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We investigate current-voltage measurements of a superconductor in a magnetic field for a continuous
superconducting transition. Existence of such a transition in the mixed state has been the subject of recent
controversy due to flexibility in the conventional scaling analysis. To address this, we analyze current-voltage
data using scaling forms based on the crossover current. One of these scaling forms, based on the logarithmic
derivative of current-voltage isotherms, is a stringent test for a superconducting transition. Applying this
derivative scaling test to the data shows marked disagreement with a superconducting transition, which indi-
cates that one does not occur within the mixed state.
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There has been recent controversy surrounding the experi-
mental determination of continuous superconducting-phase
transitions according to the scaling theories of Fisher, Fisher,
and Huse.1 The common test of scaling is a data collapse of
current-voltage �I-V� measurements relating the electric field
E to an applied current density J,

E�2+z−D/J = ��J,T��2+z−D = �±�J�D−1/T� , �1�

where D is the dimensionality, T is the temperature,
���1−T /Tg�−� is the diverging correlation length near the
transition temperature �Tg�, � is the static critical exponent, z
is the dynamic exponent, ��J ,T� is the nonlinear resistivity,
and �± are scaling functions.

Some have argued that this scaling analysis is too flexible
and not conclusive evidence for a phase transition.2–5 How-
ever, these arguments do not address the apparent scaling of
a crossover current,6–8 which has been argued as crucial to
determining a superconducting transition,7,8 with debate on
this issue still ongoing.9 One such crossover-current determi-
nation is to locate where the value of the logarithmic deriva-
tive �� log E /� log J�T is an arbitrarily chosen constant.6 A
second method, which is limited to the regime T�Tg, de-
fines the crossover current as the location where ��J ,T� di-
vided by the linear resistivity �L�T� �measured at low J� is an
arbitrarily chosen constant.7,8

A limitation of these methods is that they depend on ar-
bitrarily chosen constants. We show that these crossover cur-
rents stem from general scaling forms for �� log E /� log J�T

and ��J ,T� /�L�T�. We find that the crossover scaling for
��J ,T� /�L�T� shows flexibility reminiscent of other scaling
tests;2–5 i.e., agreement is found for widely different critical
exponents and transition temperatures. In contrast, the scal-
ing test of �� log E /� log J�T does not agree with a phase
transition over the same range of temperatures, which sup-
ports the view that a superconducting transition does not
exist within the mixed state.2–5,10

A crossover-current scaling form for �� log E /� log J�T is
made by taking the natural log of Eq. �1� and then taking the
partial derivative with respect to ln E,11

ln E = �D − 2 − z�ln � + ln J + ln �±�J�D−1/T� , �2�
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where the explicit z dependence has dropped out. Equation
�4� reduces to the crossover-current scaling of Ref. 6 by set-
ting the left side equal to an arbitrary constant. This requires
that the argument of F± on the right side is also a constant
that yields �assuming J�D−1 /T	J�D−1 /Tg near the transi-
tion�,

Jc � �1 − T/Tg���D−1�. �5�

Another crossover-current method is based on ��J ,T� in
Eq. �1�. The linear resistivity is defined as �L�T�

��J ,T�lim J→0��D−2−z for T�Tg. The ratio of ��J ,T� over
�L�T� yields another scaling form,

��J,T�
�L�T�

= G+�J�D−1/T� , �6�

where again the explicit z dependance has dropped out. Eq.
�6� is similar to Eq. �4� in that the � dependance is limited to
the argument of the scaling function. Thus, the same argu-
ments used to determine a crossover current via Eq. �4� are
valid, and Eq. �6� also leads to Eq. �5� for an arbitrarily
chosen constant. This is the crossover current scaling for an
arbitrarily chosen ratio ��J ,T� /�L�T� that is investigated in
Refs. 7 and 8.

Equations �4� and �6� are useful because they probe the
crossover current behavior without requiring arbitrarily cho-
sen constants. These relations test all possible constants si-
multaneously. The logarithmic derivative of Eq. �4� is also
useful because it is valid at all temperatures near a transition;
whereas the scaling of ��J ,T� /�L�T� in Eq. �6� is limited to
the regime high enough above Tg such that �L�T� can be
measured.

Another issue with Eq. �6� is that ��J ,T� /�L�T� will trivi-
ally scale at low J. Since I-V curves above Tg have Ohmic
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tails, ��J ,T� /�L�T�=1 as J→0, and the ratio will always
satisfy Eq. �6� at low currents. To circumvent this trivial
scaling we subtract it �i.e., 1� away from Eq. �6�, yielding

��J,T�
�L�T�

− 1 = G+�J�D−1/T� , �7�

which is in terms of a new scaling function G+. The fact that
the scaling in Refs. 7 and 8 was achieved with a choice for
��J ,T� /�L�T�=1.1	1 attests to the relevance of this issue.12

We now investigate the crossover-current scaling using
Eqs. �4� and �7� with I-V measurements �Fig. 1� for a 2200 Å
thick film in 4 Tesla from Ref. 2. It has already been shown
that these I-V measurements can be scaled according to Eq.
�1� using a large range of transition temperatures and
exponents—demonstrating the difficulty in determining the
existence of a transition through this method.2 Specifically,
the data can be scaled about the apparent power-law behav-
iors at 81, 75, and 70 K �see the plots in Ref. 2�.

This is in contrast to the logarithmic derivative form �Eq.
�4��, which shows in Fig. 2�a� marked deviations from scal-
ing when using the conventional choice of critical param-
eters. Figures 2�b� and 2�c� demonstrate that this is also the
case for the other combinations of exponents and transition
temperatures that successfully scale the data in Ref. 2 over
identical ranges. This suggests that the crossover-current
scaling is not satisfied for arbitrary choices of constant
�� log E /� log J�T, despite the fact that a convenient choice
for a constant can give apparent agreement with a transition.
This also supports the view that I-V measurements do not
represent a superconducting transition within the mixed
state.

Moving on to the scaling of ��J ,T� /�L�T�, Fig. 3 shows
the data according to Eq. �7� and Eq. �6� �insets�, with the
same exponents used in Fig. 2. The data ranges are the same
as in Fig. 2 �and in Ref. 2� except for being limited to T
�83.5 K, a temperature regime with well determined �L�T�
from the linear fits in Fig. 1.13 These scaling plots show
notably much better agreement with a transition than those of

Fig. 2—indicating that it is a more lenient test of a transition.
The deviations to scaling at low values of ��J ,T� /�L�T�−1 in
Fig. 3 result from the finite precision of the resistance mea-
surements, as the scatter in the isotherms is much larger in
this regime.

Slightly above this scattered regime, the scaling shows
analytic behavior for small ��J ,T� /�L�T�−1. Expanding
��J ,T� for a fixed temperature about J=0 yields

��J,T� = �L�T� + �2�T�J2 + �4�T�J4 + ¯ . �8�

This can be cast into the form of Eq. �7� as

FIG. 1. �Color online� I -V isotherms for a 2200 Å
YBa2Cu3O7−	 film at 4 T �data from Ref. 2�. The linear fits for T
�83.5 K determine �L�T� at low currents. The lines at 81, 75, and
70 K are power-law fits.

FIG. 2. Attempts at scaling the logarithmic derivative according
to Eq. �4� using the critical parameters that collapsed the same data
to the conventional I -V scaling form in Ref. 2.
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��J,T�/�L�T� − 1 =
�2�T�
�L�T�

J2 +
�4�T�
�L�T�

J4 + ¯ , �9�

where we have set odd terms to zero since the resistance
should be an even function of current. If the right-hand-side
of the above expansion is to behave according to the scaling
of Eq. �7�, then the coefficients �n�T� /�L�T� must behave as
Cn��D−1 /T�n, where the Cn are unspecified constants. To low-
est order the expansion becomes

��J,T�/�L�T� − 1 = C2�J�D−1/T�2 + ¯ . �10�

The term in parentheses on the right side is the x-axis vari-
able of Fig. 3, implying a power of 2 for small values on this

plot. This is depicted in Fig. 3 with solid straight lines of
slope 2 drawn below the data in the plots. The data show
reasonable agreement with this power-law at small values, in
accord with scaling.

At larger values of ��J ,T� /�L�T�—1 we also expect
power-law behavior. Near a transition, E�J�z+1�/�D−1� in the
high-current regime so that ��J ,T� /�L�T�� f�T�J�z+2−D�/�D−1�

where f�T� is a function of temperature. Maintaining consis-
tency with Eq. �6�, f�T� must go as ��D−1 /T��z+2−D�/�D−1� and

��J,T�/�L�T� − 1 � ��J,T�/�L�T� � �J�D−1/T��z+2−D�/�D−1�,

�11�

for large J. This power law is depicted as the dashed line
above the data in Fig. 3�a� for D=3 and z=5.46. Figures 3�b�
and 3�c� also show high-current power-law fits for the corre-
sponding dynamic exponents. In all plots of Fig. 3, the data
deviate away from this power-law behavior at high J, which
could be taken as a disagreement from scaling. Another pos-
sibility is that J has not attained a large enough value to
make this behavior apparent.

Following this second line of reasoning, a more sensitive
measurement of �L�T� closer to a transition temperature
might probe regions with even larger J�D−1 /T and yield
agreement with the power-law dependence of Eq. �11�. To
see if this possibility is consistent with the scaling plot of
Fig. 3�a� we determined a value for �L�T� by using the ex-
trapolation procedure described in Ref. 2 for the isotherm at
81.5 K, a temperature far too low to determine the linear
resistance experimentally. In Fig. 4 we plot the experimen-
tally determined ��J ,T� and the extrapolated value of �L�T�
in the form of ��I ,T� /�L�T�−1 versus J�D−1 /T for the iso-
therm of 81.5 K. When plotted together with the data at
higher temperatures, it appears consistent with the view that
the data of Fig. 3�a� is not in the large-J regime, where the
power-law behavior of Eq. �11� applies. The same holds for
the other two data collapses in Fig. 3 with a Tg of 75 and
70 K. Thus, the discrepancies between the dashed lines and

FIG. 3. �Color online� Data of Fig. 1 plotted according to scal-
ing form of Eq. �7� with the insets in form of Eq. �6� by using the
same ranges, exponents, and Tg’s that collapse the data in Fig. 2 for
T�83.5 K.

FIG. 4. �Color online� ��J ,T� /�L�T�−1 for the isotherm at 81 K
plotted with the extrapolated value for �L�T�.
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the data collapses at large J in Fig. 3 are not necessarily
disagreements with scaling since the applied current may not
be large enough.

In conclusion, we have proposed using two crossover-
current scaling forms to test I-V characteristics for continu-
ous superconducting transitions. Both these scaling forms,
which are consistent with the original vortex-glass model,1,14

eliminate the use of one scaling parameter in the analysis
and, thus, reduce the flexibility of the analysis. One of these

scaling forms, based on the logarithmic derivative, appears
to be a much less lenient test of a phase transition. The
Application of this logarithmic-derivative test to I-V charac-
teristics of a YBCO film indicates that unambiguous scaling
evidence for a continuous phase transition in the mixed state
does not yet exist.2,10
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