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Penetration depth anisotropy due to the proximity effect in a d-density-wave scenario
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We calculate the penetration depth A along the a and b directions in the presence of the pseudogap and
superconducting phases for a simple model that incorporates two layers—a CuO, plane and a CuO chain per
unit cell. The CuO chains become superconducting due to the proximity to the planes below the critical
temperature. The pseudogap phase has been considered to be a result of the d-density-wave (DDW) phase. The
temperature dependence of A, is always different from A, as it depends on the induced gap in the chains. The
DDW phase plays a vital role not only to distinguish the temperature dependence of A, from that of \, but also
to identify the mixed phase from the pure phase of these superconductors.

DOI: 10.1103/PhysRevB.73.012504

The search for the mechanism which causes the
pseudogap phenomena in the high- 7. cuprates has been an
ongoing effort and is yet to reach a general consensus. Sev-
eral experimental measurements and theoretical works are
being carried out to elucidate this suppression of the spectral
weight below a characteristic temperature 7" in the under-
doped cuprates. Hence we observe the pseudogap phase be-
low T". Recently there have been various proposals to under-
stand the nature of the pseudogap. One concrete proposal has
been the broken symmetry of the d,2_,» type in the particle-
hole channel.! Various theoretical works have been per-
formed on the d2_,» density waves (DDW) to model the
pseudogap.’? In this scenario the temperature 7" is not a
crossover but a transition temperature. A large Nernst effect
is a clear signature of the DDW. The measured Nernst effect
in the pseudogap phase was successfully described in under-
doped LSCO and Bi-2212.> There have also been various
other scenarios for this phenomena based on the crossover
picture, such as the singlet pairing of the spinons,® phase
fluctuations,’ etc. In Ref. 6 the pairing of the spinons occur at
T" which describes the magnetic properties within an ex-
tended #-J model in the slave-boson representation. The
mechanism suggested by Emery and Kivelson’ indicates a
phase fluctuation of the superconducting order parameter in
the pseudogap regime. The temperature scale of phase fluc-
tuations is controlled by the zero-temperature superfluid
stiffness. Unlike the conventional superconductors, the tran-
sition is controlled by phase ordering and explains the Ue-
mura scaling.® It is important to mention that in the regime of
interest, it is the vanishing of the superfluid density that con-
trols the transition and determines 7. and not the collapse of
the gap. The pseudogap phase has also been studied as a
precursor of superconductivity in Ref. 9 where the pseudo-
gap state has been described as a natural consequence of
local, dynamic pairing correlations in the normal state of
low-density small pair-size superconductors. In this scenario
they have shown that unlike the BCS (Bardeen-Cooper-
Schrieffer theory) case the pairing and the phase coherence
of the g=0 pair state takes place at two temperatures. The
phase coherence is lost at the critical temperature 7. but the
pairs dissociate only at a much higher temperature 7.

In our previous work,? we considered the DDW as the
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pseudogap along with d,>_,>-wave superconducting phase
(DSC) and studied the phase diagram to understand this new
phase in the underdoped region of the cuprates. Various other
properties were also calculated. The essence of this idea is
that the pseudogap observed in underdoped cuprates is a real
gap in the one-particle excitation spectrum at the wave vec-
tor (77,0). However, it is “pseudo” in experiments due to the
difficulty in its detection. It is widely believed that the source
of the pairing interaction which is responsible for the super-
conducting transition lies in the CuO, planes and hence
could be explained by the two-dimensional model. The only
active pieces of the crystal are the CuO, planes and the re-
maining ions act as charge reservoirs. But in some materials,
such as the YBa,Cu;0; (Y-123) and YBa,Cu,O5 (Y-124),
there is clear evidence of the fact that CuO, planes are not
the only active portions. In these materials we have the quasi
one-dimensional CuO chain structures. Experiments on the
dc resistivity,'%!! the polarized reflectance,'>!? and penetra-
tion depth!3-!> have found large anisotropies between the a
and the b directions which suggest that currents also flow
along the chains in both the normal and superconducting
states. But little is known about the coupling of the planes
and the chains and how the planar superconductivity affects
the physics in the chains. Recently, the proximity model'®
has been demonstrated to explain consistently the scanning
tunneling microscopy, angle-resolved photoemission, and
infrared-spectroscopy experiments.

In this work, we calculate the penetration depth of the
mixed (DDW +DSC) and the pure DSC states using a similar
proximity model for the chain-plane system. The model con-
sidered in this work is different from that of Refs. 1 and 2 as
we consider the CuO, plane, and the CuO chains along with
the effect of the proximity coupling of chains and planes
which is of the utmost importance for some of the cuprates
as discussed above. However, in Ref. 3 they considered a
bilayer lattice model which includes pair hopping and next-
neighbor repulsion. So with this in view, we study the pen-
etration depth along the a and b directions to observe the
effect of the anisotropy due to the chains and the character-
istic due to the presence of the DDW wave which is the
pseudogap phase in the cuprates.

The chains become superconducting by a proximity effect
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and the size of the induced gap depends on the strength of
the coupling across the junction. We consider the pairing
interaction to be solely localized to the CuO, planes. We
neglect the k& dependence of the plain-chain coupling, since
this term is important in a very small k space region. Hence,
omitting the k, dependence, we can write down the Hamil-
tonian as

H= 2 (exk— M) ChioCrko + 20 1K) €] ipCono

koh ko
+E ch-lrk(rclk+Q(r+2 AkCTkTC-lr—kL-'_H'C" (])
ko k

where ¢, is the fermion creation operator for wave vector k
and spin o in the plane and ¢}y, is the same for the chain
band. Wy and Ay are the density wave gap and superconduct-
ing gap, respectively. Q is the nesting vector (7, ). The
energy dispersion relations are given by €, =—2¢[cos(k,a)
+cos(k,b)] and €y =—2t, cos(k,b) where a and b are the lat-
tice constants in the planes. w, is the chemical potential for
the plane and the chain bands. #(k) is the coupling between
the planes and the chains. N corresponds to the chain and/or
plane bands.

We shall calculate the penetration depth which is given by
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Ey , are the eigenvalues, f(x) is the Fermi function, 8,4 is a

Kronecker delta, and 01(“7 is the unitary matrix which diago-
nalizes the Hamiltonian.

We would like to address the question of anisotropy
within the scenario of the proximity model with the inclusion
of the DDW wave. This problem was dealt with in the papers
of Ref. 17 but they did not consider the pseudogap phase. We
see that with the consideration of the pseudogap, the prox-
imity model can explain the anisotropy for the underdoped,
optimally doped as well as the overdoped systems with
changes in the value of  and other parameters. Moreover the
proximity model'® are consistent with the recent scanning
tunneling microscopy, angle-resolved photoemission, and in-
frared spectroscopy experimental results.

We determine the phase diagram in the presence of the
DDW state by numerically diagonalizing the Hamiltonian
and then solving simultaneously for the gap and w;. We find
our results to be in accord with our previous findings.” The
parameters of the model are Vp5=0.9 and V5-=0.6 which
represent the interaction for the density-wave channel and
the d-wave pairing, respectively. For the chain layer we have
1,=0.6 so that we obtain the A\2(0)/\7(0)~ 1.8 as observed
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FIG. 1. (a) T, vs 1, (b) T: Vs 1.

experimentally in Ref. 13. The chemical potential for the
chains u,=0.4. All the parameters in this work are in terms
of ¢, unless otherwise stated.

In Fig. 1 we demonstrate the dependence of T, and T° on
t. We see that the critical temperature decreases rapidly with
increasing t and approaches zero at t=0.15. At =0 we have
T.=0.02 in the presence of the DDW wave. But the 7" does
not seem to be affected by 7 at such a rapid rate. In the
absence of the pseudogap we find the T, to be much higher;
and hence a much higher value of the coupling between the
chain and the plane bands can be applied before the disap-
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FIG. 2. )\z(O)/)\Z(T) vs T/T, for t=0.0. The solid line (dashed
line) indicates the N, (\;) for the DDW+DSC phase whereas the
dotted (dashed-dotted) line indicates the N\, (\;) for the pure DSC
phase.
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W FIG. 3. NX(0)/\XT) vs T/T,

for t=0.1. (a) Pure DSC state and
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(b) mixed DDW+DSC phase.

A40)AXT)

N2(0)/NX(T) vs TIT, for 1=0.12,
(c) pure DSC state, and (d) mixed
DDW +DSC phase. The solid line
(dashed line) indicates the A, (\).

pearance of the superconductivity. The competition between
the DDW and the DSC decreases 7T, in the presence of the
pseudogap as expected.

Next we concentrate on the penetration depth calculation
on the plane along the a and b directions to study the aniso-
tropy due to the consideration of the chain bands in the
DDW model. In Fig. 2 we plot the results of numerical cal-
culations of A, and A, in the mixed phase, i.e., where we
have the DDW and the DSC coexisting in the underdoped
region for u;=-0.39 with 7,=0.021, T"=0.16, and the pure
superconducting wave after the DDW has already disap-
peared in the overdoped regime for p;=—0.6 and 7,.=0.12.
The values of w; are chosen according to our phase diagram
where we observe the pure DDW, mixed DDW+DSC, and
the pure DSC phases with doping. The above plots are done
for 1=0.0. We observe an anisotropy in the penetration depth
in the mixed phase and also in the pure superconducting
phase even in the absence of the interaction between the two
layers. The change in the nature of the graph from under-
doped to the overdoped case is similar to that of the results

of Ref. 18 where they make measurements of the planar
penetration depth for various doping which should qualita-
tively depict the a-axis penetration depth of our model. The
anisotropy in the chains and its values are an clear indication
of the dissipation in the chains. So we see that in the DDW
model incorporating the chains and the plane we can explain
the penetration depth of these superconductors.

The anisotropy observed in the A results also throws light
on the understanding of the universal correlation between 7.
and the superfluid density as suggested by Uemura et al.'® in
materials with copper chains.

Next we introduce the effect of the interaction between
the layers and it can be observed in Fig. 3. In Fig. 3(a) we
plot A, and A, in the pure DSC phase for r=0.10 with T.
=0.12 and in Fig. 3(b) we obtain the penetration depth for
the mixed DDW +DSC phase in the underdoped regime. In
the mixed phase we have 7,.=0.017 and T.=0.15. The ratio
of )\g(O)/)\i(O)le at 7=0.0 which is close to the value
observed in experimental measurements for the pure DSC
state.!> The temperature dependence has a distinct character
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when compared to the mixed state and is very similar to the
calculation in the pure state in Ref. 17. Also we see that
introduction of the coupling decreases in the value of A\, and
N, irrespective of the doping. In Figs. 3(c) and 3(d) for ¢
=0.12 we observe similar traits as observed in Figs. 3(a) and
3(b). Hence we see that our model can make some insight
into the penetration depth results as we go from the under-
doped to the overdoped region of the phase diagram along
the a axis and also along the chains of the superconductor to
understand the effect of the DDW and the chains on the
values of A. Both the pseudogap phase and ¢ defines the
nature of temperature dependence.

In the range of temperatures close to 7. in which the
critical phase fluctuations dominate the low-frequency elec-
tromagnetic response and a low temperature regime in which
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the superfluid density have an anomalous temperature depen-
dence as a result of the phase fluctuations to first order in 7.
However away from the critical points we expect our calcu-
lation to be correct as already observed in the calculation of
superfluid density?® and its agreement with experimental
measures.”!

In conclusion we see that the anisotropy in the penetration
depth occurs due to the pseudogap as well as the proximity
effect between the chains and the planes, but the temperature
dependence can decide which region of doping we are con-
cerned about. It will also be interesting to study the ¢ axis
and the planar penetration depth to make a comparative
study with the experimental results which will be done in our
future work.
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