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We use molecular dynamics simulations to characterize low-energy two-level systems �TLS� in glasses. We
estimate that in silica glass, TLS parameters are broadly distributed in such a way that the tunnel splitting is in
the 0.01–1 K range. We also observe simultaneous atomic jumps in different TLS below 30 K and suggest that
this is evidence of strong interaction between TLS below this temperature scale.
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Experiments, accumulated in the past few decades, sug-
gest that some properties of low-temperature glasses and
amorphous solids do not depend on their chemical composi-
tion and microscopic structure, i.e., such properties are uni-
versal. For example, below 1–5 K many glasses show an
additional �relative to crystals� linear-in-temperature contri-
bution to heat capacity1 of comparable magnitude. A particu-
lar universality is seen for many glasses having �almost� con-
stant ratio of the phonon wavelength to its mean free path.2

In order to explain low-temperature thermal and acoustic
properties of glasses, the so-called standard model has pro-
posed the existence of noninteracting two-level systems
�TLS�.3 At low ��1 K� temperatures, two-level energy
states, formed due to the quantum tunneling of an object
between the two minima of double-well potential �DWP�,
were suggested to be the origin of anomalous thermal prop-
erties of glasses. Many properties, including linear-in-
temperature specific heat, thermal conductivity, and many
linear and nonlinear sound absorption properties, were con-
sistently described in the framework of the standard model.4

The standard model is a phenomenological theory which so
far did not find a systematic theoretical justification. Namely,
the microscopic origin of TLS in various glasses and, more
importantly, the generic universality of low-temperature
properties remain a deep open problem.

At the microscopic level, the main open question remains
as to what is the nature of two-level systems in a glass.
Previous molecular dynamics �MD� simulations have found
that silica glass, a prototypical glass system, can support
large cooperative atomic motions in DWP, which involve
coupled displacements and rotations of several, on the order
of ten, SiO4 tetrahedra5 �see Fig. 1�b��. If M is the mass of an
object in DWP, D is the value of jump, and V is the activa-
tion barrier, the tunnel splitting is6

� = 2��� 2V

���
exp�− D�2MV/�� . �1�

A natural question arises, given that a TLS object consists
of several �up to ten� tetrahedra, some of which move large
0.6–0.8 Å distances,5 whether such an object can actually
tunnel and hence contribute to the anomalous low-

temperature properties, as the standard model predicts. In
order to apply Eq. �1�, one needs to �1� reliably estimate the
value of activation barrier V, and �2� find a suitable way to
calculate the tunnel splitting in a situation where there is a
field of atomic displacements, di, each corresponding to a
different atomic mass mi, rather than a single value of D.

The difficulty in the reliable estimation of tunnel splitting,
the role of elastic interactions between TLS, and the absence
of direct experimental confirmation of tunneling states have
led to questioning of their existence altogether.7 The nature
of TLS �tunneling or otherwise� in the presence of strong
elastic interactions between TLS is even less understood.7 In
this paper, we perform extensive MD simulations of silica
glass to extract the microscopic parameters needed to calcu-
late tunnel splitting. We estimate that these parameters are
distributed in glass in such a way that some TLS can tunnel
at �1 K, whereas for others, ��1 K.

In addition, we address the question of interaction be-
tween TLS. Despite many successes of the standard model,
an apparent shortcoming has become evident throughout the
years. As formulated, the standard model assumes that TLS
do not interact. Yet irradiation experiments have shown that
TLS interact strongly through strain fields of the solid,9 and
that universal properties appear as a consequence of satura-
tion from the strong interactions between bare defects. An-
other recent experiment indicated that, perhaps, nonlinear
acoustic properties10 cannot be understood in the framework
of noninteracting TLS. A more general theory, as may be
perceived, should take into account the interaction among
TLS through strain fields, although quite different versions
of such a theory were suggested. For many scenarios,7,8 one
of the difficulties is how to explain how strongly interacting
TLS are responsible for the well-known nonlinear as well as
linear universal properties of sound absorption. An important
task for MD simulations is therefore to look for the evidence
of interaction between TLS and attempt to estimate its
strength. If, for example, the interaction is strong, TLS can-
not be considered independent as originally proposed in the
standard model, and a system may have qualitatively differ-
ent properties. In this paper, we find that the effects of inter-
action between TLS can be seen at as high temperature as
30 K.

In this work, we use the silica glass as a case study. We
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work with several different glass structures containing fully
connected 4096 tetrahedra, and use the highly successful
Tsuneyuki interatomic potential.11 Other details, using simu-
lation method, preparation of glass structures, etc. are given
in earlier publications.5

We begin by estimating an activation barrier V. The clas-
sical MD simulations allow the observation of the rattling of
atoms in local minima as well as rare thermally activated
hopping of several tetrahedra; therefore, corresponding rat-
tling and hopping frequencies can be estimated directly �see
Figs. 2 and 3�. The rattling oscillation frequency, �0, in one
potential well, and �, the frequency of hopping between two
minima, are related as

� = �0 exp�− V/kT� . �2�

In previous MD simulations, only one or two events were
observed due to the reduced ability to simulate longer time
scales.5 More recently, this obstacle has been overcome, and
we can observe enough hopping events in order to calculate
V from Eq. �2�.

We simulate glass structures at five different temperatures
in the 10–100 K range. We identify TLS in glass structure as
clusters of atoms which experience large jumps. Figure 1�a�
shows three representative TLS in the MD simulation box. In
each of them, we find, as in the previous studies,5 large-
amplitude atomic jumps, which correspond to �nearly� rigid
rotations and displacements of several connected SiO4 tetra-
hedra �see Figure 2�b�� �the animations of TLS motion can
be found at www.esc.cam.ac.uk/�kot/glass.html�.

In each TLS, we identify “active” atoms as those for
which the difference between the average positions before
and after jump exceeds the double of the amplitude of ther-

FIG. 1. �Color online� An example of two-level systems in the
MD simulation �a�, and jump motion in a single TLS �b�. Initial and
final configurations are superimposed in �b� to highlight the ampli-
tude of atomic jumps.

FIG. 2. Typical trajectories of central atoms in different TLS,
showing larger �0.6–0.8 Å �a� and �b� and smaller �0.3–0.4 Å
�c� jumps. For convenience in comparison, the coordinates of atoms
are shifted by constant values. The simulation temperature is 50 K.

FIG. 3. Atomic coordinates of central atoms from three different
TLS. For convinience in comparison, the coordinates of atoms are
shifted by constant values. The simulation temperature is 30 K.
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mal vibrations. In each TLS, we call an atom with the largest
atomic jump a “central” atom. In Figs. 2 and 3, we show
representative trajectories of central atoms from several dif-
ferent TLS in the simulation at two different temperatures,
30 and 50 K. In each TLS, the trajectories of other atoms
follow the pattern of the central atoms, i.e., show jumps at
the same moments of time, albeit with smaller amplitudes.
We find that jumps of central atoms in different TLS are
distributed in the range 0.3–0.8 Å �see Fig. 2�.

Since jump motion is generally irregular �see Figs. 2 and
3�, we define the average jump period � in a given TLS as
the total simulation time divided by half the number of tran-
sitions between two minima. It follows from Eq. �2� that
�=�0 exp�V /kT�, where �0=0.7 ps is the average period of
oscillation in one well. Next, we average � over different
TLS to sample different trajectories of atomic jumps. This
gives �=43 ps and 107 ps for simulations at 50 and 30 K,
respectively, and the average value of barrier V�178 K. We
note that V is calculated from the hopping frequency � in
one TLS. If TLS interact �which is indeed the case, as will be
shown below�, � can differ as compared to the case of an
isolated TLS. In this sense, the calculated values of V and
hence � are “renormalized” �from their values in a single
isolated TLS� to effectively account for the interaction be-
tween TLS. We also note that although the current system
size does not allow us to simulate enough TLS to calculate
the distribution of barriers in different TLS, the calculated
value of V is consistent with the maximum of distribution
found from the analysis of the potential energy landscape of
silica.12

Next, we consider how to calculate tunnel splitting of an
object that consists of atoms with different masses, each
jumping different distance �see Figure 1�b��. One way of
doing this is to calculate the effective mass Me,

Me = �
i

mi�di/D�2, �3�

where D is displacement of the central atom, and mi and di
are masses and displacements of all other atoms in a TLS.
Tunnel splitting is then calculated from Eq. �1� by using the
values of Me and D. Basing on the results of Ref. 13, Eq. �3�
has been recently employed to calculate tunneling probabil-
ity of cooperative motion of atoms in metals.14 We note that
this involves certain assumptions that result in Eq. �3� being
an approximation �in particular, it is interesting to clarify to
what extent it accounts for various effects of TLS-phonon
coupling�.

For a given TLS, we use Eq. �3� to calculate Me by sum-
ming over active atoms �defined above� in that TLS. For
several different TLS that have D in the range 0.3–0.8 Å, we
find that the range of Me is 100–400 amu, corresponding to
approximately one to five coupled SiO4 tetrahedra. This
number is consistent with the participation ratio calculated
from the analysis of silica potential energy landscape.12 We
note, however, that the landscape analysis results in a differ-
ent insight about the nature of TLS: it finds that TLS move
along one-dimensional chains.12 On the other hand, in the
present and earlier MD simulations,5 we find that TLS are
best viewed as three-dimensional clusters �see Figure 1�b��.

For each TLS, we use its D and the corresponding Me to
calculate � according to Eq. �1�. Using V=178 K, we obtain
the range of � between 0.01 K and 0.8 K. This simulation
gives, therefore, an interesting result: it identifies TLS with
smaller D �D�0.3–0.4 Å�, and Me that give ��1 K. This
means that the tunneling of these TLS is the dominant pro-
cess at 1 K, as originally assumed in the standard model.
TLS with larger D and Me, on the other hand, are passive in
terms of contributing to anomalous thermal properties at
1 K. A future study, of course, should calculate the distribu-
tion of D and Me in different TLS.

We now address the issue of interaction between TLS.
There is no general recipe of how to calculate the interaction
energy from the MD simulations. However, if, as assumed,
TLS interact through the strain fields,7 the interaction de-
pends on the “alignment” of strain induced by the motion of
one TLS and the path along the jump �reaction path� of an-
other TLS. If strong enough, the interaction can be observed
in the MD simulation as simultaneous jumps of atoms in
different TLS. Simultaneous jumps are expected to be more
pronounced at low temperature, since large thermal motion
destroys coherence of jumps in time at high temperatures.
Hence an estimate of the interaction energy can be obtained
from the typical temperature at which correlated atomic
jumps in different TLS start to appear.

At 50 K, we observe only one simultaneous jump in two
TLS shown in Figs. 2�b� and 2�c� during the simulation pe-
riod, at 130 ps. At 30 K, we observe more simultaneous
jumps. In Fig. 3, we show the atomic coordinates of three
central atoms at 30 K, each taken from different TLS. It is
seen that TLS 1 and 2 experience simultaneous jumps at
20 ps and 290 ps, TLS 1 and 3 at 170, 290, and 380 ps, and
TLS 2 and 3 at 290 ps. All three TLS jump at 290 ps.

The degree of correlation between two TLS, f ij, can be
quantified as ncor /min�ni ,nj�, where ni and nj are the num-
bers of jumps in each TLS, and ncor is the number of simul-
taneous jumps. As defined, f varies from 0 to 1 from the case
of absence of simultaneous jumps to the case when all jumps
are simultaneous. From Fig. 3 we find that f is in the range
0.7–1 for different pairs of TLS, suggesting that the correla-
tion is significant.

We note that the frequency of hopping events is low
enough �especially the frequency of events in TLS 1 and 2,
see Fig. 3�, so that jump simultaneity is noncoincidental. In
principle, this frequency may be reduced even further by
reducing the simulation temperature; however, this encoun-
ters the problem that at low temperature hopping events are
not excited during the time scale of MD simulations, as dis-
cussed below. We further note that there is a tradeoff in de-
fining an optimal simulation temperature at which simulta-
neous jumps are best seen. On one hand, at high �	50 K�
simulation temperature, we observe enough jumps to study
their correlation in time, but the temperature appears to be
high enough to destroy jump simultaneity. On the other hand,
one could hope to see more simultaneous jumps at lower
�
20 K� temperature. However, at 10 and 20 K, we do not
observe hopping events during the simulation period of up to
0.5 ns. This is consistent with the estimation that if
V=178 K, the average hopping period, �0 exp�V /kT�
�5.1 ns at 20 K, which exceeds the time scale currently
available in our MD simulations.
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The scale of interaction energy found above �30–50 K� is
consistent with an estimate based on general grounds. A
crude estimate compares elastic dipolar interactions
��2 / ��c2���1/R3� between coarse-grained subvolumes of the
size R and the elastic excitation energy of subvolume �or
phonon energy� �c /R,7 where ��1 eV is the deformation
coupling constant, � and c are the density and sound velocity
correspondingly. The crossover length scale and energy scale
are �� /��hc3�10−7 cm and E���c� /�50 K, using
typical values of �=1 g/cm3 and c=5�105 cm/s. Roughly
the same length scale  is associated with medium-range
order and the onset of strong scattering for phonons �Ioffe-
Mott crossover�, while the energy scale E is of the order of
the boson peak.15

The appearance of correlated jumps in different TLS
at 30 K suggests that interaction energy is large enough
to be taken into account by the models that consider
low-temperature universal behavior of glasses. Taking the
density of TLS extracted from the specific heat meas-
urements P=1033 �erg cm3�−1,4 we can estimate crudely
an average distance, rav, between TLS which are distri-
buted in the energy window, �E, of 10 K. This estimate,
P= ��E�4� /3�rav

3 �−1, gives a typical distance of 63 Å which
is close to the value of 30–40 Å we found in our simula-
tions. Given that the interaction energy from the simulation
is 30 K, and that interactions depend on distance in the di-
polar manner, the larger distance in the experiment still re-
sults in interaction energy that is significant at low tempera-
ture.

A possible consequence of strong interactions between
TLS is that the low-energy degrees of freedom should be
viewed as collective modes rather than local independent
tunneling systems �it should be noted that in the presence of
strong interactions, the energy spectrum becomes strongly
mixed, and the question whether the low-energy excitations
are two-level tunneling states loses its precise meaning�. One
example of such a picture is a phenomenological theory
which ascribes anomalous low-energy states to collective
modes.16 Due to the presence and interaction between TLS,
glass network is not stiff on short length scales since the
strain can relax by the TLS motion; hence, the shear modulus
can be significantly smaller on short length scales. Such an
assumption is sufficient to show that the collective states
associated with interacting defects contribute to sound ab-
sorption, as well as to linear-in-temperature specific heat.

To conclude, the present simulation has allowed us to �1�
estimate that microscopic parameters of TLS are distributed
in glass in such a way that some TLS tunnel at �1 K �and
hence may be relevant low-energy states�, whereas others do
not; and �2� to find an evidence of interaction between TLS
that cannot be neglected at low temperature. This should be
considered in constructing microscopic theories of low-
energy excitations in glasses.
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