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In this paper we study the interactions between magnons and a soliton, in a classical and isotropic two-
dimensional Heisenberg antiferromagnet in the presence of a staggered field applied perpendicularly to the xy
plane. We obtained the exact solutions to the magnons in the presence of the soliton. As a consequence we
obtain the exact phase shifts, which were compared to the ones obtained by Born approximation. The quantum
corrections of the energy of the soliton were also encountered. Our results can be applied to study the
thermodynamics and generalized for two-dimensional isotropic ferromagnets with an axial magnetic field.
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The study of the interaction between magnons and topo-
logical excitations in classical magnetic systems is of funda-
mental importance, as it is the starting point to a thermody-
namic analysis of the system, as shown by Currie et al.1 As
pointed out by Zaspel et al.2 this is also important in the
study of the dynamics of vortices. As is well known, topo-
logical excitations contribute to a central peak in the dynami-
cal relaxation function and this peak is hard to detect in an
unambiguous way. Nevertheless, the signature of the topo-
logical excitations can be seen in the electron paramagnetic
resonance �EPR� line width.2 The EPR linewidth is the tem-
poral integral of the four-spin correlation function,2,3 and the
determination of this function and its dependence on the soli-
ton excitation will probably have to be done numerically and
is beyond the scope of this paper. The topological excitations
are also responsible for the Kosterlitz-Thouless phase
transition.4

Solitons interacting with magnons have been studied, in
the two-dimensional �2D� nonlinear sigma models �isotropic5

and anisotropic6� and in the 2D anisotropic ferromagnets.7 It
has been found that the quantum corrections to the classical
soliton, or vortex energy, given by the zero-point energy of
the spin waves measured with respect to the vacuum can
change strongly the classical picture, introducing interactions
between solitons5 as well as an internal degree of freedom.6

Vortex-magnon interaction in discrete lattices has been
studied in easy-plane ferromagnets by Wysin and Völkel8

using numerical diagonalization on small systems. In par-
ticular, it has been shown how the spin-wave modes are re-
lated to the instability of vortices.8,9

As is well known, the classical easy-plane ferromagnet in
the presence of a magnetic field applied in the z direction and
the isotropic antiferromagnet in the presence of a staggered
field have some similarities. They are similar from the ther-
modynamic point of view, although the dynamic behavior is
different. Many papers have been dedicated to the study of
materials in the presence of external fields.10–12 This study is
very important because, in general, experiments use external
fields. Interest in staggered fields has appeared in the litera-
ture after the paper by Oshikahawa and Affleck.13

Therefore, our purpose in this paper is to study the inter-
action between spin waves and a soliton, in a two-

dimensional antiferromagnet with a uniform staggered field
applied perpendicularly to the plane. Since the lowest-order
effect of an inhomogeneous soliton is to produce an elastic
scattering center for the spin waves, we obtain the exact
solutions and the respective phase shifts to the scattered spin
waves. The quantum corrections with relation to the zero-
point energy vacuum will be also calculated.

We start by considering the model, described by the fol-
lowing Hamiltonian

H = �
�ij�

�JSi,j · �Si+1,j + Si,j+1� + g0�0B · �− 1�iSi,j� , �1�

where the summation extends over all sites of a square lat-
tice, J is the positive exchange constant, Si,j is the spin vec-
tor at site �i , j�, g0 is the gyromagnetic ratio, �0=e /2mc is
the Bohr magneton divided by the Planck constant, and B is
the magnetic field which will be taken to point in the third
direction B=Bẑ. In the limit of zero temperature, the con-
tinuum version for this model can be obtained in the usual
way14 defining normalized vectors of magnetization mn
= �S2n+S2n+1� /2S and the vectors of sublattice magnetization
nn= �S2n−S2n+1� /2S, where the subscripts refer to the differ-
ent sublattices. Vectors mn and nn satisfy the relations
mn

2+nn
2=1 and mn ·nn=0. In the critical region, the condition

�mn�� �nn�	1 is satisfied and the Hamiltonian can be ex-
pressed in terms of nn only.15 Then, the Hamiltonian can be
written as

H =
J

2

 ���0nn�2 − ���nn�2 + hn3�d2x, � = 1,2, �2�

where h=g0�0B / �4JS�. It is useful to resolve the constraint
nn

2=1 explicitly using the spherical parametrization nn
=S�sin � cos � , sin � sin � , cos �� in terms of which

H =
J

2

 � 1

c2� ��

�t
2

− ��� ��2

+ sin2 �� 1

c2� ��

�t
2

− ��� ��2� + h cos ��d2x , �3�

where c=2aJS is the spin-wave velocity. The parameter a is
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the lattice spacing. The equations of motion following from
Eq. �3� are

�2� −
1

c2

�2�

�t2 = sin � cos ����� ��2 −
1

c2� ��

�t
2� + h sin � ,

�4�

�2� −
1

c2

�2�

�t2 = − 2 cot ����� � · �� �� −
1

c2

��

�t

��

�t
� . �5�

The static solution �s for Eqs. �4� and �5� is �s
=q arctan�y /x�, where the parameter q=0,1 ,2 , . . . plays the
role of the topological charge of the soliton. We can write the
localized solutions of Eqs. �4� and �5� in polar coordinates in
the form

� = �s�r�, �s�0� = �s��� = 0, �s��,t� = q� − �t . �6�

Here, � is the internal precession frequency of the soliton
and can be determinate, through the number of bound mag-
nons N. The necessity to consider solitons with internal pre-
cession is caused by the fact that, according to the Derrick-
Hobart theorem, static solitons in models like Eq. �6� are
unstable. Substituting Eq. �6� into Eqs. �4� and �5�, we notice
that Eq. �5� is automatically satisfied. Then, from Eq. �4� we
obtain

1

k0
2�d2�s

dr2 +
1

r

d�s

dr
 + �1 −

q2

k0
2r2sin �s cos �s −

h

k0
2 sin �s = 0,

�7�

where k0
2=�2 /c2. By convenience we have introduced l0

2

=1/k0
2 and H=h /k0

2. The solution of Eq. �7� describes the
axisymmetrical distribution of magnetization with a fixed
circulation of the phase gradient ��, i.e., with a given circu-
lation of spin �magnon� flux round the z axis. The magneti-
zation field momentum is related to the number of magnons
by the relationship Kz=−	qN. Each soliton corresponds to a
set of integrals of motion E, Zz, and N. Dynamical solitons
exist as stationary states due to the conservation of the me-
chanical integral of motion. If small perturbations that dis-
turb these integrals of motion are inserted into the equations
of motion, the dynamical solitons can be reduced to a homo-
geneous magnetization by a way of continuous deformations.
Sheka et al.16 have studied magnon scattering on topological
solitons in 2D easy-axis ferromagnets. They have encoun-
tered another equation similar to Eq. �7�. Although the static
soliton solution is similar, in some aspects, to our equation,
the dynamics is quite different.

The magnetization in equilibrium is ��s�r�=�0� far from
the soliton �r→��. The soliton axis is limited and therefore
�s�r�=0 for r=0. It follows from the latter condition that, as
r→0,

�s�r� = �r/r0��q�, r0 = const. �8�

Notice that �s�r� does not depend on H; however, the behav-
ior for r→� depends on H. For H�0 and 1 the solution has
the following behavior at infinity:

�s�r� = �0 −
q2H2

�1 − H2� l0

r
2

, H � 0,1, �9�

and for H=0, the magnetization approaches the equilibrium
direction at infinity exponentially,

�s�r� =



2
+

constant
�r

e−r/l0, H = 0. �10�

When H=1, we have �=0 at infinity and the coordinate de-
pendence of the magnetization vector at r=� vanishes. In
this case the magnetic vortex-type solitons �q�0� cannot
exist.

The magnetization distribution near a magnetic vortex for
q=1 was calculated numerically by Kosevich et al.17 When
H�1 the behavior �s�r� is qualitatively similar to the density
distribution of a superfluid component within the vortex de-
scribed by Pitaevskii.18 For H→1 their similarity becomes
more prominent. Since �s��1−H, for H→1 Eqs. �4� and
�5� can be replaced by their �s power series expansions.
Then, we have

l0
2�2�s + �1 − H��s −

1

2
�s

3 = 0. �11�

Using the variables �s�r�=�2�1−H���� and 
=�1−H�r / l0�, Eq. �11� can be reduced to the Gross-
Pitaevskii equation of the function ���.18,19

The main macroscopic characteristic of the soliton is its
energy. It is well known that soliton energy in an infinity
crystal diverges logarithmically. Hence, with a logarithmical
accuracy the soliton energy is

Es 	 2
q2J
M0

2

2
a


l0

R

sin2 �s�r�
dr

r

	 
Jq2�1 − H2�aM0
2 ln�R/l0� , �12�

where a is lattice parameter, M0 is the z magnetization, and R
is a cutoff soliton radius. The cutoff is necessary because the
soliton center is a singularity in the continuum limit. The
exact energy value is different from Eq. �12� by a term which
is finite with R→�. If the solution of Eq. �7� is known for
different values of h, then Eq. �12� can be improved,

Es = 
Jq2�1 − H2�aM0
2 ln�RA�H�/l0� . �13�

The function A�H� can be found by numerical methods. As
was shown by Kosevich et al.,16 this function varies between
0.2 for �H=1� and 4.2 for �H=0�.

In order to determine the behavior of magnons in the pres-
ence of a soliton, we assume that the spin-polar angle is
given by ��r� , t�=�s�r�+��r� , t�. Here, ��r� , t� are assumed to
be a small quantity, i.e., ��r� , t��1, which reduce to magnon
solutions if no solitons are present. In the presence of a soli-
ton, ��r� , t� gives the change in the soliton configuration as a
result of the soliton-magnon interaction. Considering that the
asymptotic comportment �s�r�=0 � Eqs. �6�, �8�, and �9��,
since �0	0, we can substitute ��r� , t� in Eq. �4�, neglecting
quadratics terms in ��r� , t�, and we obtain the equation of
motion for magnons in the presence of a soliton as
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�2� −
1

c2

�2�

�t2 = ����� �s�2 −
1

c2� ��s

�t
2

+ h� . �14�

The solutions for Eq. �14� represent the out-of-plane spin
waves. Note that Eq. �14� contains the potential term V�r�
= ��� �s�2= �q /r�2 due to the interaction between out-of-plane
spin waves and the soliton. Substituting Eq. �6� into Eq. �14�,
in the limit r→�, Eq. �14� admits pure plane-wave solutions
in the form ��r� , t�=exp�i�k� ·r�−�t��, with the dispersion law

�2 = k2c2 − �2 + hc2. �15a�

In the rotating frame the magnons frequency is

�̃2 = k2c2 + hc2. �15b�

Here, k= �k��, where k� is the wave vector. In a classical theory
we can choose any sign of the frequency; but in order to
make contact with quantum theory, with a positive frequency
and energy �k=	��k�, we will discuss the case ��0 only. Of
course, the potential in Eq. �14� is cylindrically symmetric
because we are dealing with a unique center problem. There-
fore, the phase-shift matrix is diagonal. Now, we can write
the solution ��r� , t� as ��r� , t�=B�r ,��exp�−i�t�. Thus, Eq.
�14� can be rewritten as

�2B + ��2

c2 − ��� �s�2 +
1

c2� ��s

�t
2

− h�B = 0. �16�

The exact solutions of Eq. �16� represent the out-of-plane
spin waves in the presence of the soliton and can be written
as

��r�,t� = C1J��kr�e−i�n�+�t�, �17�

where J��kr� is the Bessel’s function, �=�n2+q2, and n
=0,1 ,2 ,3 , . . . represents a quantum number of angular mo-
mentum for the out-of-plane spin waves. The parameter k in
Eq. �15� is the respective wave vector. The constant C1 is
determined through the normalization of the eigenfunctions;
however, we have not encountered it in this manuscript.

Since the lowest-order effect of the soliton is to produce
an elastic scattering center for the magnons, we will calculate
the phase shifts of the waves scattered out-of-plane. So we
will study the behavior of J��kr� in the limit r→�. The
functions J��kr� can be written as

J��kr� =
1

2
�H�

�1��kr� + H�
�2��kr�� , �18�

where H�
�1��kr� and H�

�2��kr� are the Hankell’s functions. The
Hankell’s functions’ first and second types corresponds to a
circular wave entering and a circular wave leaving the origin
in r→�, respectively. In these regions we have plane waves,
so that the waves in these regions should be described by an
overlap the Hankell’s function.

The difference between ��kr�=J��kr� �solution in the
presence of a soliton� and Jn�kr� �solution in the absence of
the a soliton� is physically clear. As an incoming spin wave
approaches the zone of influence of the potential, it is more
and more perturbed by this potential. When, after turning
back, it is transformed into an outgoing spin wave, it has

accumulated a phase shift of 2�n�k� relative to the free out-
going spin wave that would have resulted if the potential had
been identically zero. In fact, the factor e−2i�n�k� summarizes
the total effect of the potential on a magnon of angular mo-
mentum n, so that we can write

Jn�kr� =
1

2
�H�n�

�1��kr� + e−2i�n�k�H�n�
�2��kr�� for �r → �� .

�19�

By comparing the solution �19� with the exact solution �18�
at r→�, we obtain the phase shifts

�n�k� = �n − �n2 + q2�



2
for �n � 0� , �20�

�n�k� = − �n + �n2 + q2�



2
for �n � 0� . �21�

Notice that ��n��k�=�−�n��k� and that the phase shift of the
partial wave �n�kr� does not depend on k, that is, on the
energy. The scattering on continuum states can contribute to
the correlation function. Soliton motion results in a central
peak at zero frequency, which is far removed from EPR. To
analyze it better we will calculate the phase shifts �n�k� us-
ing the Born approximation and then compare the approxi-
mation with the exact result given by Eqs. �20� and �21�. We
can use our exact result to check the Born approximation and
it may help to do the calculations using this technique as in
Refs. 2, 20, 5, and 7.

The first-order Born terms for the phase shifts are given,
in general, by

�n
�1��k� = −




2



0

�

rdr�J�n��kr�e−in�V�r�ein�J�n��kr���,

�22�

where the symbol �. . .�� denotes an angular average. Since
the out-of-plane spin waves “feel” a potential of the soliton
V�r�= �q /r�2, we get for n�0.

�n
�1� = −




2

q2

2�n�
for �n � 0� . �23�

Here, we use q=1 which represents low energy solitons, con-
sequently appear more easily in the system. For n=0, the
integral �22� diverges because the vortex core is a singularity
in a continuum limit. Usually this means that a short-distance
cutoff,4,21 must be applied ad hoc to integrals over the spin
field, but the cutoff radius itself is not well known. The
agreement between the approximation Eq. �23� and exact
results Eqs. �20� and �21� for a large angular momentum
channels �n��1 is presented in Table I. For �n�=1 the error is
21 percent.

As we could expect, the Born approximation in first order
is not good for n=0, ±1 angular momentum �s and p waves�.
In fact, in these cases the centrifugal barrier is given by
approaching the zone of strong influence of the potential,
where the Born approximation may fail. For �n��2, the cen-
trifugal barrier is large and expels the spin waves from the
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center of the vortex, where V�r��1. It is easy to see that,
when �n��1, Eqs. �20� and �21� reduce to Eq. �23�. This
result is physically important for it implies that an out-of-
plane spin wave in the state ��r� , t� is practically unaffected
by what happens inside a circle centered at origin.

In order to improve the calculations for �0
�1��k� and

�1
�1��k� we have to take in account the second-order Born

approximation. However, these calculations present the same
difficultly we have met in calculating �0

�1��k�, since the cutoff
radius is not well known. In using a value proportional to a
�lattice constant�, we get results that depend on this value
and then it seems to be artificial.

By a generalization of arguments used in the semiclassical
quantization of solitons in �1+1� dimensions,5 it can be
shown that the quantum correction to the classical vortex
energy, given by the zero-point energy of the spin waves
measured with respect to the vacuum, is

E = Es −
	

2




0

1/a ��̃

�k
tr �n�k�dk , �24�

where Es is the classical energy of the soliton � Eq. �13��. The
last term in the right-hand side of Eq. �24� represents the
continuum states’ energy contribution in the rotating frame.
The trace is taken over the angular momentum indices. Here,
we have assumed a Debye model for the spin-wave excita-
tions, with 1/a as the cutoff momentum. The trace can be
easily calculated, using an angular momentum cutoff given
by5 nD=R /a. We find

tr �n
�1��k� = −


q2

2



a

R

�
n=−�

� J�n�
2 �kr�

r
dr = −


q2

2
ln�R

a
 .

�25�

Substituting Eqs. �15� and �25� into Eq. �24� and calculating
the integral, we obtain

E = Es +
	q2c

4
ln�R/a����1/a2� + h − �h� . �26�

The electron paramagnetic resonance �EPR� linewidth mea-
surements provide an indirect method to experimentally de-
tect solitons. As pointed out by Zaspel et al.2 the soliton
energy can be obtained from the linewidth. A large staggered
field inhibits the quantum fluctuations and therefore quantum
corrections to the soliton energy. Nevertheless, for low stag-
gered fields, there are more quantum fluctuations, then the
quantum corrections are more important. As happens in the
other systems22 the quantum corrections increase the classi-
cal soliton energy. It costs less energy to excite a “topologi-
cal excitation” in the presence the spin waves �harmonic ex-
citations or mesons, in general� than in the vacuum.

In this Brief Report we have studied the interactions be-
tween magnons and a soliton, in a classical 2D antiferromag-
net model with a staggered magnetic field applied axially in
the xy plane. We obtained the solutions in-plane and out-of-
plane of the magnons in the presence of the soliton. The
phase-shifts of the magnons were also found. The quantum
correction of the classical energy of the soliton has been
encountered. Finally, we would like to mention that the
bound state�s� and scattering or continuum states may be of
the fundamental importance not only for the spin dynamics
but also for the statistical mechanics,1 as well as quantiza-
tions procedures for soliton states6 and perturbation
theories22 involving soliton responses to external perturba-
tions.
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