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The conductance of an open quench-disordered two-dimensional �2D� electron system subject to an in-plane
magnetic field is calculated within the framework of conventional Fermi liquid theory actually applied to a
three-dimensional system of spinless electrons confined to a highly anisotropic �planar� near-surface potential
well. Using the calculation method suggested earlier �Phys. Rev. B 71, 125112 �2005��, the magnetic field
piercing a finite range of an infinitely long laterally confined system of carriers is treated �technically� as
introducing the additional highly nonlocal scattering region which separates the circuit thereby modeled into
three parts—the system as such and two perfect leads. The transverse quantization spectrum of the inner part
of the electron waveguide thus constructed can be effectively tuned by means of the magnetic field, even
though the least transverse dimension of the waveguide is small compared to the magnetic length. The initially
finite �metallic� value of the conductance, which is attributed to the existence of extended modes of the
transverse quantization, decreases rapidly as the magnetic field grows. This decrease is due to the mode
number reduction effect produced by the magnetic field. The closing of the last current-carrying mode, which
is slightly sensitive to the disorder level, is suggested as the conceivable origin of the magnetic-field-driven
metal-to-insulator transition widely observed in 2D systems.
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I. INTRODUCTION

The conduction properties of low-dimensional electron
and hole systems with the disorder of different origin have
long been the subject of active research. Investigations into
such objects of mesoscopic size have currently become par-
ticularly intensive in view of their applied importance �semi-
conductor heterostructures, quantum dot devices, etc.�, on
the one hand, and due to the intriguing uncommonness of the
obtained results, on the other. One of the most puzzling phe-
nomenon which has not as yet been understood in full mea-
sure is the existence of conducting phase of two-dimensional
�2D� systems of carriers �the extensive bibliography on the
subject can be found in Refs. 1–3�. The apparently observed
transition of such systems from insulating to conducting state
evidently contradicts the common view stemming from the
well-known scaling theory of localization.4

Of particular concern among other observed intriguing
phenomena is the behavior of the conductance of two-
dimensional systems subjected to the parallel magnetic field.
Such a field of moderate strength was systematically ob-
served to result in an unexpectedly large reduction of the
conductance of 2D heterostructures, driving ultimately the
test system from conducting to insulating state.5–9 It is cur-
rently still debatable which physical mechanism is mainly
responsible for this surprising effect.

Since nowadays many of the researchers adhere to the
opinion that the one-parameter scaling approach is not justi-
fied in the experiments �see, e.g., Refs. 3 and 10�, it seems
opportunely to apply to the approaches based on the assump-
tions different from those intrinsical to the scaling theory.
Specifically, instead of thinking of the initial states of carriers
to be Anderson localized, with possible next delocalization

due to some dephasing factors, one can start from the ini-
tially clean �perfect� system whose states, being fully coher-
ent, are extended �if any�. The evolution of the conductance
or other parameters should then be appropriately traced, as-
suming some random and/or regular fields to be incorporated
perturbatively.

The above formulated approach was recently employed
for calculating the conductance of strictly 2D electron gas in
restricted geometry,11 being afterwards improved for the case
of realistic quasi-2D �Q2D� open systems of carriers.12 It was
shown that in the confined Fermi system of waveguide con-
figuration the conducting �metallic� state is a natural ground
state for noninteracting electrons provided that the confine-
ment potential possesses more than one extended mode in
such an electron waveguide.

Subsequently, the mode approach employed in Refs. 11
and 12 for 2D systems not subjected to the external magnetic
field was applied to realistic quasi-two-dimensional systems
of carriers placed in such a field oriented parallel to the ref-
erence 2D plane.13 Despite the fact that many of the re-
searchers �see, e.g., Refs. 14–16� adhere to the position that
it was essentially the spin polarization that should be consid-
ered as a physical origin of 2D metal-to-insulator transition
�MIT� in a parallel magnetic field, it was shown in Ref. 13
that the orbital coupling of Q2D electrons to the in-plane
magnetic field of quite moderate strength suffices to modify
substantially the spectrum of an open side-confined planar
system of carriers. The most important effect of the magnetic
field is that it makes a significant impact upon the mode
content of the electron waveguide, thereby resulting in an
appreciable change in the number of current-carrying modes
�identified as the open conducting channels17� as well as in
the spectral width of their energy levels. In the confined sys-
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tem of a highly anisotropic cross section the number of con-
ducting channels was shown to decrease strongly as the mag-
netic field grows, being simultaneously accompanied by the
gain in coherence of the electron states. Basing on the ob-
tained results, it was suggested therein that such a magnetic-
field-caused reduction in the number of extended modes of
the electron waveguide should be taken as an essential ingre-
dient when searching for the physical origin of the transition
of Q2D electron system from conducting to insulating state.

Although the analysis given in Ref. 13 at a spectral level
provides a specific insight into the plausible physical mecha-
nism of the observed magnetic-field-driven MIT, it is neces-
sary to bear out the conclusions by calculating the observable
quantities, e.g., the conductance. To accomplish this task, it
would be inconvenient to use the Landauer approach18 since
it does not look into the coherence properties of the internal
spectrum of the system in question, operating it as a scatter-
ing object integrally. Therefore, for calculating the magneto-
conductance we apply in this study the linear response
theory19,20 which permits us to carry out all calculations at a
microscopic level.

II. CHOOSING THE MODEL

Two-dimensional electron and hole systems in use, in
view of their open property in the direction of current and the
resemblance of the master equation to that of the classical
wave theory, can be simulated as planar quantum
waveguides whose transverse design is governed by the lat-
eral confinement potentials. Although near-surface potential
wells in Si metal-oxide-semiconductor field-effect transistors
�MOSFETs� and GaAs/AlGaAs heterostructures are close in
shape to triangular or parabolic form,21,22 this fact is of minor
importance for its principal application, which is to restrict
electron transport in the direction normal to heterophase ar-
eas, thus resulting in transverse quantization of the electron
spectrum. With this consideration in mind, in order to sim-
plify calculations we assume the Q2D system of carriers hav-
ing the form of a three-dimensional planar “electron wave-
guide” of a rectangular cross section, which occupies the
coordinate region

x � �− L/2,L/2� ,

y � �− W/2,W/2� ,

z � �− H/2,H/2� . �1�

The length L, the width W, and the height H of the wave-
guide will be regarded as arbitrary, within the restrictions
imposed below. In practice the change of a quantum wave-
guide thickness implies alteration of the width of the near-
surface potential well and, as a consequence, of sheet density
of the carriers. Inasmuch as this density is known to follow
the variation in depletion voltage under the simple law,23,24

the results obtained below as a function of the waveguide
thickness can be easily related to the experiment.

We will examine the T=0 magnetoresistance of a Q2D
electron system by expressing the dimensionless �in units of

e2 /�q� conductance gxx in terms of one-particle propagators.
Taking the system of units with q=2m=1 �m is the electron
effective mass�, the static conductance is given by

gxx�L,B� =
2

L2 � � dr dr�� �

�x
−

ie

qc
Ax�r���G�F

a �r,r��

− G�F

r �r,r���� �

�x�
−

ie

qc
Ax�r����G�F

a �r�,r�

− G�F

r �r�,r�� , �2�

where G�F

r�a��r ,r�� is the retarded �advanced� Green’s function
of the electrons of Fermi energy �F, Ai�r� is the i-th compo-
nent of the external vector potential A�r�. Integration in Eq.
�2� is carried out over region �1� occupied by the quantum
waveguide, spin degeneracy is taken into account by the fac-
tor of 2. Note that throughout this paper the Fermi energy �or
the chemical potential, as the situation requires� will be con-
sidered to have a constant value, regardless of the confine-
ment potential. This is undoubtedly true on the metallic side
of the MIT discussed below. Moreover, on the just-dielectric
side of the transition this assertion is also valid since the
“expanded” electron system, which includes the attached
leads, in the static limit is in a homogeneous equilibrium
state provided that its segment of interest is open, at least,
partially.

Within the model of isotropic Fermi liquid, the retarded
Green’s function of the electrons subjected to a static mag-
netic field obeys the equation �all indices at the function G
are omitted for brevity�

���−
2�i

�0
A�r�	2

+ kF
2 + i0 − V�r��G�r,r�� = ��r − r�� ,

�3�

where �0=hc /e is the magnetic flux quantum, kF
2 
�F, V�r�

is the random potential due to impurities or the roughness of
the confining well boundaries. This potential is assumed to
have zero mean value, �V�r��=0, and the binary correlation
function �V�r�V�r���=QW�r−r��. The angular brackets
stand for configurational averaging, W�r� is the function nor-
malized to unity and falling off its maximal value at r=0
over the characteristic length rc �the correlation radius�.

Equation �3� must be supplemented with the appropriate
boundary conditions �BC�. We will regard the electrons to be
confined by infinitely high potential walls at side boundaries
of the region �1� and specify this fact by the Dirichlet con-
ditions

G�r,r�� y=±W/2
z=±H/2

= 0. �4�

As far as open ends of the system are concerned, the BC
problem is resolved somewhat less trivially. The mere fact
that the system is open, even partially, implies non-Hermicity
of the operator in square brackets of Eq. �3� in the domain
�1�. This may cause some vagueness regarding the applica-
bility of formula �2�, whose derivation relies essentially on
Hermitian property of the Hamilton operator. In the case of a
finite-length system, the hermitizing BC at x= ±L /2 would,
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in fact, correspond to its closeness �or periodicity� in the x
direction, which does not conform with the requirement for
current overflow between independent reservoirs.

In this study, in view of the chosen Green’s function for-
malism, to specify the openness of the quantum system we
employ the method based on the analogy between the prob-
lem �3� and that of the monochromatic point source radiation
in a classical waveguide. When solving the latter problem,
Sommerfeld’s radiation conditions are normally used,25,26

which imply, for the source positioning at some finite coor-
dinate, the existence of solely outgoing waves at infinity. In
order to adapt these conditions to the system under consid-
eration it is necessary to prolong the disordered and
magnetic-field-biased segment �1� of the electron waveguide
with semi-infinite ideal leads, in which the electron waves
generated at some point inside the segment could propagate
freely to infinity, not being subjected to any kind of back-
scattering. Joining of the solutions to Eq. �3� at interfaces x
= ±L /2 within the electron waveguide results eventually in
the complete solution corresponding to the infinite open sys-
tem, thereby giving rise to the correct BC at the ends of the
segment of interest. This somewhat troublesome procedure
was accomplished in Ref. 13, and here we will use the results
of that derivation.

Apart from the openness BC, yet another problem is to be
resolved before we proceed to the conductance calculation.
Specifically, this is the choice of the vector potential gauge
corresponding to the in-plane magnetic field B= �Bx ,By ,0�.
Commonly used symmetric and Landau gauges appear to be
not quite convenient as regards the calculation technique be-
ing applied. It was shown previously13 that the gauge

A�r� = �Byz,− Bxz,0� , �5�

is more convenient when handling the system of waveguide
configuration, because it enables one to avoid undesirable
inhomogeneity of the Hamiltonian in the direction of current
�the axis x�. Given this gauge, Eq. �3� assumes the form

��2 + kF
2 + i0 − V�r� −

4�i

�0
�Byz

�

�x
− Bxz

�

�y
	

− �2�

�0
	2

B2z2�G�r,r�� = ��r − r�� . �6�

which is well adapted for solving it in mode representation.
Equation �6� contains the potentials of two kinds. The first

one is represented by the random function V�r�. This poten-
tial will be assumed to result in weak disorder-induced scat-
tering �WDS� of the waveguide modes. The weakness im-
plies the fulfillment of the pair of inequalities

kF
−1, rc � � , �7�

where � stands for the electron mean free path at zero mag-
netic field. For the reference purpose, this path evaluated
from the model of the white-noise Gaussian-distributed po-
tential, whose binary correlation function is �V�r�V�r���
=Q��r−r��, equals 4� /Q.

Another kind of potential is presented by the sum of all
the terms in the left-hand side of Eq. �6�, which contain the
dependence on the magnetic field. These terms can be re-
garded as introducing the regular potential barrier into the
infinitely long quantum waveguide, whose length along the x
axis is equal to the entire sample length L. We will refer to
this barrier as the magnetically biased region of the wave-
guide. The scattering produced by this region will be as-
sumed to be in some sense weak as well. By the weakness of
the magnetic-field-induced scattering �WMS� we mean small
entanglement of the waveguide modes due to the presence of
the magnetically biased region. It was shown in Ref. 13 that
this implies the inequality

� H

Rc
	2

� 1 �8�

to hold, where Rc=kFlB
2 is the maximal classical cyclotron

radius, lB=��0 /2�B is the total magnetic length.

III. CALCULATION OF THE MAGNETOCONDUCTANCE

By substituting the Green’s functions into Eq. �2� in the
form of expansion in series over transverse Hamiltonian
eigenfunctions we obtain the following mode representation
of the conductance:

gxx�L,B� =
2

L2 � �
L

dx dx� �
�1,�2�3,�4

� �

�x
��1�2

− i�y

ẑ�1�2

ly
2 	

	�G�2�3

a �x,x�� − G�2�3

r �x,x���

	� �

�x�
��3�4

− i�y

ẑ�3�4

ly
2 	

	�G�4�1

a �x�,x� − G�4�1

r �x�,x�� . �9�

Here, �= �n ,m� is the vector mode index �with n ,m�N�
conjugate to the transverse radius-vector r�= �y ,z�, ��i�j

is
the vector-argument Kronecker delta, ẑ�i�j

is the inter-
mode matrix element of the z-coordinate operator, ly

=��0 /2� By is the partial �or directional� magnetic length.
Given the model of the confining potential, matrix element
ẑ�i�j

assumes the value

ẑ��� = − H�nn��1 − �mm��
8mm�

�2�m2 − m�2�2 sin2��

2
�m − m��� .

�10�

If the scattering in the waveguide is weak in general,
which implies inequalities �7� and �8� to be held simulta-
neously, expression �9� can be substantially simplified. In
this case all intermode �i.e., nondiagonal in mode indices�
propagators are parametrically small as compared to the in-
tramode ones,13 so they can be omitted. Also, the terms en-
closed in parenthesis, which are proportional to the
z-coordinate matrix elements ẑ�i�j

, can be omitted owing to
their comparative smallness over the WMS parameter �8�. In
this way we arrive at the relatively uncomplicated form of
the magnetoconductance expression, viz.
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gxx�L,B� �
2

L2�
�
� �

L

dxdx�
�

�x
�G��

a �x,x��

− G��
r �x,x��� �

�x�
�G��

a �x�,x� − G��
r �x�,x�� ,

�11�

which is asymptotically valid under WS �=WDS+WMS�
condition.

Formula �11� would enable one to reduce the initially
stated three-dimensional dynamic problem to a set of strictly
1D problems provided the equations for all intramode propa-
gators are separated. Fortunately, this indeed can be done, at
least in the case of confined systems. The mathematical pro-
cedure was suggested in Ref. 11 first for strictly 2D wave-
guide systems. Subsequently, in Refs. 12 and 13, the method
was generalized onto the case of 3D quantum waveguides
including those subjected to magnetic field. Referring the
reader to those papers for mathematical details, here we
merely quote some of the results necessary for further analy-
sis.

The exact form of the equation for intramode propagator
in a confined system is quite complicated, see Ref. 13. It was
shown there that the solution to this equation is governed
substantially by the parameter


�
2 = k�

2 −
H2

12lB
4 �1 −

6

�2m2	 , �12�

where k�
2 =�F− ��n /W�2− ��m /H�2 is the conventional mode

energy in the absence of the magnetic field. The effect of this
field, which is described by the second term in the right-hand
side of Eq. �12�, reduces to lessening of the lengthwise en-
ergies of the modes. In the case where mode energy �12� has
a negative sign, intramode propagator G�� is to the paramet-
ric accuracy given by

G���x,x�� �
− 1

2
�
exp�− 
�x − x�� , �13�

which corresponds to strongly localized evanescent modes.
If the mode energy assumes a positive value, the equation for
G���x ,x�� has the �asymptotic� form

� �2

�x2 + 
�
2 + i/��

���	G���x,x�� = ��x − x�� . �14�

The imaginary addend to the mode energy in this equation
arises due to the pair of factors, namely, the openness of the
system, on the one hand, and the scattering between extended
modes, on the other. In the particular case where the corre-
lation function of the disorder potential is chosen so as

W�r − r�� = W�x − x����r� − r�� � , �15�

the dephasing term in Eq. �14� is given by

1

��
��� =

Q
4S �

����

1


��
�W˜�
� − 
��� + W˜�
� + 
���� . �16�

Here W˜�
� is the Fourier transform of the function W�x�
from Eq. �15�, the bar over the summation index signifies the
summation over extended modes only, if any. In the case
where the electron waveguide has no or only one extended
mode, scattering rate �16� is exactly equal to zero, which
implies the entire set of the mode states of the system under
consideration to be coherent.

The solution to Eq. �14� for the open system considered
here, which is valid under WS conditions, is written as

G���x,x�� �
1

2i
�

exp��i
� − 1/l�
����x − x�� , �17�

where l�
���=2
���

��� is the parameter which may be inter-
preted as the length of the mode � phase coherence. With
function �17� substituted into Eq. �11�, the average magneto-
conductance is given ultimately as

�gxx�L,B�� = �
�

l�
���

L
�1 −

l�
���

L
exp�−

L

l�
���	sinh

L

l�
���� .

�18�

Here, the terms corresponding to extended modes only are
kept since the evanescent-mode Green’s functions �13�, be-
ing real valued, cancel each other in Eq. �11�. Formula �18�
represents the general expression describing the system con-
ductance in the presence of both the random scatterers and
the weak in-plane magnetic field, which enters implicitly
through the mode coherence lengths.

From the result �18�, conventional limiting formulae for
the conductance can readily be obtained. In particular, in
ballistic limit L�� the dimensionless conductance becomes
nearly equal to the number of open conducting channels
Nc�B�

�gxx�L,B�� � Nc�B� . �19�

In our model this number is determined by both the geomet-
ric confinement of the electron system and the magnetic
field.13 The conductance of the perfect system is thus running
in steps as a function of either depletion voltage or the value
of the in-plane magnetic field.

In diffusion limit L�, if the potential well is wide
enough to contain the large number of quantization levels in
the z direction, by replacing the sum in the right-hand side
�r.h.s.� of Eq. �18� with the integral we arrive at

�gxx�L,B�� �
4

3

Nc�B��

L
� �gxx�L,0���1 −

H2

12Rc
2	 . �20�

In the case of zero magnetic field this result is coincident in
form with classical Drude conductance.12 If B�0, the mag-
netoconductance is negative, being varied smoothly with the
magnetic field, specifically, under the quadratic law. This is
because the van Hove singularities in the mode density of
states �MDOS� prove to be integrated out in such a rough
calculation.
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However, the singularities are actually contained in the
mode coherence lengths, as they are determined using the
dephasing rate formula �16�. These singularities should ap-
pear both in Shubnikov-de Haas �i.e., magnetic-field-driven�
oscillations of the conductance and in the conductance de-
pendence on the quantum well width, which is normally
tuned by the depletion voltage. In Fig. 1, the results numeri-
cally obtained from Eq. �18� at several values of the diffu-
sion parameter L /� are presented. The magnetic field, as-
sumed to be codirectional with the axis of current flow, is
scaled as the dimensionless parameter �= �kFlB�2=kFRc. Nu-
merical considerations reveal that in-plane rotation of the
magnetic field slightly changes the picture presented. The
MDOS singularities show themselves in the form of sharp
dips placed close to those points where the number of con-
ducting modes undergoes stepwise variations, i.e., close to
the thresholds of the transverse subbands, no matter what the
disorder level may be. The disorder appears to manifest it-
self, above all, through the absolute value of the conduc-
tance. Note that in the case of relatively large disorder �larger
values of L /�� the conductance develops nonmonotonically
versus the magnetic field, even if the MDOS singularities are
smoothed out. As the mean free path decreases, nonmonoto-
nicity becomes so apparent that it appears to be inadmissible
to disregard this effect in the experimental data. In particular,
with regard to this analysis it would be tempting to revise the

observed positive magnetoresistance which is frequently at-
tributed to spin properties of 2D systems.28,29

To make a comparison with the magnetic-field run, in Fig.
2 the conductance is shown versus the width of the potential
well forming a quasi-2D quantum waveguide. Here, the
MDOS singularities are equally more pronounced, which
naturally demonstrates the change in the number of conduct-
ing channels. Meanwhile, in the latter case, in contrast to the
magnetic-field dependence depicted in Fig. 1, these singu-
larities are completely anticipated from the very outset, since
the number of channels is normally associated with size
quantization.

The peculiar feature should be noted in Fig. 2 as against
the dependence on the magnetic field. The curves in Fig. 2
tend to become nonmonotonic, on average, as the magnetic
field grows. Evidently, this nonmonotonicity accounts for the
nonmonotonic dependence on H of the mode eigenenergy
�12�.

It is instructive to dwell upon the physical nature of dips
in Figs. 1 and 2. All of them are positioned in the vicinity of
the points corresponding to opening/closing of the conduct-
ing channels. For one thing, as the electron waveguide gets
thinner or the magnetic field grows, the closing of the chan-
nel must result in a benchlike fall of the conductance, since
each of the conducting channels is expected to bring in ex-
actly one conductance quantum. At the critical point, the
marginal extended mode is transformed to the evanescent
one, which is localized at a scale of the mode wavelength
and in this way carry no current in an infinitely long system.
Indeed, this picture is demonstrated by the upper, “ballistic,”
curve in Fig. 1.

For another thing, in approaching the transformation point
�subband threshold� the MDOS of the marginal mode di-
verges whereas its mode velocity tends to zero. Being singu-
larly capacious and slow, this mode serves as a destructive
sink for dynamic electrons, leading to a decrease in the con-
ductance. It is clear that the dips can only arise when we deal
with an imperfect system of carriers, where scattering is al-
lowed from all remaining extended modes to the slow critical
mode. The conductance in the bottom of the dip may thus
reach, hyperbolically, a nearly zero value, which can hardly
be grasped in real experiments because of various unac-
counted extra factors.

FIG. 1. The conductance versus inverse magnetic field at differ-
ent disorder level in the quantum waveguide.

FIG. 2. The conductance versus the width of the near-surface potential well at different values of the in-plane magnetic field. In panel �b�,
the region selected by the rectangle in panel �a�, with only two curves left, is zoomed in to make the dips due to MDOS singularities more
clearly visible. The shading below the dashed curve signifies the region where criterion �8� is violated.
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IV. DISCUSSION AND CONCLUDING REMARKS

We have demonstrated that the appreciable localizing ef-
fect produced by the relatively weak in-plane magnetic field
on 2D electron and hole systems can be rationally interpreted
in the context of Fermi liquid theory applied to spinless elec-
trons which reside in an open near-surface potential well of
finite rather than zero width. For a relatively weak magnetic
field, its coupling to the carrier orbital degree of freedom,
even though it is quite insignificant from a semiclassical
point of view, proves to have a substantial influence on the
carrier spectrum and, hence, on the conductance.

The conclusion about strong sensitivity of the carrier
spectrum to the in-plane magnetic field is made from the
analogy of tightly gated solid-state systems to classical
waveguiding systems of planar, though three-dimensional,
configuration. The mode content of these well-known objects
is quite sensitive to the anisotropy in their cross section, that
is to the applied gate voltage as far as electron devices are
concerned. A remarkable feature of the latter type of systems
is that provided that the magnetic field is applied to the finite
length, these systems can be thought of as being subjected to
both the random disorder potential, whose correlation length
can be arbitrary, and the additive strongly nonlocal determin-
istic “magnetic” potential barrier. Scattering parameters of
this barrier are specified by the magnetic field strength and
orientation, on the one hand, and by the length of a magneti-
cally biased section of the quantum waveguide, on the other.
The effect produced by the barrier results from the mis-
matching of electron spectra in the inner and outer parts of
the quantum well, the inner part representing the finite-length
electron system under consideration.

Assuming the electron waveguide cross section to be
highly anisotropic, the bulk of transverse modes in the elec-
tron spectrum can be efficiently transformed from extended
to evanescent type as the magnetic field grows slightly.13

This is because electron scattering from side boundaries of
the confining potential well is, in the strict sense, specular if
the boundaries are considered as completely inhibiting the
transverse current flow. In view of this fact, the magnetic
field effect on the electron system is improper to be assessed
through the estimation of the electron trajectory deviation
between successive collisions with quantum well boundaries.
Rather, the mode phase coherence length seems to be the
appropriate spatial scale, whatever the quantum waveguide
transverse dimension.

It can be easily verified from Eq. �12� that the mode trun-
cation effect of the magnetic field is the more significant the
larger the aspect ratio of the waveguide cross section, given
the dimension H. For H being small enough, such that only
modes with quantization number m=1 in the corresponding
direction can be regarded as extended, the total number of
extended modes in the quantum waveguide is mainly deter-
mined by the larger cross-section dimension W. Owing to
strong cross-section anisotropy, even a slight alteration of the
magnetic field can transform a considerable number of
modes from extended to evanescent type, thus leading to a

significant reduction of the conductance, even though it
might have a large �ballistic� value in the absence of the
magnetic field.

The mode truncation effect of the in-plane magnetic field
is quite similar to that of truly geometric confinement of the
electron system. The closing of each of the current-carrying
modes, which makes itself evident in the form of conduc-
tance jumps by precisely one conductance quantum in a per-
fect system at a zero temperature, should be regarded as a
true quantum phase transition.30 This statement is substanti-
ated by the indisputable fact that there exists a well-defined
correlation length in the vicinity of a closing point, whose
role is played by the wavelength of the marginal extended
mode. This correlation scale, as it must, tends to diverge as
the critical point is approached. The closing of the last con-
ducting mode by means of the in-plane magnetic field may
thus be regarded as the magnetic-field-driven MIT.

It should be noted that in the proximity to the MIT the
conductance is not quite accurately described by the present
theory, since it is hard to satisfy the WMS conditions over
the corresponding range of system parameters. Yet, closer
examination of the magnetic-field-originated effective poten-
tials in the decoupled equations for intramode propagators
�see Ref. 13� indicates that the above-described mode trun-
cation effect and, hence, the very fact of the existence of
magnetic-field-driven MIT, is robust.

In conclusion, the remark should be made concerning the
model of the confinement potential adopted in this study. In
some papers where laterally confined electron systems are
dealt with �see, e.g., Ref. 27�, this potential is taken as a
quadratic function of transverse coordinates. The confine-
ment thus modeled seems to be beneficial from the technical
point of view, as it enables one to account for the magnetic
field nonperturbatively, the corresponding transverse eigen-
states being known as Fock-Darwin levels.31,32 It is quite
natural that the precisely zero width of those levels in the
absence of any disorder implies the entire lack of dephasing
due to the magnetic field only. In this case, the magnetocon-
ductance should not exhibit a dip structure because the latter
results from MDOS singularities arising exclusively in the
presence of the disorder.

Clearly, in the domain of weak magnetic fields �in a sense
of inequality �8�� the quadratic confinement can hardly be
substantiated. Therefore, the issue of the magnetic-field-
induced mode entanglement and the related conceivable
dephasing of the mode states might seem to be quite topical
in this limiting case. Note, however, that although other
kinds of confinement possess appreciable magnetic-field-
induced intermode scattering, the rectangular one we choose
in this study does not prove to result in widening the trans-
verse quantization levels unless some kind of disorder is also
taken into account.13 One should bear in mind that the exact
form of transverse eigenfunctions is of no fundamental sig-
nificance for the development of transport theories in mode
representation, but the mere fact of transverse energy quan-
tization does matter. This prompts us to expect that the mag-
netic field alone cannot give rise to noticeable decoherence
of electron states for any hard-wall model of the electron
confinement. The specific form of the confinement potential

YU. V. TARASOV PHYSICAL REVIEW B 73, 014202 �2006�

014202-6



can only rearrange the transverse quantization levels and,
hence, to exert an influence upon the coherence properties of
the electron system indirectly. Of primary value is the

dephasing that results from scattering caused by some kind
of a random �i.e., in a sense, uncontrolled� potential, no mat-
ter static or variable it may be.
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