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The first- and second-order magnetoelastic coefficients of the bcc phases Co and Ni are calculated by using
a combination of the phenomenological theory of nonlinear magnetoelasticity with the ab initio density func-
tional electron theory. The magnetoelastic behavior of the bcc phases is drastically different from that of the
corresponding fcc phases. The recently synthesized bcc phase of Ni appears to be an example of a material for
which third-order magnetoelastic effects are essential.
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In recent years it became possible to stabilize some of the
phases of those materials that do not exist in bulk by growing
them on appropriate substrates. For the transition metals Fe,
Co, and Ni this is especially interesting because in these
systems magnetism and structure are closely related. Using
molecular beam epitaxy, the fcc phases of Fe and Co could
be stabilized on substrates at room temperature.1 It became
even possible to synthesize the bcc phase of Co2 on various
substrates
�Ref. 3 and references therein�, and most recently4 the bcc
phase of Ni. Both of these materials turned out to be ferro-
magnetic at room temperature, with a magnetic moment per
atom of 1.53 �B �Co� and 0.54 �B �Ni�.

From the viewpoint of technological applications of ultra-
thin magnetic films the most important feature is the mag-
netic anisotropy. Because in general there will be a lattice
mismatch between the substrate and the magnetic film, mag-
netoelastic contributions to the magnetic anisotropy may be
important. For instance, it has been suggested5 that the in-
plane anisotropy of bcc Co on GaAs is dominated by the
magnetoelastic contribution, although the epitaxial strains in
this material are rather small, about 0.25%. For comparison,
for bcc Co on Pt�001� the epitaxial strains are considerably
larger3 �−1.8% in plane and 5.1% out of plane�. It is well
known that for considerable epitaxial strains nonlinear con-
tributions to the magnetoelastic energy become essential.
This has been demonstrated experimentally by cantilever-
bending-beam experiments �see, e.g., Refs. 6–8�: When
changing the direction of the magnetization in the epitaxial
film by changing the direction of the external magnetic field,
the magnetostrictive stress ��m along the cantilever axis
changes, resulting in a detectable change of the bending of
the film-substrate composite. In the framework of linear
magnetoelastic theory, this change should be independent of
the magnitude of the epitaxial strain and should be deter-
mined by the first-order magnetoelastic coefficients, i.e., B1
and B2 for cubic materials. Experimentally, however, a linear
dependence of ��m on the strain was found, which was as-
cribed to nonlinear magnetoelastic effects.

For a proof of this conjecture a knowledge of the first-
and second-order magnetoelastic coefficients of the respec-
tive bulk material is required. The standard method to

determine them is the ultrasonic pulse echo experiment. Be-
cause the attainable strains in these experiments are very
small, it is, however, nearly impossible to explore the
second-order magnetoelastic coefficients by these experi-
ments. The first confirmation of the conjecture therefore was
supplied by theory. By a combination of the phenomenologi-
cal theory of nonlinear magnetoelasticity9 with the ab initio
density functional theory it has been shown �see, for ex-
ample, Refs. 10–13 and references therein� that the second-
order magnetoelastic contribution indeed may be very large,
especially for the case of Fe. The theory was also able11 to
suggest a complete set of six cantilever experiments to de-
termine the first-order �B1 and B2� and the second-order
�m1

�,2 ,m2
�,2 ,m1

�,2 ,m2
�,2 ,m3

�,2 ,m3
�,2� magnetoelastic coefficients

of a cubic material. Thereby �m1
�,2 ,m2

�,2� is related to pure
tensile strains, �m1

�,2 ,m2
�,2� to tensile and shear strains, and

�m3
�,2 ,m3

�,2� to pure shear strains. The first- and second-order
coefficients have been calculated12 by the ab initio electron
theory for Fe, fcc Co, Ni, Ni3Fe, and CoFe.

The determination of the magnetoelastic coefficients is
especially difficult for phases which can be synthesized only
as epitaxial films on substrates, like fcc Co, bcc Co, and bcc
Ni, and in these cases the help of electron theory is very
important. For the case of fcc Co, the theory has shown13

that the nonlinear magnetoelastic coupling coefficients are
essential for the magnetostrictive strain but have only little
influence on the strain-induced out-of-plane anisotropy. In
the present paper we apply the theory to the case of bcc Co
and bcc Ni. It will be shown that in these systems the non-
linear magnetoelastic coefficients are again very large. Fur-
thermore, it will be shown that bcc Ni is the first example of
a system for which third-order magnetoelastic effects be-
come relevant.

It has been shown by the ab initio density functional
theory14,15 that free bulk bcc Co and Ni have a negative shear
modulus C11-C12, i.e., these phases are elastically instable
with respect to the volume-conserving tetragonal strains
which transform the system along the Bain path from bcc to
fcc �the elastic energy as function of this strain mode exhibits
a saddle point at the bcc configuration�. Therefore, these
phases need to be stabilized by elastic boundary conditions
supplied by the interfacial interaction with the substrate. In
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the following we suppose that the only effect of the substrate
is to stabilize the bcc phase but that the influence of the
substrate on the magnetic and magnetoelastic properties of
the bcc film can be neglected, i.e., we consider these prop-
erties as intrinsic properties of the bulk bcc phase. Indeed the
instability of these phases does not affect the calculation of
their magnetic properties and of their magnetoelastic coeffi-
cients. The calculational procedure of the magnetoelastic co-
efficients described below depends only on the symmetry of
the reference state �here the bcc state� used for the definition
of the strain modes, irrespective of the question whether the
reference state is stable or not. With the so-obtained values
of the magnetoelastic coefficients and the ab initio data for
the elastic constants of the bcc phase we can also determine
without any conceptual problems the magnetostrictive
stresses ��m for the cantilever-bending-beam experiments
along the lines described, for example, in Ref. 11. The reason
is that in these calculations the strains in the plane parallel to
the interface are fixed, i.e., the stabilization of the film by the
substrate is implicitly taken into account. However, it does
not make sense to define magnetostriction constants for elas-
tically unstable phases. The reason is that the magnetostric-
tive constants describe for a free system without surface
stresses the difference in geometry between the demagne-
tized stable phase and the magnetized stable phase. If we
want to describe magnetostrictive properties in the presently
considered situation, we have to consider the respective
whole system consisting of the bcc film and the substrate, at
least via constraints imposed by the substrate �as we do for
the calculation of the magnetostrictive stress�.

According to Ref. 11 the magnetoelastic coefficients may
be obtained by exposing the cubic material to certain strain
modes �i. Then the difference �ei in the total energy per
atom when changing the direction of the magnetization from
�i

1 to �i
2 is calculated for
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The coefficient B1 and the pair �m1
�,2 ,m2

�,2� of second-order
coefficients are obtained from Eqs. �1� and �2� by fitting
parabola to the data points for �e1��0� and �e2��0�. Simi-
larly, the coefficients B2 �m3

�,2 ,m3
�,2� are obtained from Eqs.

�5� and �6� by parabolic fits. Finally, the pair �m1
�,2 ,m2

�,2� is
obtained from Eqs. �3� and �4� via parabolic fits using the
already determined coefficient m1

�,2. As long as the parabolic
fits represent the calculated data points �ei��0� well, we can
conclude that third-order magnetoelastic effects can be ne-
glected for the considered range of �0.

The calculations of �ei��0� were performed by applying
the ab initio density functional theory taking into account the
spin-orbit coupling which is responsible for magnetoelastic-
ity in a perturbative manner using the second-variational
method.16 Furthermore, we use the WIEN97 code17 which
adopts the full-potential linearized-augmented-plane-wave
method �FLAPW�18 as well as the local-spin-density ap-
proximation �LSDA�19 and the generalized-gradient approxi-
mation �GGA�20 for the exchange-correlation functional. The
strains �i were applied with respect to the theoretically deter-
mined equilibrium lattice parameters a=0.273�0.281� nm for
bcc Co and a=0.273�0.279� nm for bcc Ni in LSDA �GGA�.
The resulting LSDA �GGA� magnetic moments per atom of
1.63�1.74� �B for bcc Co and of 0.47�0.53� �B for bcc Ni
are in agreement with the experimental values of 1.53 �B
and 0.54 �B, respectively.

For the case of bcc Co all the data points �ei��0� could be
perfectly fitted by parabola in the range −0.03	�0	0.03,
i.e., third-order effects can be neglected. As for other
materials,10–13 the discrepancy between LSDA and GGA may
be quite large �see Table I�. Because for the experimentally
well-investigated B1 of bcc Co, fcc Ni, and fcc Co the agree-
ment with the GGA values was better than the agreement
with LSDA, we concentrate in the following on the GGA
results. For bcc Co the values of B1 and B2 are quite large as
compared to bcc Fe, fcc Ni, and fcc Co. The second-order
coefficients are also large. It is interesting that there is a very
large difference between bcc Co and fcc Co. This holds even
for the first-order coefficients B1 and B2 whose magnitudes
are considerably larger and of opposite sign for bcc Co as
compared to fcc Co. In Ref. 5 it has been assumed that for
bcc Co the first-order magnetoelastic coefficients can be ap-
proximated by those of fcc Co, in contrast to the results of
our calculation.

The case of bcc Ni is even much more interesting be-
cause, as shown in Fig. 1, the data points for �ei��0� show a
drastic deviation from a parabolic behavior in the range
−0.03	�0	0.03. This deviation indicates that bcc Ni repre-
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sents a material for which third-order magnetoelastic effects
become very important. Another surprising result is that for
bcc Ni the magnitude of B1 is very small
�−1.3 MJ/m3�, much smaller than the one for fcc Ni
�10.2 MJ/m3�. As in the case of Co, the magnetoelastic prop-
erties of the bcc phase are drastically different from those of
the fcc phase. This is in line with the experimental
observations4 that the cubic magnetic anisotropy constant K1
of bcc Ni is drastically different from the one of fcc Ni, and
this was attributed to the different electronic band structures
as found by angle-resolved photoemission.

In the past, the magnetic anisotropy of various materials
has been analyzed successfully in terms of the electronic
band structure,21 and the magnetoelastic coefficients are of
course also related to the properties of the band structure.
However, what matters for magnetoelasticity is the change in
the band structure when exerting strain to the material. Thus
the analysis of the magnetoelasticity in terms of the band
structure is much more involved, and we think that it is out-
right impossible to figure out from the properties of the band

structure why the third-order magnetoelastic contributions
are so important for the case of bcc Ni.

We hope that our prediction of strong third-order contri-
butions to the magnetoelastic properties of bcc Ni will ini-
tiate an experimental investigation by cantilever-bending-
beam experiments. To do this one has to grow epitaxial films
of bcc Ni with various average epitaxial strains �0 which may
be controlled with the film thickness6 and then the change
��m of the magnetostrictive stress due to a change of the
magnetization direction has to be measured. For the case that
third-order effects are relevant we expect a parabolic depen-
dence

��m = a + D1�0 + D2�0
2. �7�

As discussed above, a linear dependence has been observed
experimentally already for several materials. The observation
of a quadratic contribution would mean that a material was
found for which the third-order magnetoelastic contribution
is relevant.

TABLE I. The calculated magnetoelastic coefficients �in MJ/m3�, elastic constants C11, C12, and C44 �in 1011 N/m2�. Our calculated
elastic constants for bcc Co and Ni agree nicely with those given in Ref. 15.

B1 B2 m1
�,2 m2

�,2 m1
�,2 m2

�,2 m3
�,2 m3

�,2 C11 C12 C44

fcc Co12 LSDA −15.9 3 243 −53 81 102 759 796 3.85 2.26

GGA −9.8 4.5 184 3 59 −41 862 1681 3.13 1.8

bcc Co LSDA 61.5 −35.2 −672 575 357 −108 −363 336 2.1 2.95 1.78

GGA 28.6 −39.6 −1013 973 148 51 −826 611 1.74 2.33 1.4

fcc Ni12 LSDA 12.6 16.9 −117 23 168 −47 −2 388 3.63 2.2

GGA 10.2 11.1 −95 71 90 −4 108 96 2.95 1.75

bcc Ni LSDA −0.2 19.1 −116 −100 917 634 �0 −308 1.99 2.62 1.9

GGA −1.3 19.7 −28 −3 87 590 −75 −1347 1.52 2.32 1.63

FIG. 1. The calculated functions �ei��0� by
applying LSDA ��� and GGA �
�. The solid
lines are the third-order polynomials fitted to the
ab initio calculated data points, whereas the
dashed lines represent the contribution up to the
second order in �0.
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