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Results from diffusion Monte Carlo have been used in fits of a damping function of the triple dipole and of
the intensity of the exchange three-body interactions. The equations of state obtained considering this three-
body potential are in excellent agreement with experiment both at the solid and liquid phases. The calculations
show that exchange nonadditivities that contribute less than 0.2% of the two-body potential energy in the solid
phase are needed to describe the properties of a system of helium atoms.
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The observation of nonclassical rotational inertial in solid
4He under torsional motion has demonstrated1,2 a superfluid-
like behavior of this phase. It was observed for helium con-
fined both to an annular channel in a sample cell and in a
porous media. It has prompted a renewed interest in the
properties of the solid phase. Moreover, helium crystals are
considered model systems that can reveal crucial information
on properties of crystalline surfaces.3 From the microscopic
point of view, the description and understanding of the he-
lium solid phase requires the knowledge of the interatomic
potential.

The interaction energy of dimers of helium atoms can be
calculated with great accuracy and with reliable estimates of
their uncertainties. Very accurate helium-helium interatomic
potentials can be obtained by combining these ab initio
results.4–6 By using one of them, properties of helium at low
densities, such as the thermal conductivity and the viscosity,
are determined with uncertainties smaller than those obtained
in corresponding experiments. In many investigations of the
condensed phases of helium it is possible to assume only the
pairwise approximation of the interatomic potential.7 How-
ever, it has been known8 for a long time that higher-order
terms are needed for a detailed description of these phases.
The importance of the investigation of many-body effects is
increasing as experiments and simulations become more so-
phisticated and show that these effects are essential in the
determination of many physical properties. In fact, and not
only for the helium atoms, these effects are important. In
other systems, ranging from polymer colloid mixtures in the
protein limit9 to base-pairing stabilities in DNA10 and liquid
water,11 their role is recognized.

The effective investigation of many-body effects in the
interatomic potential usually requires an accurate knowledge
of the pairwise additive contributions. Since for the systems
of helium atoms they are already known at a very accurate
level, which still continues to improve,12 it appears appropri-
ate to study13–15 high order contributions to the interatomic
potential of these systems. It is worthwhile to obtain an equa-
tion of state �EOS� for the solid phase at an accuracy level
comparable to the one determined at the liquid phase. Inter-
atomic potentials that in quantum Monte Carlo calculations16

in the liquid phase give results in excellent agreement with
experiment were not able to perform equally well in the solid
phase.

In this work we have put together an interatomic potential

that is able to give an excellent description of the EOS in
both the solid and liquid phases. It has been constructed con-
sidering a two-body potential from the literature, a damped
triple-dipole term, and an exchange potential. The dominant
three-body effect we have considered is the triple-dipole
long-range dispersion term proposed by Axilrod-Teller and
Mutto �ATM�.17,18 It is obtained in the long-range limit and it
is not valid at short-range distances. At these distances, a
reasonable description of the system requires this interaction
to be damped. Accordingly we have introduced the damping
function F in the ATM term,

VDDD�r1,r2,r3� = C9
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where �i and rij are the angles and sides of the triangle
formed by the atoms, and C9=1.51�10−6 K nm9 �Ref. 19� is
the nonadditive coefficient; and the function F we have cho-
sen is a product of three20 Tang-Toennies f3�r ,�� damping
functions,21

F�ri,r j,rk� = f3�rij,��f3�rik,��f3�rjk,�� , �2�

with

f3�r,�� = 1 − ��
k=0

3
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where we have considered � a fit parameter. Among the vari-
ous alternatives of the literature15,22,23 of how to damp the
triple-dipole interaction term, the above one seems straight-
forward and avoids difficulties that more elaborate ap-
proaches might have in the calculation of the parameter � for
the helium trimer.22

The importance of the three-body exchange term has been
debated for a long period of time, but now its contribution to
explain properties of the systems of helium atoms has been
acknowledged.14,15,24 It is from the intermediate and short-
range distances that come its most significant contributions.
It occurs in the region beyond and relatively near the poten-
tial minimum where the number of trimers is larger than that
of dimers and the nonadditivity is still significant. Despite
the progress in treating exchange nonadditivities, results that
differ by an order of magnitude are not totally understood.14
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As the three-body nonadditive exchange part of the inter-
atomic potential of our calculation we use the Cohen
and Murrell15 form, living its intensity A as a fitting
parameter �see also Ref. 25�. The symmetry coordinates,
Q1=1/�3�r12+r13+r23�, Q2=1/�2�r13−r23�, and
Q3=1/�6�2r12−r13−r23� are used to express this potential,

VJ = A�c0 + c1Q1 + c2Q1
2 + �c3 + c4Q1 + c5Q1

2��Q2
2 + Q3

2�
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2��Q3

3 − 3Q3Q2
2�

+ �c9 + c10Q1 + c11Q1
2��Q2
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2��

�exp�− �Q1� , �4�

where the parameters � and ci can be found in Ref. 15.
Along with the triple-dipole dispersion interaction, there

are other multipolar nonadditive third-order contributions to
the dispersion energy. However there is good evidence26 that
these contributions are canceled by the fourth-order triple-
dipole term. For this reason they are not considered in our
calculations. On the other hand, the exchange correlation ef-
fects are supposed to be of importance, since for the helium
trimers the nonadditivity is probably dominated by the ex-
change forces.15

We describe the system of N helium atoms by the Hamil-
tonian

H = −
�2

2m
�
i=1

N

�ri

2 + V�R� , �5�

where V�R� is the interatomic potential, it is given by the
sum of the three-body terms above and the two-body poten-
tial V2�R� proposed by Janzen and Aziz,5 where retardation
effects have been added to the dipole-dipole part of the po-
tential proposed by Korona et al.6,33 The set of all coordi-
nates is denoted by R= 	r1 ,r2 , . . . ,rN
.

The ground-state energies of the systems of 4He atoms we
have considered were obtained by the diffusion Monte Carlo
�DMC� method.27,28 This method allows an accurate calcula-
tion of these energies by projecting out one approximate rep-
resentations of the system, obtained through a trial wave
function, to its eigenstate with the lowest energy. This is
accomplished by simulating a classical diffusion equation
that can be identified with the Schrödinger’s equation in
imaginary time. An efficient exploration of the configuration
space available to the system requires a guiding function for
the diffusion process. An easy option for this task, though not
the most efficient, is to use in the liquid phase, a guiding
function of the Jastrow form

�J�R� = �
i�j

exp�− b/�ri − r j��5, �6�

where b is a parameter adjusted to get the most efficient
calculation. In the solid phase this function must be
supplemented by a factor of the Nosanov form
�i exp�−C /2�ri− li�2�, a mean field term that explicitly local-
izes the particles about the sites li of a chosen lattice.

The simulations were performed either with the inter-
atomic potential V�R� or its two-body component V2�R�. In
this last case, three-body contributions to the total energies
were evaluated by a perturbative method. The tail corrections
of the potential energy at distances larger than half the side
of the simulation cell were computed by fitting up to three
damped sinusoidal functions to the two-body radial distribu-
tion function. For the three-body tail corrections we
have used the Kirkwood superposition approximation
g3�r12,r13,r23�
g2�r12�g2�r13�g2�r23�.

The fitted values for the two parameters of the interatomic
potential, � and A, were obtained through iterative least-
square fits. Several hundreds of configurations of indepen-
dents runs with 108 particles at different densities of the
liquid and solid phases were employed to fit the energies to
the experimental values. For a matter of technical conve-
nience, the fits were done by imposing a fcc crystalline struc-
ture in the simulations of the solid phase. These calculations
were performed with the interatomic potential V�R�. About
3000 configurations were used each time an iteration was
performed. Once values of the amplitude A and the repulsive
short-range � parameters were obtained, fresh configurations
were generated for the next iteration. We continued this pro-
cedure until the energies converged. The best values we
found are �=20.352 nm−1 and A=4.

The first observation we want to make about our results
regards the nonadditivity exchange term of the three-body
potential. As one might expected, it cannot be dropped if we
want to keep agreement between the computed and the ex-
perimental EOS at both the liquid and solid phases. We could
not get such agreement if the exchange term was neglected,
i.e., by imposing A=0 in the fits. This is true even though
the exchange contribution to the total energy is very small, as
our calculations show. With respect to the damping function
F of Eq. �1� the following comments are in order. Although
its behavior is qualitatively similar to the corresponding
function of Ref. 15, it has significant quantitative differences.
It is more smooth and starts damping the triple-dipole term at
distances slight larger than that of Ref. 15.

Once we have fitted the parameters � and A, the depen-
dence of the computed energies on the system size was in-
vestigated both at the liquid and the hcp solid phases. The
helium liquid results displayed in Table I show no indication
of any size dependence. In this table we also compare results
obtained through simulations obtained either with V�R� or its
two-body component V2�R�. All of them are in excellent
agreement within statistical uncertainties. The same table
shows the results for the solid phase. Energies per atom com-
puted in simulations with N=240 and 180 bodies in a hcp
crystalline structure are also in excellent agreement within
statistical uncertainties. In both phases the error due to size
effects is less than 0.01 K.

In order to verify the accuracy of the interatomic potential
V�R�, we have computed the EOS in the liquid phase using
N=108 atoms. For the hcp solid the EOS was computed
using 180 particles. The results at each phase were fitted to a
cubic polynomial E�	�=A+B���	−	0� /	0�2+C�	−	0� /	0�3.
The fits, together with experimental data, are displayed in
Fig. 1. Typical values of our results are shown in Table II.
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At all densities where we have computed the total energy
of the 4He system, an excellent agreement between theory
and experiment was found. The fitted equilibrium density
	0=21.82±0.14 nm−3 is also in agreement with experiment
21.834 nm−3.29 The melting and freezing densities are easily
computed by the Maxwell double tangent construction. Our
results 	m=28.94±0.31 nm−3 and 	 f =25.96±0.31 nm−3

compare with the respective experimental values 28.68 nm−3

�Ref. 30� and 25.97 nm−3 �Ref. 29� in an excellent way as
well.

The energy values of the triple dipole and of the exchange
interactions have been computed very accurately at two den-
sities, one of the liquid phase and other of the hcp crystal.
The calculations were performed with a multiweight DMC
method.13,16 This extension of the standard method allows
the determination of the three-body contributions to the total
energy to be estimated in a correlated form with the two-
body energy. They were obtained without extrapolations and
the results are subject only to statistical uncertainties. As our
results show in Table III, the importance of the exchange
term in the interatomic potential is remarkable. At the high-
est liquid density its contribution to the potential energy is
only about 19% of the triple-dipole dispersion energy that
turns out to be only 0.7% of the absolute value of the two-
body potential energy. A similar behavior with respect to the
intensity of these contribution is observed also at the solid
phase. At the highest density we have considered in this
phase the three-body exchange energy is attractive and its
modulus is about 12% of the dispersion energy. In this case
the contribution of the ATM term is about 1.1% of the modu-
lus of the two-body potential energy. In other words, the
biggest three-body exchange contribution we have found ac-

TABLE I. Size dependence of the total energy per atom of the
liquid and of the hcp crystalline structure at the given densities.
Calculations with N=240 and 180 particles were not performed in
cubic simulation cells; a cube of side equal to the smallest size of
the actual simulation cell would accommodate about 177 and 166
particles, respectively. Most of the simulations were performed with
the V2 potential, those with N marked with a star were done with
the V potential.

	 �nm−3� N E �K�

Liquid

21.86 180 −7.155±0.009

108* −7.171±0.008

108 −7.161±0.009

25.36 180 −6.767±0.009

108* −6.778±0.009

108 −6.766±0.009

Solid

30.11 240 −5.535±0.01

180 −5.538±0.01

34.41 240 −3.296±0.01

180 −3.298±0.01

TABLE II. Typical values of the total energy per atom at the
given densities. In the last column we show experimental data from
the literature �Refs. 32 and 31�. At the liquid phase the simulations
were performed with the V�R� potential. At the highest solid density
it was used as well. Other results of the hcp solid were obtained
with simulations using the V2�R� potential.

	 �nm−3� E �K� Exp. �K�

Liquid

21.86 −7.171±0.008 −7.170a

23.2 −7.12±0.008 −7.114

24.83 −6.897±0.009 −6.893

25.36 −6.778±0.009 −6.782

Solid

30.11 −5.538±0.010 −5.56

30.88 −5.265±0.010 −5.28

32.55 −4.49±0.010 −4.5

34.41 −3.298±0.010 −3.32

35.27 −2.68±0.009 −2.68b

aExperimental value at 21.84 nm−3.
bInterpolate from experimental data of Ref. 31.

TABLE III. Energies per atom associated with the damped ATM
and exchange VJ terms of the interatomic potential V�R� at the
given densities. Results were obtained with N=108 and 180 atoms
in the liquid and solid phases, respectively.

	 �nm−3� VDDD �K� VJ �K�

25.36 �liquid� 0.175±0.001 0.034±0.002

35.27 �solid� 0.403±0.001 −0.050±0.002

FIG. 1. Ground-state energies as a function of the density. En-
ergy values for the liquid phase are displayed in the left side of the
frame. The dashed line represents a fit of DMC results in the liquid
phase. The experimental data of Ref. 32 are shown as circles. The
right side of the frame show energies corresponding to the solid
phase. A fit of the results for the ground-state energies in the solid
phase is represented by the solid line. The squares stand for the
experimental data of Ref. 31.
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counts in absolute values for less than 0.2% of the two-body
potential energy.

In summary, our results have shown that it is possible to
construct an interatomic potential for a system of helium
atoms that very successfully describes properties of both the
solid and liquid phases at same level of accuracy and in
excellent agreement with experiment. This is an interatomic
potential that relies on an accurate dimer potential comple-
mented by the three-body triple-dipole term, suitably
damped at short distances, and an exchange potential term
with an adjusted magnitude.

The potential we are presenting in this article could be

helpful in two ways. First, an accurate computation of the
EOS and its associated properties always needs to be per-
formed in the condensed phases of the systems of helium
atoms. We also hope that in more detailed studies of nonad-
divities, our results could be useful in the characterization of
the many-body effects that play important roles in the de-
scription of these systems.
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