IV we use a
perturbation theory to characterize quantitatively the tem-
perature dependence of the dielectric constant in the presence
of nuclear quadrupole interactions in the high- and low-
temperature limits. In Sec. V we consider a solvable model
of TLS’s coupled to harmonic oscillators, conveniently re-
placing nuclear spins. The solution of this problem permits
us to simulate the influence of the nuclear quadrupole inter-
action on a TLS dielectric constant at all temperatures of
interest. In Sec. VI the effect of the external magnetic field
on the dielectric constant is considered within the simplified
model of Sec. V. In Sec. VII the parameters of our model are
compared with the experimental data. In final Sec. VIII the
conclusions are formulated and the suggestions for an ex-
perimental verification of our theory are made. The short
version of the manuscript can be found in Ref. 21

II. MODEL

A. Nuclear quadrupole interaction

How does the nuclear quadrupole interaction affect tun-
neling? Consider a tunneling system formed by n atoms all
possessing a nuclear spin I	1 and consequently a nuclear
electrical quadrupole moment.The total tunneling Hamil-

tonian ĥ can be described by the standard TLS pseudospin

Hamiltonian ĥTLS �1� and the quadrupole interactions Ĥr in

FIG. 1. The two level system having different nuclear quadru-
pole quantization axes uL and uR defined by the local electric field
gradient in the left and right wells.
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the right well �sz=1/2� and Ĥl in the left well �sz=−1/2� as
follows:

ĥ = ĥTLS +
Ĥr + Ĥl

2
+ �Ĥr − Ĥl�sz. �3�

The local nuclear quadrupole Hamiltonians Ĥr,l can be ex-

pressed as a sum of interactions of all n nuclear spins Îi over
all n atoms that simultaneously participate in its tunneling
motion with the local electric field gradient tensors
�Fa

�l,r� /�xb different in general for the right and left wells

Ĥr,l = �
i=1

n

ĥi
�r,l�,

ĥi
�r,l� = −

Q

2 �
a,b=x,y,z

�Îi
aÎi

b + Îi
bÎi

a − 2
ab
I�I + 1�

3
	 �Fa

�l,r�

�xb
. �4�

Here Îi
a is a nuclear spin projection onto the a-axis and Q is

the electrical quadrupole moment.
In what follows, we consider a simplified model for the

nuclear quadrupole interaction �4� possessing the axial sym-
metry �see Fig. 1�

Ĥl,r = b��Il,r
ul,r�2 −

I�I + 1�
3

	 . �5�

Here

b 
 Q��F/�x� , �6�

and uL and uR define the directions of the electric field gra-
dient in the left and right wells, respectively.

There exists also the magnetic-dipolar interaction of
nuclear spins. It is usually by several orders of the magnitude
smaller than the quadrupole interaction and can be neglected.

B. TLS ground state and its effective tunneling amplitude

It will be shown below that the resonant dielectric suscep-
tibility of a TLS ensemble is due to the ground state of tun-
neling systems affected by the external electrical field. Only
tunneling systems for which �0�� can contribute to the
dielectric constant. These two parameters must exceed the
thermal energy, i.e., �0	T �see Ref. 3 and 4 and Sec. III for
details�. The structure of the ground state of the Hamiltonian
�3� depends on the relation between typical tunneling ampli-
tude �0�T and characteristic value of the quadrupole inter-
action nb. If �0�nb, the nuclear quadrupole interaction can
be treated as a small perturbation and the TLS behavior
obeys the standard tunneling model.

In the opposite case �0�nb, the tunneling term can be
treated as a weak perturbation. In a zero-order perturbation
theory the states in the left and right well can be considered
separately. These states form a proper basis for eigenstates of
a tunneling system. In particular, the actual ground state is a
linear superposition of the ground states in the isolated left
and right wells. The energies corresponding to these ground
states are Egl=−� /2+Eg,l, Egr=� /2+Eg,r, where Eg,r, Eg,l

are the ground-state energies of the quadrupole interaction

Hamiltonians Ĥr,l �Eq. �3�� in the right or left wells, respec-
tively.

The effective tunneling amplitude �0*, which couples any
pair of levels in the left and right wells of TLS’s with �0
�nb decreases due to a mismatch of nuclear quadrupole
ground states in two potential wells. Obviously, when Hr
=Hl, the nuclear quadrupole interaction does not affect tun-
neling. This mismatch can be expressed in terms of a char-
acteristic overlap integral between the nuclear spin ground
states in the two wells. In the absence of tunneling one has

�* = �n, � = �lg�rg , �7�

where the symbols �lg ��rg� stand for the ground-state wave
function of the nuclear spin of a single tunneling atom in the
left �right� well. This overlap integral enters directly into the
effective tunneling amplitude. In fact, at very low tempera-
tures and small tunneling amplitude �0�nb one may treat
the TLS in terms of the ground states in the right and left
wells. The tunneling matrix element �0* between these two
states resulting from the perturbation −�0sx is

�0* = �*�0. �8�

Thus, the overlap integral �* determines the reduction of the
tunneling amplitudes due to the nuclear quadrupole interac-
tion.

The specific value of the overlap integral depends on the
absolute value of the nuclear spin, nature of the nuclear
quadrupole interaction, the number of tunneling atoms per
one TLS, and the difference in the electric field gradients in
the right and left wells. Currently, reliable information about
all these parameters is not available. In principle the value of
the overlap integral � fluctuates from atom to atom. This will
lead to the log-normal distribution of the overall overlap in-
tegral �* in the large n limit. As we will see below �e.g., Eq.
�56�� the behavior of the dielectric constant is mostly sensi-
tive to ln��*�, which possesses the gaussian distribution, so
we can use its average value with the logarithmic accuracy of
our consideration.

To estimate typical value �* let us turn to a simplified
model for the nuclear quadrupole interaction Eqs. �4� and
�6�, possessing the axial symmetry. Let � be the angle be-
tween the directions of the electrical field gradient in the left
and right wells.

First, consider the case of an integer nuclear spin. If the
interaction constant is positive, i.e., b�0, the energy mini-
mum is obtained when the projection Il,r

� =0. In this case the
ground state is nondegenerate. This simplifies our consider-
ation and makes it possible to calculate the overlap integral
of the ground state wavefunctions depending on the mis-
match angle � �see Fig. 1�. We confine ourselves with two
simple cases of integer nuclear spins, namely, I=1,2. Then
the overlap integral between the left and right ground states
can be expressed as
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� = cos���, I = 1,

� = �cos2��� − sin2���/2�, I = 2. �9�

We will pay most attention to these two nondegenerate cases
because they are very convenient for the investigation of the
effect of an external magnetic field on the overlap integral
�see Sec. VI.�

The value of the rotational angle � in glasses is unknown.
We expect that it can be estimated by extended molecular
dynamics simulations.22 On the other hand, in the orienta-
tional glass �KBr�1−x �KCN�x �see Ref. 23� the CN group
rotates between different equilibrium positions by angle �
=cos−1�1/3� �see Ref. 3�. We assume that in glasses the ro-
tational angle � is the same and neglect its fluctuations due
to a structural disorder. Then, for spin I=1, one can estimate
the overlap integral Eq. �9� as

� 
 cos��� 
 0.33. �10�

When the TLS contains n atoms tunneling simultaneously,
the characteristic overlap integrals becomes

�* = �l�r 
 �n. �11�

To understand and interpret experimental data, we assume
that the total overlap integral is small

�* � 1. �12�

This assumption is justified by the exponential decrease of
the overlap integral with the number of atoms n participating
in a single tunneling system �TLS�.

The case of a half-integer spin is more complicated be-
cause of the Kramers degeneracy. The quadrupole spin
Hamiltonian of a tunneling atom i has two orthogonal ground
states �il+ , �il−  in the left well and two orthogonal ground
states �ir+ , �ir−  in the right well. As a result, the ground
state of n tunneling atoms is 2n-fold degenerate. In order to
reduce the problem to a single pair of levels �one in the left
well and the other in the right one�, we divide the degenerate
ground state into 2n pairs of left �il and right �ir ground
states coupled only with each other. In fact, tunneling ampli-
tude between left and right states of a tunneling atom i is
directly proportional to the overlap integral of the two states
involved �il � ir. Let us introduce two superposed states in
the left well as follows:

�l1 = cos����il +  + sin����il −  ,

�l2 = − sin����il +  + cos����il −  . �13�

The angle � is defined by the condition of orthogonality

0 = �ir + �l2 = �ir − �l1 ,

=− sin����ir + �il +  + cos����ir + �il −  ,

=cos����ir − �il +  + sin����ir − �il −  . �14�

This equation can be solved for � if the equation determinant
is equal to zero, i.e.,

�il + �ir + �il − �ir +  + �il + �ir − �il − �ir −  = 0. �15�

This condition is satisfied when pairs of eigenstates �ir+ ,
�ir−  and �il+ , �il−  are orthogonal to each other. One can
verify the validity of Eq. �15� by projecting the left vectors
�il+ , �il−  onto the right vector subspace ��ir+  , �ir− �.
Choosing the basis for the left well from the pairs of states
Eq. �13�, we can construct 2n possible states of nuclear spins
from the products of different left states �two choices for
each atom�. The basis states in the right well can be con-
structed similarly. Then each of the 2n left basis states pos-
sesses a nonzero overlap integral with the only single state
from the 2n right basis states.

Thus, the degenerate states form groups of pairs of states
connected by tunneling, while the states belonging to differ-
ent pairs are uncoupled. Since all 2n pairs possess identical
properties with respect to tunneling, one can treat them as
independent pairs of states. Then, our considerations become
similar to those for integer nuclear spins with degenerate
ground states of nuclear quadrupoles.

III. RESONANT SUSCEPTIBILITY

The main attention of this work is paid to the TLS reso-
nant dielectric susceptibility res which shows the large de-
viation from the conventional tunneling model for T
�5 mK. We begin from reviewing the nature of the contri-
bution of tunneling systems to the dielectric constant. Al-
though the resonant dielectric susceptibility has the well es-
tablished behavior �for reviews, see Refs. 3 and 4, and
references therein�, our analysis will be helpful for under-
standing the effect of the nuclear quadrupole interaction. It is
also useful for readers not too familiar with the TLS dielec-
tric response.

Consider a single TLS polarization due to the external
electric field F. We suppose that tunneling atoms possess a
nonzero charge. Then tunneling between the right and left
wells changes the dipole moment of TLS. The TLS dipole
moment operator can thus be expressed in the terms of pseu-
dospin �see Eq. �3��

�̂ = �sz. �16�

Here � is a dipole moment of a tunneling system. The inter-
action of the external field F with a TLS can be written as

V̂ = − F�sz. �17�

In general, there can be a contribution to the dipole moment
proportional to the off-diagonal operator sx. This results from
a change of the barrier due to electric field. Employing the
experimental data3 and theoretical estimates,24 we can argue
that such term leads to much smaller effect than that from the
“diagonal”term Eq. �16�. Therefore we neglect it.

The external field effect application can be taken into ac-
count by introducing the field-dependent asymmetry energy

��F� = � + F�̂ . �18�

Thus, the energies E�, �=1,2 , . . .Z, of all Z=2· �2I+1�n

eigenstates of a tunneling system become dependent on the

BURIN et al. PHYSICAL REVIEW B 73, 014205 �2006�

014205-4



external field. Remember that Z=2 in the absence of the
nuclear quadrupole interaction.

We are interested in a linear response of a TLS ensemble,
i.e., response to an infinitesimal electric field. Then the di-
pole moment of the eigenstate � can be expressed as

�� = −
�E�

�F
= − �

�E�

��
. �19�

The total TLS dipole moment can be expressed as a sum of
contributions of all the Z eigenstates �, weighed by the
Gibbs population factors P�

�̄ = �
�=1

Z

�P�

�E�

��
. �20�

The population factor P� is given by the equilibrium distri-
bution for unperturbed TLS’s

P���0,�;T� =

exp�−
E�

T
	

�
�=1

Z

exp�−
E�

T
	

. �21�

Finally, the susceptibility of a given TLS is determined by

�ab =
��a

�Fb
= �

�=1

Z �− �a�bP�

�2E�

��2 − �a
�P�

�Fb

�E�

��
	 . �22�

Here the indexes a and b denote the Cartesian coordinates of
the corresponding vectors and tensors. The first term is asso-
ciated with the adiabatic excitation of the TLS due to the
field-induced change in its eigenenergies. This contribution
reaches its maximum when TLS has an asymmetry � smaller
than its tunneling amplitude �0. It is called a resonant
contribution.3 The remaining term is associated with the
change in populations of TLS energy levels induced by the
external electric field. Such changes take place by the TLS
transitions between different quantum states. Therefore, this
contribution corresponds to the relaxational term.3

For temperatures T�50 mK and an external alternating
field F with frequency ��100 Hz, the relaxation contribu-
tion is negligibly small3,5,15 because a relaxation rate of TLS
populations becomes much smaller than the field oscillation
rate �. Therefore, the relevant TLS’s cannot adjust their ther-
mal populations to the rapidly changing field. In the range of
interest T�5 mK we can neglect the relaxational contribu-
tion and restrict our consideration to the first term on the
right-hand side of Eq. �22�.

The contribution of a single TLS should be summed over
all TLS’s belonging to the system. This is equivalent to av-
eraging the susceptibility �ab in Eq. �22� over energies, tun-
neling amplitudes, dipole moments, and other possible rel-
evant parameters. Averaging over the directions and absolute
values of TLS dipole moments is straightforward and we can
rewrite the resonant TLS contribution in the form

�ab
res = 
ab� ,

� =
�0

2

3 ��
�=1

Z

P���0,�;T�����,�0�� ,

����,�0� = −
�2E�

��2 . �23�

Here �0
2 is the average square of the TLS dipole moment.

Also, we have ignored the correlations between TLS dipole
moments with the other tunneling parameters. This is justi-
fied by the available experimental data.3 The average �¯
implies the integration of the single TLS response over
d�d�0 /�0 in accordance with the postulated TLS distribu-
tion Eq. �2�.

Let us first consider the behavior of the dielectric constant
in the zero-temperature limit. In this case it suffices to take
into account the ground state only in Eq. �22�, calculating the
resonant dielectric constant

� = −
P�0

2

3
�

0

W d�0

�0
�

−�

� �2Eg

��2 d� . �24�

The upper integration limit W represents the maximum tun-
neling amplitude, while the integration limits for an asym-
metry parameter � are set to ±� because its absolute value
can be much larger than the tunneling splitting �0. The inte-
gral over asymmetries can be evaluated as

�−
�Eg��0,��

��
�

�=−�

�=�

. �25�

For a large asymmetry �����0, the ground state is deter-
mined by the minimum energy state of a particle in the left
��0 �see Fig. 1� or the right well ��0. So, for large � the
ground-state energy behaves as Eg
−��� /2, while the tun-
neling amplitude and nuclear interaction give rise only to the
small correction. Then the expression in Eq. �25� equals
unity. Therefore, Eq. �24� results in the divergent integral

� 

P�0

2

3
�

0

W d�0

�0
. �26�

It is remarkable that this result does not depend on whether
or not the quadrupole interaction exists. So, the question re-
mains: what happens at finite temperature?

The answer is clear for TLS’s without a nuclear quadru-
pole interaction. In this case each TLS has only the two
states, i.e., the ground state g and the excited state e with
energies Eg,e= � �1/2���2+�0

2 �Eq. �1�, see Ref. 3�, respec-
tively. The susceptibilities of excited and ground states differ
by the sign since

�2Ee

��2 = −
�2Eg

��2 = −
1

2

�0
2

��2 + �0
2�3/2 . �27�

The response comes mainly from resonant TLS’s having
�����0. Therefore, both levels of a TLS with �0�T are
approximately equally populated. For this reason, the contri-
bution of the excited state to the dielectric constant cannot be
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neglected. Moreover, the contributions from the excited and
ground state nearly cancel each other if �0�T.

Calculating the finite temperature resonant susceptibility,
one should consider only TLS ground states and cutoff the
integral Eq. �24� at the lower limit given by �0�T. This
leads to the well-known logarithmic temperature dependence

� =
P�0

2

3
�

T

W d�0

�0
�

−�

�

d�
�2Eg

��2 =
P�0

2

3
ln�W/T� . �28�

This result is valid as long as the temperature exceeds the
energy of the quadrupole interaction nb. Next, we discuss the
case T�b. TLS’s with small tunneling amplitudes �0�nb
still contribute to the resonant susceptibility. They can be
represented by pairs of lowest nuclear quadrupole levels in
the right and left wells because the higher levels are sepa-
rated by the gap b�T from these two lowest ones. They are
coupled with each other by the tunneling amplitude �0 re-
duced by the overlap factor Eq. �11� �see Fig. 2�, i.e.,

�0* 
 �0�n. �29�

These two lowest levels can be treated as a new TLS.
Since only TLS’s with �0*�T contribute to the permittivity
�see Eq. �28��, this defines the renormalized lower cutoff

�0l � T�−n. �30�

Substituting this cutoff into integral Eq. �28� yields in the
limit T→0

� =
P�0

2

3
�

T�−n

W d�0

�0
�

−�

�

d�
�2Eg

��2 =
P�0

2

3
�ln�W/T� − n ln�1/��� .

�31�

Thus, due to the quadrupole interaction, we predict qualita-
tively a noticeable reduction of the TLS contribution to the
dielectric constant at low temperatures. We believe that this
reduction can explain the plateau in the temperature depen-
dence of the dielectric constant.

It follows from the above analysis that in the whole en-
ergy interval

�0* = � �0, �0 � nb ,

�0�n, �0 � nb .
� �32�

This renormalization results in a gap in the distribution of the
effective tunneling amplitude �0* of tunneling systems

P��0*� =�
P

�0*
, �0* � nb ,

0, nb�n� �0* � nb ,

P

�0*
, �0* � nb�n.� �33�

Using the latter result to estimate the dielectric constant tem-
perature dependence in the expression similar to Eq. �31�,
one can obtain the plateau in the temperature dependence of
the dielectric constant within the range nb�n�T�nb. At T
�nb one should use the standard tunneling model result
�28�, while at T�nb�n the resonant dielectric constant obeys
Eq. �31�. Thus, our qualitative arguments can explain the
behavior observed experimentally. In the following part of
this paper we investigate the two regimes of Eqs. �28� and
�31� and the crossover between them with the higher accu-
racy.

IV. PERTURBATION THEORY APPROACH

The renormalization of a tunneling amplitude �0 affects
the thermal and kinetic properties of the TLS ensemble and
provides a minimum energy splitting of TLS’s having zero
asymmetry �=0. In particular, the resonant susceptibility is
determined by similar resonant TLS’s with small asymmetry
�����0. Therefore, we will study the most relevant case,
i.e., �=0. The resonant permittivity we are interested in here
is determined by the ground state of the tunneling systems
with the energy difference between the ground and first ex-
cited states larger than the thermal energy. In this case the
contribution of higher excited states is insignificant because
due to an exponentially small probability of their occupation.
A positive contribution of a ground state to the dielectric
constant reflects the general fact that the ground state mini-
mizes the energy of the system. Thus, the external electrical
field aligns the ground state dipole moment along the field
direction. The susceptibility of excited states can be negative
as in the case of Eq. �27� and also in the case of TLS’s is
affected by the nuclear quadrupole interaction as we will
show below. Therefore, when the temperature becomes com-
parable or larger than energy splitting between ground and
excited states, TLS susceptibility becomes negligible. Thus,
a structure of the ground state is only important for the reso-
nant susceptibility of the system.

Next, we consider the effect of the quadrupole splitting on
the ground state of the tunneling system. In the case of van-
ishing asymmetry energy �=0 the Hamiltonian of the tun-
neling system can be represented in the form

FIG. 2. Two level configuration with splitted energy levels.
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H =
Ĥr + Ĥl

2
+ sz�Ĥr − Ĥl� − �0sx. �34�

The total wave function of a tunneling particle is a product of
the coordinate �pseudospin� wave function and the nuclear
one.

If the tunneling amplitude �0 is large, the ground state is
described by the wave function �ghyb whose coordinate part
is symmetric and the tunneling particles are shared equally
between the two wells. In this case one has �sx
1/2, �sz

0 and the energy of the nuclear quadrupoles is given by the
“mean” Hamiltonian

Ĥr + Ĥl

2
. �35�

This regime is called the hybridized one.
In the opposite limit of the small tunneling amplitude, i.e.,

in the localized regime, one can neglect the tunneling term sx

in Eq. �34� and the energy minimum corresponds to either

the ground state of the Hamiltonian Ĥl or to the ground state

of the Hamiltonian Ĥr. Then, the influence of the tunneling sx

term on the ground state is insignificant due to the strong
reduction in the effective tunneling amplitude �see Eq. �32��
because of the small factor �n. Let us find the crossover
between the hybridized and localized regimes.

In the hybridized regime the ground-state energy is

−
�0

2
+

1

2
�ghyb�Ĥr + Ĥl�ghyb , �36�

while in the localized regime it is

�gr�Ĥr�gr = �gl�Ĥl�gl . �37�

Let us introduce a parameter �* describing the ground-state
quadrupole energy difference between the two limiting re-
gimes. It is the reorganization energy corresponding to the
transition from the hybridized state to the localized one

�* = − �gl�Ĥl�gl +�ghyb� Ĥr + Ĥl

2
�ghyb� . �38�

Comparing Eqs. �36� and �37�, one finds that the hybridiza-
tion regime is realized if

�0 � 2�*, �39�

while in the localized regime this inequality changes its sign,
i.e.,

�0 � 2�*. �40�

Let n be the number of atoms of a TLS experiencing
nuclear quadrupole interaction. The parameter

b* = �*/n �41�

represents the reorganization energy per a tunneling atom.
Let us estimate the parameter b* for the case when the quad-
rupole interaction is described by Eq. �5�. One has

Ĥl = b�Ix
2 − I�I + 1�/3� , �42�

Ĥr = b��Ix cos � + Iy sin ��2 − I�I + 1�/3� . �43�

Then one can calculate the parameter b* by using Eqs. �38�,
�42�, and �43�. To be more specific, consider the case b�0
and integer spin I=1,2. The results of the numerical calcu-
lation of a single atom parameter b* in the model Eqs. �42�
and �43� for different rotation �mismatch� angles are repre-
sented in Fig. 3. One can see that the reorganization energy is
always comparable with the nuclear quadrupole interaction
energy.

In the hybridization regime �39� the quadrupole interac-
tion is a weak perturbation. Then, the multiplet structure
proves to be insignificant when one calculates the contribu-
tions of these tunneling systems to the susceptibility. In other
words, the latter can be calculated within the standard TLS
approach.

However, in the localized regime Eq. �40� a multiplet
structure is the decisive feature. In this regime a renormal-
ization of the tunneling amplitude �32� becomes important. If
a tunneling amplitude �0 is small enough, the ground state
will be a superposition of the ground states in the isolated
left and right wells �see Fig. 2�. Let us estimate the upper
limit of �0 below which the two-level approximation for the
ground state is still valid.

The nuclear-spin ground state in each well can be treated
as nondegenerate �see Sec. II B�. One can approximately
construct the ground state and the lowest excited state of the
tunneling system as a superposition of the unperturbed
ground states in the two wells. The contrubution of higher
excited states are neglected. This is justified by calculating
their contribution to a lowest-order perturbation theory. We
estimate the correction factor c for the ground-state ampli-
tude as

c = 1 − �
i�gr

�0
2��gl�i�2

�Ei − Egl�2 , �44�

where i labels all states of the right well.
We determine the parameters of the regime for which the

second term can be neglected as follows. The lowest excited
states in each well are separated from the ground state by
some characteristic energy b���0, where �0 is a frequency
of the nuclear quadrupole resonance. The next group of

FIG. 3. Effective interaction energy b* of nuclear spins vs angle
between the nuclear quantization axis in two wells.
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states is separated by the energy gap �2b. The vast majority
of states have energies exceeding that for the ground state by
the energy ��nb. Because of the large statistical weight,
these states provide the main contribution to Eq. �44�. There-
fore we may replace the denominator in Eq. �44� by �. Then,
the sum of the overlap factors ��gl � i�2 in the numerator can
be well approximated by unity. The requirement that the sec-
ond term in Eq. �44� is small results in the condition

�0 � 2� . �45�

This condition is weaker than Eq. �40�. Therefore, c
1 is
justified when Eq. �40� is fulfilled and one can ignore the
excited states in both wells.

Thus we can specify two domains of system parameters.
One is given by large tunneling amplitudes �0�2�*, where
the nuclear quadrupole interaction can be ignored. The other
is given by small tunneling amplitudes �0�2�*. In the latter
case we can restrict our consideration to the pair formed by
the two lowest-energy states. These eigenstates are superpo-
sitions of the ground states in the left and right potential
wells. A nonperturbative approach developed in the next sec-
tion, where nuclear spins are replaced with oscillators, leads
to the similar results only with some minor deviations.

At this point we turn to the analysis of the dielectric con-
stant using the structure of TLS ground states described
above. For an improved analysis, it is convenient to write the
resonant dielectric constant Eq. �22� in the following form:

� =
�0

2

3 �
a

�Pa��0,�;T��a��0 = 0,�� +
�0

2

3 �
a

��Pa��0,�;T�

− Pa��0,�;0�� � ��a��0,�� − �a��0 = 0,���

+
�0

2

3 �
a

�Pa��0,�;0���a��0,�� − �a��0 = 0,��� . �46�

The logarithmic temperature dependence, often serving as an
evidence for the TLS effects,3 comes entirely from the first
term. This is due to logarithmically uniform distribution of
the tunneling amplitudes �2�. The logarithmic divergence of
the first term is suppressed for TLS’s with the energies of the
order of the thermal energy due to the compensation of a
positive contribution from the ground state by negative con-
tributions of excited states �see below�. The third contribu-
tion is a temperature-independent constant. We will ignore it
as a background correction to the susceptibility which does
not affect its temperature dependence.

In the absence of the nuclear quadrupole interaction the
important first and second terms can be evaluated. One can
reexpress the first “logarithmic” term as

�log =
P�0

2

3
�

0

W d�0

�0
tanh��0/�2T�� �47�

and the second “thermal” contribution as

�T =
P�0

2

3
�

0

� d�0

�0
�

0

�

d��tanh���2 + �0
2

2T
	 − 1�

� � �0
2

2��2 + �0
2�3/2 − 
���	 . �48�

In the second integral the upper cutoff for the tunneling am-
plitude is replaced by � because the integrand decreases ex-
ponentially at large energies.

The first contribution can be written as

�log =
P�0

2

3
�ln� W

2T
	 − I1� ,

I1 
 �
0

� ln�x�dx

cosh2�x�

 − 0.82. �49�

The “thermal” contribution is given by the dimensionless
integral

�T =
P�0

2

3
�

0

+� dx

x
�

−�

+�

dy�tanh��x2 + y2 − 1��

� �1

2

x2

�x2 + y2�3/2 − 
�y�	 . �50�

It vanishes because the upper limit of the integration over
x has been replaced by �. This can be demonstrated by us-
ing, for instance, the trigonometric substitution x
=� cos��� ,y=� sin��� and evaluating the integral over �
first.25

Below we calculate the susceptibility of tunneling sys-
tems for different temperature regimes. According to the
above analysis �see Eqs. �39� and �40�� it is convenient to
divide all tunneling systems into two parts depending on
either �0�2�* or �0�2�*.

In the first case �0�nb* the effect of the nuclear quadru-
pole interaction is negligible and one can use the standard
two-level approximation in order to estimate the contribution
from these TLS’s into the susceptibility as

I1 = �
2�*

W d�0

�0
tanh�E��0,0�

2T
	 . �51�

Consider temperatures T�2�*. With E��0 ,0�=�0 one can
estimate this integral as follows �see Eq. �49��

I1 
 ln
W

2T
−

�*

T
+ 0.82. �52�

The second term on the right-hand side is small in compari-
son with the first one and can be omitted. If the temperature
is low T�2�*, the tangent in Eq. �51� equals unity and we
have

I1 = ln
W

nb*
. �53�

Now consider the second group of tunneling systems for
which �0��*. For them the multiplet structure becomes im-
portant and we can confine ourselves to ground state levels
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of the multiplet in each well. These levels are coupled by the
tunneling amplitude �0�n. Then one has

I2 = �
0

2�* d�0

�0
tanh��0�n

2T
	 . �54�

Assume that T�2�*�n. Then

I2 
 ln
nb*

T/�n . �55�

This expression should be added to the term I1 given by Eq.
�53�, also giving a contribution the temperature region con-
sidered. Thus, the total integral is given by

I1 + I2 = ln
W�n

T
. �56�

In the intermediate temperature range 2�*�T�2�*�n Eq.
�54� is inapplicable strictly speaking. However, we expect
that the contribution to the dielectric permittivity within the
range 2�*��0�2�*�n is small because this range corre-
sponds to the gap in the distribution of effective tunneling
amplitudes �Eq. �33��. In addition, the lower limit of the
low-temperature dielectric constant �56� coincides with the
upper one of the dielectric constant in the high-temperature
range �Eq. �52��. Thus, in the whole temperature region one
has

res 
 �P�2/3�ln�W/T�, 2�* � T ,

res 
 �P�2/3�ln�W/2�*�, 2�*�n � T � 2�*,

res 
 �P�2/3�ln�W�n/T�, T � 2�*�n. �57�

Our perturbation theory analysis is a phenomenological one
and cannot be exact because we do not know the nuclear spin
Hamiltonian. However, it is expected that the main qualita-
tive features of the systems behavior are reproduced. For a
more quantitative and non-perturbative analysis given in the
next section, we replace nuclear spins with oscillators and
investigate the tunneling amplitude behavior in such a toy
model.

V. TOY MODEL

Since the nuclear spin interaction in the right and left
wells is unknown, we consider instead a toy model in which
nuclear spins are replaced by classical oscillators. This
“bosonization” approach to nuclear spins is justified when
one deals with the low energy states of many spins. In par-
ticular, it has been used by Prokofev and Stamp to investi-
gate the nuclear spin interaction effect on the large spin
tunneling.26 We consider a symmetric TLS ��=0� character-
ized by a coherent tunneling amplitude �0 and coupled to n
oscillators representing the nuclear spins of n tunneling at-
oms forming the TLS concerned. All oscillators have the
frequency � and the mass M. These n oscillators are linearly
coupled to the TLS and have the shifted equilibrium posi-
tions xi= ±x0 /2, i=1, . . . ,n when the TLS occupies the right
or left wells, respectively. Then the Hamiltonian of the sys-
tem can be expressed as

Ĥ = − �0sx + �
i=1

n � pi
2

2M
+

M�2xi
2

2
	 − szM�2x0�

i=1

n

xi.

�58�

The spin values sz= ±1/2 stand for the TLS residing in the
right or left wells, respectively. The models similar to Eq.
�58� have extensively been studied within the polaron theory
�see e.g., Refs. 27 and 28, and references therein�. Following
the standard approach one can determine an approximate
ground state of the problem by minimizing the “classical”
part of Eq. �58�. This excludes the kinetic energy term of the
oscillators. The “classical” energy of the system can be ex-
pressed as

Ecl = −
1

2
��0

2 + �M�2x0�
i=1

n

xi	2

+ �
i=1

n �M�2xi
2

2
	 ,

�59�

where the spin-Hamiltonian has been replaced by its ground-
state energy, thereby using the relationship Eground

=− 1
2
��2+�0

2 for the Hamiltonian −�sz−�0sx. Oscillators are
treated classically. This is justified when their number is
large, i.e., n�1. We suppose that this regime is applicable
here.

The total energy can be minimized with respect to the
oscillator coordinates xi. Then, one has for the derivatives of
the classical energy �59� with respect to all coordinates

0 =
�Ecl

�xi
= −

�M�2x0�2X

2��0
2 + �M�2x0X�2

+ M�2xi, X = �
i=1

n

xi.

�60�

These equations can be solved analytically by taking into
account that at the energy minimum all equilibrium coordi-
nates xi are identical, that is xi=X /n. The following relations
are found:

�0 � 2�*:X = 0,

�0 � 2�*:X = ±
nx0

2
�1 − � �0

2�*
	2

,

�* = nb*, b* = M�0
2x0

2/2. �61�

The quantity b* has been introduced to describe the change
in the oscillator energy induced by its interaction with TLS.
For spins, this energy is equivalent to the quadrupole split-
ting energy b* �see Eq. �41��.

Thus, depending on the relationship between the oscillator
energy �* and the tunneling amplitude �0, a TLS ground
state can have different structures. When tunneling is stron-
ger than the TLS interaction with oscillators, i.e., when �0
�2�*, the tunneling atoms are distributed equally between
the two wells and all oscillators have their energy minimum
at xi=0. This state is energetically most favorable because an
identical internal structure for the left and right states mini-
mizes the energy of the system. In other words, the tunneling
of TLS is so fast that the oscillators see it in its average
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position in both wells simultaneously. This state is equivalent
to the hybridized state considered previously in Sec. IV.

In the opposite case of weak tunneling �0�2�* the sym-
metry between the right and left wells is broken because of a
strong displacement of oscillators. In this case the system has
two energy minima depending on the sign in the definition of
the displacement X in Eq. �61�. For the nuclear quadrupole
interactions, these two states are represented by the nuclear
spin configurations minimizing the energy of TLS’s localized
either in the right or left wells.

Both the energy minima are still coupled by tunneling, but
the tunneling amplitude is much weaker then in the case of
vanishing oscillator displacements. Consider the non-
adiabatic tunneling regime applicable to the nuclear spins.26

In this case we may express the effective tunneling ampli-
tude �0* as the product of the coherent tunneling amplitude
�0 and the overlap integral �l �r of the left and right states of
the environment, i.e.,

�0* = �0�l�r . �62�

In order to estimate the overlap integral, one can use the
harmonic approach. We will use it for the wave functions in
the left and right wells and consider the case of zero tem-
perature, reasonable if T�2�*. The domain T
2�*, where
excited states are important, is relatively narrow at the large
number of oscillators n and can be approximately ignored
due to a logarithmically weak dependence of the dielectric
constant on T.

In the harmonic approach one may expand the energy �59�
near the local minima given by �61� up to the second order in
a coordinate displacement. This expansion can be written as

Ecl�X� 
 − �* +
�*

2
�1 − � �0

2�*
	2�

+
1

2�
i,j

Aij�xi − X/n��xj − X/n�;

Aij =
�2Ecl

�xi�xk
=

4b*

x0
2 �
ij −

1

n
� �0

2�*
	2� , �63�

where 
ij is the Kronecker symbol. The expansion is written
near the potential minimum at the right well, while for the
left well the sign of X should be changed to the opposite.

The harmonic part of the Hamiltonian �63� can be repre-
sented by n independent modes including the symmetric
mode

u =
1
�n

�
i=1

n

xi, �s = �0�1 −
�0

2

�*
, �64�

and n−1 asymmetric, degenerate modes �

u� = �
i=1

n

ci
�xi, �a = �0, �

i

ci
� = 0, �

i

�ci
��2 = 1.

�65�

A factor 1 /�n is introduced in Eq. �64� to conserve the com-
mutation rules between the coordinate and momentum opera-

tors. Only the symmetric mode interacts with the tunneling
motion between the right and left minima, while asymmetric
modes remain unchanged and can therefore be ignored.
Therefore the overlap integral in Eq. �62� is given by the
overlap between two ground-state wave functions of the
symmetric harmonic modes with the mass M and the fre-
quency �s, and the equilibrium positions shifted by ±�X� /�n
�Eq. �61�� from the origin. Using the Gaussian wave func-
tions for oscillator ground states, one can express this inte-
gral in the form

�l�r = exp�−
M�X2

n�
	 = exp�−

nM�x0
2

�
�1 − ��0

�*
	2�3/2� .

�66�

This result can be used to characterize approximately the
tunneling of a TLS consisting of n atoms coupled to the
nuclear spins. The overlap integral for a single oscillator i is

� = �li�ri = exp�−
M�x0

2

�
	 �67�

in analogy to the single-spin overlap integral introduced be-
fore. The parameter �* can be represented by the single atom
quadrupole splitting energy multiplied by the number of at-
oms in a TLS, i.e., by

�* 
 nb*. �68�

Thus we may use the following approximate relationship be-
tween the initial �coherent� tunneling amplitude �0 and the
effective tunneling amplitude �0*:

�0* 
 �0 exp�− n ln�1/���1 − ��0

�*
	2�3/2� . �69�

In the following we will use this relationship in order to
describe the dielectric response of TLS.

The tunneling amplitude distribution modified by Eq. �69�
has a dip �pseudogap� due to sharp decrease in �0* when the
coupling strength �0 becomes smaller than the effective re-
arrangement energy �*=nb*. We can define the modified dis-
tribution of TLS’s over �0* for �0*��* by using

P��0*� � �
0

� d�0

�0
� 
��0* − �0

�exp�− n ln����1 − ��0

�*
	2�3/2�� �70�

=
1

�0*

1

1 + 3n ln�1/��� �̃0

�*
	2�1 − � �̃0

�*
	2

, �71�

where the amplitude �̃0 is an implicit function of �0* defined
by Eq. �69�. In the case of a large tunneling amplitude �0*
��* the distribution is logarithmically uniform because �0
=�0* in that regime.

For the proof of Eq. �71� we employ
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�a − ��x�� =
1

���x̃�

�x − x̃� , �72�

where x̃ is the solution of equation a−��x�=0. We identify

a = �0*, x = �0, �73�

��x� = x exp�− n ln����1 − � x

�*
	2�3/2� �74�

and derive

����0� = exp�− n ln����1 − ��0

�*
	2�3/2�

� �1 + 3n ln����1 − ��0

�*
	2�1/2��0

�*
	2� .

�75�

By substituting Eq. �69� into �75�, we obtain

����0� =
�0*

�0
�1 + 3n ln����1 − ��0

�*
	2�1/2��0

�*
	2� .

�76�

When this expression is put into Eq. �72� and then into Eq.
�70�, we obtain

�
0

� d�0

�0

1

�0*

�0
�1 + 3n ln����1 − ��0

�*
	2�1/2��0

�*
	2�

�0=�̃0


��0 − �̃0�

which coincides with Eq. �71�. The modified distribution of
tunneling amplitudes W�ln��0*��= P��0*��0* is shown in
Figs. 4 and 5.

We have chosen a representative value of �=1.23 rad for
the rotation angle �see Eq. �9�� in a field of axial symmetry
bIa

2 and b�0. In accordance with Eq. �9� and Fig. 3 the
effective interaction parameters are �=1/3 and b*
=0.33 mK for I=1, and �=1/3 and b*=0.85 mK for I=2.
The nuclear quadrupole effect shows up at an energy which
is about three times larger for I=2 then for I=1.

One can see from Figs. 4 and 5 that the dip in the distri-
bution of tunneling amplitudes appears in the domain
��* exp�−n ln�1/��� ,�*�. This becomes sizable for n=4. A
similar behavior is found for the other values of the overlap
integral �. This dip causes a change of the temperature de-

pendence of the resonant susceptibility as discussed below.
The resonant dielectric susceptibility of the TLS ensemble

can be estimated from the “logarithmic” integral


 
 �
0

W d�0*

�0*
P��0*�tanh��0*

2T
	 . �77�

By integrating the distribution with the dip we obtain the
results shown in Figs. 6 and 7.

The quadrupole interaction parameter b=1 mK and the
rotation angle ��1.23 rad are the same as before. One no-
tices a plateau in the dielectric constant separating two loga-
rithmic temperature dependences characterized by the same
slope at sufficiently large number n of atoms per single TLS.
In the experiment15,16 a plateau is found for T�5 mK, while

FIG. 4. The dip in the logarithmic TLS distribution over tunnel-
ing amplitudes due to the nuclear quadrupole interaction. The loga-
rithmic density of states P��0

*��0
* is shown for I=1 and different

numbers n of tunneling atoms. The case n=0 corresponds to the
lack of the interaction. The rotation angle is set to 1.23 rad.

FIG. 5. The dip in the logarithmic TLS distribution over tunnel-
ing amplitude due to the nuclear quadrupole interactions. The loga-
rithmic density of states P��0*��0* is shown for I=2 and different
numbers n of tunneling atoms per TLS.
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the low-temperature edge of the plateau has not been ob-
served because it requires much lower temperature than
those reached experimentally. A temperature of 5 mK gives a
reasonable estimate of the quadrupole interaction energy.

In all cases the plateau begins at the characteristic maxi-
mum temperature

Tmax � �*, �78�

and extends down to the characteristic minimum temperature

Tmin � �*�n. �79�

For T�Tmin the behavior of the standard tunneling model is
restored and the dielectric constant shows a logarithmic tem-
perature dependence with the same slope as at high tempera-
tures T�Tmax. The logarithmic width of the plateau
ln�Tmax/Tmin� is thus directly proportional to the number of
atoms per single TLS.

We expect that in the plateau regime the dielectric con-
stant can be controlled by the external magnetic field. In fact,
the overlap integral of the nuclear spin states in the left and
right well can be affected by the magnetic field. This effect is
discussed in the next section.

VI. EFFECT OF THE EXTERNAL MAGNETIC FIELD
ON THE ANOMALOUS DIELECTRIC PROPERTIES

AT ULTRALOW TEMPERATURES

The application of the external magnetic field affects the
orientation of nuclear magnetic moments. When Zeeman
splitting becomes comparable with the nuclear quadrupole
interaction, the quantization axes in both potential wells of
the given TLS are aligned with the direction of the magnetic
field. Accordingly, the mismatch of nuclear quadrupole axes
will be reduced by the field and the overlap integral of
nuclear quadrupole states in different wells increases and ap-
proaches unity in the high-field limit. The effective interac-
tion constant b* vanishes in that case. Thus, high magnetic
field reduces the influence of the nuclear quadrupole interac-
tion and the dielectric constant behaves similar to the stan-
dard tunneling model. In this section we estimate the effect
of the external field on the low-temperature resonant dielec-
tric constant by using the simple oscillator and axially sym-
metric models for the nuclear quadrupole interaction formu-
lated in previous sections.

Consider the effect of the external magnetic field on pa-
rameters characterizing the mismatch of the nuclear spins in
the right and left wells. The set of parameters necessary to
characterize the given TLS includes the overlap integral for
single nuclear spin �, the number n of nuclear spins involved
into the tunneling process, and the characteristic nuclear spin
interaction energy b* �see Eq. �69��. The number n is field
independent, while the overlap integral � and the single atom
interaction constant b* are subjected to the changes with the
external field. We investigated numerically the change of the
parameters � and b* in an external field for the axially sym-
metric quadrupole interaction. The nuclear spins are I=1 and
I=2 with the same angle cos���
1/3 and the nuclear quad-
rupole interaction constant b=1 mK as has been assumed in
previous sections. The sign of the nuclear quadrupole inter-
action constant b�0 is chosen as previously. Therefore, the
ground state has the zero spin projection onto the quantiza-
tion axis. The zero-field dielectric constant for these regimes
is shown in Figs. 6 and 7. We have calculated numerically
the dependence on the external magnetic field B of the over-
lap integral between the nuclear spin ground states in the left
and right wells. Also we have estimated numerically the de-
pendence of the effective interaction constant on the mag-
netic field. The calculations have been made as follows. The
quadrupole Hamiltonian is chosen in the form b�Ia�2 with a
the left-well axis a=x and the right-well axis rotated by the
angle �=1.23 rad in the x-y plane with respect to the x di-
rection. Then the Zeeman term describing the interaction of
the nuclear magnetic moment with magnetic field, is aug-
mented to the Hamiltonian �5�. The magnetic field with a
fixed absolute value B has been generated in the random
directions. The overlap integral of ground states � as well as
the effective interaction constant b* have been computed and
then averaged over �104 realizations of the random field.
The results of calculations are shown in Figs. 8 and 9.

We express the magnetic field in units of the Zeeman
energy splitting �mK�. In fact, it is unclear which nuclear
spins are most important in the experiment. A reasonable
scale we use for estimates is about 1 mK spin splitting in a
field of B�5 T.

FIG. 6. Resonant dielectric constant affected by the nuclear
quadrupole interaction in the case of the nuclear spin I=1.

FIG. 7. Resonant dielectric constant affected by the nuclear
quadrupole interaction in the case of the nuclear spin I=2.
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As is clear from Figs. 8 and 9, the overlap integral in-
creases monotonously with the field and approaches unity
when �B�1 mK. The effective interaction constant b* van-
ishes in the same limit. Therefore, the application of mag-
netic field results in the disappearance of the plateau in the
temperature dependence of the dielectric constant and the
standard logarithmic dependence is restored. To examine this
effect, we compute the temperature dependence of the TLS
resonant dielectric constant at various fields. We have used
Eq. �77� with Eq. �69� for the effective tunneling amplitude
and input parameters � and b* obtained from our field-
dependent calculations �Figs. 8 and 9�.

The field-dependent dielectric constant is shown in Figs.
10 and 11 for n=4 atoms per single TLS and nuclear spins
I=1 and I=2, respectively. The field effect is similar in both
cases. However, a stronger field is needed to suppress the
nuclear quadrupole interaction in the case of larger spin I
=2.

We can interpret the field dependence as follows. A rela-
tively small field �B�0.2 mK and B�1 T affects the reso-
nant dielectric constant only for low temperatures T
�5 mK. At higher temperatures the field effect cannot be
viewed beeing a small correction. The further increase of the
field leads to linear reduction in the width of the plateau from
both the high- and low-temperature sides. When the field is
sufficiently high �B	1 mK, and B	5 T, it competes with
the nuclear quadrupole splitting and the plateau narrows by
orders of magnitude and almost vanishes at �B�4 mK.

Then the standard tunneling model behavior is restored. It
would be very interesting to perform measurements of the
dielectric constant at very low temperatures, i.e., for T
�5 mK and a strong magnetic field around 10 T. In this case
the plateau in the dielectric constant should disappear. We
hope that our work will stimulate such measurements.

VII. RELATIONSHIP OF THE MODEL TO REAL SYSTEMS

In this section we address two questions. First question is
whether our choice of parameters for the nuclear quadrupole
interaction is justified and these parameters can be used to fit
the existing experimental data. The second question is re-
lated to glasses having no �or negligable� nuclear quadrupole
interaction. These glasses �Mylar, SiO2� should not show any
anomalies in the dielectric constant temperature dependence.
The experimental data related to these glasses are discussed
below.

According to the previous consideration we expect that
the plateau observed experimentally in the temperature de-
pendence of the dielectric constant for T�5 mK is due to the
fact that the parameter nb �see Eq. �6�� amounts to a value of
5 mK. Experimentally, a qualitative change in the TLS reso-
nant dielectric susceptibility is seen in the temperature range
of T�5–10 mK �see Refs. 13, 15, and 16�. There is no
problem to intepret the saturation behavior using our formal-

FIG. 8. The effect of the magnetic field on the overlap integral.
The 1 mK Zeeman splitting approximately corresponds to field 5 T.

FIG. 9. The effect of magnetic field on the effective single-atom
interaction constant b*.

FIG. 10. Effect of a magnetic field on the dielectric constant in
the case of spin I=1 and the number of atoms per TLS n=4.

FIG. 11. The effect of magnetic field on the dielectric constant
in the case of spin I=1 and the number of atoms per TLS n=4.
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ism within the experimental accuracy choosing properly the
fitting parameters.21 However, the question arises whether or
not the nuclear quadrupole interaction is sufficiently strong
to display itself in this temperature range. We also expect
that glasses lacking the nuclear quadrupole interaction
should not show any deviations from the standard model.

The nuclear quadrupole interaction constant b is defined
by Eq. �6�. The values of the electric field gradient are close
to each other in different glasses, while the nuclear quadru-
pole moments Q differ strongly for different elements, lead-
ing to the broad distribution in the observed energies of the
nuclear quadrupole resonance ��0�b Ref. 29. The data for
the chemical elements present in glasses for which the low
temperature measurements have been made are summarized
in Table I.

As one can see from Table I, the typical range of nuclear
quadrupole interactions for Na, K, Al, Ba nuclei is around
but slightly less than 1 mK. This interaction should be larger
in glassy materials because the above-mentioned elements
are bound with nonmetal atoms there. The covalent and ionic
bonds are expected to be stronger than metallic bonds, in
particular, due to the absence of screening. Therefore, their
binding energy and, accordingly, the electric field gradient
affecting the nuclear quadrupole interaction are expected to
be larger in these glasses.

The experimental data indicating the strong changes in
low-temperature dielectric and, probably, acoustic properties
are summarized in Table II. The saturation in a temperature
dependence of the dielectric constant below the temperature
Tsat takes place in all materials containing Na, K, Al, or Ba
which have relatively high quadrupole moments �see Table
I�. The high saturation temperature observed in BaO-Al2O3
-SiO2 is most likely due to large values of the Ba and Al
quadrupole moments compared with the other elements in
Table I.

The absence of the low-temperature saturation in the di-
electric constant of Mylar is in the full agreement with the
theory. Indeed, Mylar is an organic polymer composed of C,
H, and O atoms, for which the most stable isotopes have
vanishing nuclear quadrupole moments. Similarly according
to the most recent experimental data34,35 there is no satura-
tion in the temperature dependence of the sound velocity in

a-SiO2 having no nuclear quadrupole interaction. A satura-
tion in the low-temperature dependence of the dielectric con-
stant has also been observed in SiOx which poses a puzzle.
One possible explanation is that unpaired electrons may be
present in this material.37 They act like nuclear quadrupole
moments in that aspect.

The problem of interpretation of the acoustic experiment36

is a knotty one. If the same two-level systems control the
acoustic and dielectric behaviors of the glasses, the satura-
tion should take place below the same Tsat both for the di-
electric constant and for the sound velocity.3 On one hand,
there is no saturation in the logarithmic temperature depen-
dence in �-SiO2 having no nuclear quadrupoles in agreement
with the theoretical expectations. It is difficult, however, to
understand the absence of any deviations from the standard
tunneling model for the sound velocity measurements in
BK7 down to 5 mK Ref. 36. Although the major contribution
to the dielectric constant and the sound velocity can be due
to different subsets of TLS’s possessing either larger dipole
moments or stronger elastic coupling to lattice vibrations,38

there must be some amount of TLS’s containing quadrupole
nuclei and contributing to both dielectric and acoustic prop-
erties. These TLS’s should lead to an anomalous acoustic
behavior. One possible explanation of the absence of any
saturation effect is that the measurements have been made
for T�5 mK, while Tsat
5 mK �see Table II�. An extension
of acoustic measurements in BK7 to lower temperatures
should help to clarify the puzzling situation.

VIII. DISCUSSION AND CONCLUSIONS

In this work we have considered various aspects of the
effect of the nuclear quadrupole interaction on the low-
temperature properties of glasses. The significance of this
interaction has been pointed out by Würger, Fleischmann,
and Enss.17 In the present paper this interaction has been
employed to characterize the resonant dielectric susceptibil-
ity of amorphous solids at ultralow temperatures T�5 mK
where major deviations from the predictions of the tunneling
model are observed. The analysis of the typical interaction
parameters shows that the nuclear quadrupole interaction is
strong enough to explain these deviations. To our knowledge
the materials having no nuclear quadrupole interaction and

TABLE I. Nuclear spin, magnetic moment, quadrupole moment,
and frequency of nuclear quadrupole resonance for different chemi-
cal elements, possibly participating in the tunneling.

Nucleus I �N Q �barn� ��0 �mK�

1H 1/2 4.837 0 0

D= 2H 1 1.213 0.00286 0.7�10−2 Ref. 18
12C 0 0 0 0
16O 0 0 0 0
23Na 3/2 2.863 0.104 0.14 �Na�, 0.4 �NaF� Ref. 30
27Al 5/2 4.309 0.147 0.9 in Al Ref. 31
29Si 1 /2 −0.962 0 0
29K 3/2 0.505 0.0585
135Ba 3/2 1.82 0.160 0.86 �BaBiO3� Ref. 32

TABLE II. Saturation temperature below which the dielectric
constant  and/or sound velocity v become temperature
independent.

Glass Nuclei Tsat �mK� Exp. Refs.

Mylar �C10H8O4�n No �1 mK  15

5% K-SiO2 K 4 mK  15

10% K-SiO2 K 4 mK  15

BK7 �Ref. 33� Na 5 mK  15

SiOx No 8 mK  15

BaO-Al2O3-SiO2 Al,Ba �5 mK  16

a-SiO2 No �2 mK v 34 and 35

BK7 Na �5 mK v 36
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no unpaired electrons, i.e., the organic polymer Mylar,5 and
�-SiO2 Refs. 34 and 35 do not show the deviations from the
logarithmic temperature dependence of a dielectric constant
or a sound velocity down to the lowest temperatures acces-
sible experimentally around T�1 mK. These results support
our theory.

Our theory uses the fact that the nuclear quadrupole inter-
action is generally different in the right and left wells of a
two-well tunneling system. Therefore, it affects the coherent
coupling between the wells. The overall quadrupole interac-
tion effect is governed by the relative magnitude of two pa-
rameters, i.e., �*=nb* which is the characteristic nuclear
quadrupole interaction strength of TLS’s consisting of n at-
oms and the tunneling matrix element �0 between the left
and right wells. When �0��*, the nuclear quadrupole inter-
action can be neglected. At smaller tunneling amplitude �0
��* the effective tunneling coupling is reduced exponen-
tially due to the small overlap between different nuclear spin
eigenstates in different wells. This is similar to the polaron
effect and we use this similarity in order to suggest a solv-
able toy model based on the replacement of the nuclear spins
with oscillators.

The resonant dielectric constant is determined by the con-
tribution of all resonant TLS’s with a characteristic tunneling
amplitude of order of energy, which varies from the thermal
energy to some characteristic maximum value T��0�W.
The deviations from the standard tunneling model are ob-
served at temperatures comparable with the nuclear quadru-
pole interaction, i.e., for T��*. They show up as a
temperature-independent plateau due to the breakdown of
coherent tunneling in the energy range T��0��*, where
resonant TLS’s do not exist. Therefore, TLS’s with tunneling
amplitudes belonging to this domain do not contribute to the
resonant dielectric constant. Note that the hypothesis of the
breakdown of coherent tunneling below T�10 mK has been
proposed by Enss and Hunklinger39 assuming, however, that
it is due to the interaction between TLS’s. Our work suggests
the valuable realization of their hypothesys.

The results agree qualitatively with a number of low-
temperature dielectric measurements made by different
groups. To obtain quantitative agreement for the temperature
at which the plateau forms, we have to assume that the rel-
evant two-level systems consist of, at least, four atoms �n
=4�. This assumption agrees qualitatively with the TLS
model based on the renormalization group theory12 and is in
line with molecular dynamics studies of glasses.22

At very low temperatures T�Tmin �Tmin�0.1 mK� the
plateau in the resonant dielectric constant should go over into
a logarithmic temperature dependence characterized by the
same slope dres /d ln�T� as found at high temperatures, i.e.,
for T�Tmax��*. Therefore, it is worth while attempting an
experimental observation of this behavior. It is unclear
whether it is possible to perform measurements at such low
temperatures at present. A comparison of the measurements
with the theory can be used to estimate the number n of
tunneling atoms involved into single TLS because the loga-
rithmic width of the plateau ln�Tmax/Tmin� is approximately
equal to n.

The nuclear quadrupole interaction should affect the
sound velocity since it enters its resonant part in the same

manner as to the resonant dielectric susceptibility. Although
it is clear from available experiments that there is a differ-
ence in the nature of TLS’s contributing to dielectric and
acoustic properties, there are observed correlations between
the two responses both in the hole burning and nonequilib-
rium dielectric measurements.3,5,40 We propose to extend
acoustic measurements of glasses possessing atoms with
nuclear quadrupole moments to lower temperatures in order
to search deviations in the temperature dependence of a
sound velocity. The most promising candidates are those ma-
terials in which the plateau in the dielectric constant is seen,
including BK7, 10% K-SiO2, and BaO-Al2O3-SiO2 glasses
�see Table II�.

We have also analyzed the dependence of the resonant
dielectric constant on the external magnetic field. We show
that a high magnetic field B�5–10 T affects nuclear spins
stronger than the nuclear quadrupole interaction and there-
fore will restore coherent tunneling. This is because the
nuclear spin states in the right and left wells get aligned
parallel to the field. We have performed the model calcula-
tions of the dielectric constant in a magnetic field by com-
bining numerical simulations for the behavior of a single
spin affected by both a quadrupole interaction and an exter-
nal field. The experimental verification of our theory can be
made measuring the dielectric constant in the strong external
magnetic field, which should eliminate the temperature inde-
pendent plateau and restore the logarithmic temperature de-
pendence.

To our knowledge, most of experimental studies of the
magnetic field effect on the dielectric constant have been
performed at relatively high temperatures, i.e., for T
�10 mK.16 These studies show certain similarities and also
distinctions compared to our predictions. The major changes
in the dielectric constant are observed at T�5 mK. The ap-
plication of magnetic field leads to an increase in the dielec-
tric constant in agreement with expectations. At a certain
magnetic field the dielectric constant of the standard tunnel-
ing model is restored. However, the change in the dielectric
constant does not show a monotonous dependence on the
magnetic field strength. A relatively strong effect is observed
at very small fields �for T�30 mK and B�0.1 T�. So, the
behavior of the system is more complicated in this tempera-
ture range. Perhaps, the relaxational contribution to the di-
electric constant is still significant there. Then, both the
phonon-stimulated relaxation41 and the interaction-induced
relaxation42 of TLS’s could be affected by an external mag-
netic field and our analysis would not be applicable. The
experiments at lower temperatures T�5 mK can test the
model proposed here and can be used to characterize the
internal structure and nuclear quadrupole interaction for a
single TLS.
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