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Molecular electronic excitations calculated from a solid-state approach:
Methodology and numerics
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We investigate the applicability and accuracy of a solid-state approach, which was developed originally for
the relatively homogeneous electron gas, to describe electronic single-particle and electron-hole pair excita-
tions in molecules. Thereby we start from the determination of the molecular ground state within the local
density functional theory using repeated supercells and pseudopotentials for the electron-ion interaction. The
electronic spectra are obtained from the Green’s function formalism. The exchange-correlation self-energy 3 is
linearly expanded in the screened Coulomb interaction, i.e., the GW approximation is used. Optical spectra are
obtained from the Bethe-Salpeter equation for the irreducible polarization propagator. The numerical imple-
mentation and possible pitfalls of this methodology are discussed using silane, disilane, and water molecules as
examples. In particular the influence of the dynamics of the screening, the supercell size, and the number of
empty states are studied. The resulting single- and two-particle excitation energies are compared with experi-

ment and previous theoretical work.
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I. INTRODUCTION

Organic functionalization of solid substrates has become a
rapidly evolving research branch involving both chemistry
and physics. Moreover, in many instances systems of bio-
logical relevance are studied, such as proteins or nucleic ac-
ids adsorbed on solid surfaces. The interest in these systems
is fueled by applications such as chemical or biological
sensors' or molecule-based electronic circuits.? It has stimu-
lated a large number of experimental and theoretical studies,
see, e.g., Refs. 3 and 4.

In order to explain and predict spectroscopic, electronic,
chemical, and photochemical properties of hybrid systems
composed of both molecules and solid surfaces, their
ground- and excited-state properties need to be computed.
The ground-state properties of a wide class of systems, in-
cluding atomic and molecular aggregates, clusters, as well as
crystalline solids can be efficiently calculated from first prin-
ciples using the density functional theory (DFT)>® in either
the local density approximation (LDA)®® or by using an
improved exchange-correlation (XC) functional, e.g., the
generalized gradient approximation (GGA)>!'" or hybrid
functionals.!"'? This scheme generally yields very good re-
sults for atomic structures and binding energies at reasonable
computational costs, as demonstrated by a very large number
of computational studies in the last two decades. However,
the use of the DFT-LDA/GGA as a theoretical tool for the
study of physical properties other than the ground state, as in
the calculation of electronic spectra (e.g., photoemission, in-
verse photoemission, electron-energy loss) or optical spectra
(e.g., luminescence, absorption, reflectance anisotropy), is a
priori not justified: The Kohn-Sham eigenvalues of the ef-
fective, noninteracting single particles of the DFT can nei-
ther be interpreted as electron removal or addition energies
nor as energies of neutral electronic excitations, such as
electron-hole pairs. This problem can be overcome in part by
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working in the “delta self-consistent field” (ASCF) scheme.
It has been used for the calculation of ionization potentials,
electron affinities, or quasiparticle gaps'*>'# as well as for
electron-hole pair energies."”

There is a variety of quantum-chemical methods to com-
pute electronic excitations for isolated atoms and molecules,
for a recent review see, e.g., Ref. 16. Among them are ab
initio single-configurational methods that use the Hartree-
Fock (HF) solution as reference wave function, e.g., the so-
called configuration interaction-singles (CIS) method.!” Tt
overestimates the excitation energies due to the absence of
correlation effects and the multiconfigurational character of
the states. The size-extensive coupled-cluster (CC) approach
in different versions'®!” is also often used for excited-state
calculations. In general, a HF zeroth-order reference is used.
Excited-state calculations carried out using the time-
dependent density functional theory (TDDFT)**?? are be-
coming more and more popular because of their simplicity
and apparent black-box behavior. By solving a frequency-
dependent polarizability equation for the excitation energy
and the transition dipole moment, it avoids the explicit cal-
culation of the excited states. TDDFT approaches seem to
have no rival when computing excited states in large mol-
ecules, e.g., Cy,2 from first principles.

A completely different type of method to calculate
excited-state properties is referred to as propagator’*?® or
Green’s function approaches.?~?® The latter were originally
developed to describe the many-body interactions in a rather
homogeneous electron gas such as formed in crystalline sol-
ids. They start from the screening response of the electronic
system after electronic or optical excitation. Accordingly, the
dynamically screened or shielded Coulomb interaction W in-
stead of the bare Coulomb potential v is the central quantity
used in these methods. The excitation energies correspond
to the poles of single- and two-particle Green’s
functions?®?72%30 that are obtained by means of a many-body
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perturbation theory. By evaluating the one-electron Green’s
function G, single-particle excitations, e.g., ionization ener-
gies and electron affinities, are derived that can be measured
in photoemission and inverse photoemission spectroscopies.
Two-particle Green’s functions of the electronic system, e.g.,
the irreducible polarization propagator P or the density-
density response function L, allow one to access electron-
hole pair energies and collective excitations, e.g., plasmons,
which may be observed in optical spectroscopies or electron-
energy loss spectroscopy (EELS).

Due to numerical limitations, the exact calculation of the
correlation energy in solids is hardly possible. Instead, one
resorts to approximations to describe the most relevant cor-
relation mechanisms. Hedin’s so-called GW approach,?®?’
which represents a linear expansion of the XC self-energy
operator %, of the electrons in the screened potential W in-
stead of the bare Coulomb potential v (which gives only the
exchange interaction), is the most widely used approxima-
tion in this context. This scheme allows for deriving a single-
quasiparticle (QP) equation of a structure similar to the
Kohn-Sham equation used in the DFT.3!32 Only the (semi-
)local potential VX€ is replaced by the XC self-energy opera-
tor 2. This suggests to calculate QP bands by using a first-
order perturbative approach with respect to (2—VX¢)33-3
However, QP transition energies do in general not correctly
describe optical excitation energies, i.e., photon absorption
processes. The interaction of electron-hole pairs may dra-
matically shift the peak positions as well as appreciably dis-
tort the spectral line shape. The electron-hole interaction is
accounted for by solving the Bethe-Salpeter equation (BSE)
for the irreducible polarization function P.3%37 Starting from
DFT-LDA/GGA calculations, it has recently become possible
to solve the BSE from first principles. Optical spectra includ-
ing the effects of electron-hole interaction were obtained for
a series of bulk semiconductors and insulators**~*? and their
surfaces.*>** The formalism has been generalized also for the
calculation of nonlinear optical spectra.*>46

The methodological developments concerning the calcu-
lation of molecular excitations on one hand, and of excita-
tions in extended solids on the other hand, have advanced
rather independently of each other for a long time. However,
the progress in materials science has recently caused intense
interest in phenomena that involve excitations of systems
like organically functionalized semiconductors*’ or small
clusters embedded in a solid matrix.*® Thus a sufficiently
accurate approach that is applicable to longitudinal electron-
electron interactions in systems with both highly localized
and extended electronic states is required to assist in the
design of such systems. The most accurate quantum-
chemistry methods such as configurational interaction (CI)
schemes'®!? are computationally very demanding and can
hardly be applied to large systems such as crystals and their
surfaces. Presently, there are many activities aimed at apply-
ing TDDFT to extended systems.**-3! However, the accuracy
of excitation energies obtained within TDDFT for systems
that extend beyond the exciton radius is not yet established.
On the other hand, there is no fundamental reason why
Green’s function techniques based on the perturbative GW
approach should be restricted to solids. In fact, there are
already a number of promising attempts to apply these meth-
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ods to atoms, molecules, or small clusters, see, e.g., Refs.
52-59. The present paper aims at exploring systematically
the potential and possible pitfalls of applying a GW/BSE
implementation based on a Bloch function description of the
electronic states (as typically used for crystalline solids) to
small molecules. Particular attention is paid to a detailed
description of the methodological and numerical details.

We study three prototypical molecules, monosilane
(SiH,), disilane (Si,Hg), and water (H,0). These molecules
are studied using a three-step approach: (i) Ground-state cal-
culations are performed within the DFT-LDA or DFT-GGA.
The Kohn-Sham eigenvalues and eigenfunctions are ob-
tained for the theoretical equilibrium geometry. (ii) Then we
solve the quasiparticle equation in a perturbative manner
with respect to (2 —VX€). The influence of the usually ne-
glected nondiagonal elements of the self-energy 2 =GW and
the energy dependence of 3 are studied. We will show that
an expansion of the self-energy matrix elements around the
KS eigenvalues is inappropriate for molecules because of the
huge QP shifts. (iii) Molecular optical spectra that account
for electron-hole attraction and electron-hole exchange are
obtained by solving the BSE.

The paper is organized as follows: A brief summary of the
theoretical and computational methods is given in Sec. II.
Methodological and numerical details of the implementation
are investigated in Sec. III using SiH, as an example. In Sec.
IV single- and two-particle excitation energies are presented
for Si,H¢ and H,O. The paper closes with a brief summary
and conclusions in Sec. V.

II. THEORETICAL AND COMPUTATIONAL METHODS
A. Ground state

The structurally relaxed electronic ground states of the
considered molecules were determined by DFT total-energy
calculations.>® The convergence criterion for the Hellmann-
Feynman forces was set to 1 meV/A. For silane and disi-
lane, the LDA functional in the Perdew-Zunger
parameterization’® was used to model the XC effects. The
electron-ion interaction is described by first-principles norm-
conserving pseudopotentials that have been generated within
the Hamann scheme.® A real-space finite-difference repre-
sentation of the electronic wave functions, densities, and po-
tentials together with a multigrid technique allow for conver-
gence acceleration and efficient parallelization of the
calculations.®! The wave functions were mapped on grids
with a spacing of about 0.25 A. In order to make contact
with earlier work on excitations in ice,*? the GGA%'? is used
to describe exchange and correlation for H,O molecules. In
this case, the mesh point spacing has been reduced to 0.16 A
and soft Troullier-Martins pseudopotentials®”> were used.

To model the molecules in the gas phase we used a peri-
odic arrangement of sc supercells, each containing one mol-
ecule. The supercell must be large enough to avoid interac-
tions between the molecule and its images. The convergence
of the bound electronic excitations within 0.1 eV with vary-
ing the supercell size was the criterion used to determine the
necessary cell dimension. This led to edge lengths of a;
=11.9 A (SiH,), 13.8 A (Si,Hg), and 10.0 A (H,0). For si-
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lane we also present results for supercell dimensions up to
35.5 A. The translational symmetry of the supercell arrange-
ment leads to Bloch wave vectors in the corresponding Bril-
louin zone (BZ). However, since the dispersion of the result-
ing KS bands is vanishing for noninteracting molecules, we
sample the BZ with one point only, that was placed just
beside the I" point.

In order to check the influence of the numerical imple-
mentation, the properties of silane were also calculated using
the projector-augmented wave (PAW) method® in conjunc-
tion with a plane-wave representation of the wave functions.
Thereby we used the DFT-LDA implementation of the Vi-
enna Ab-initio Simulation Package (VASP).** The all-
electron-like wave functions of the PAW scheme allow for a
highly accurate evaluation of matrix elements of the Cou-
lomb interaction®® as well as of the optical transition
operator.® The results obtained using VASP agree within
0.01 A for the structural properties and 0.1 eV for the exci-
tation energies with the findings obtained from the real-space
multigrid code.

Irrespective of the representation of the wave functions,
for a given atomic geometry the Kohn-Sham equation®

h2
- EAX + Vipn(X) + V() [ (x) + VXC(X) I (x) = &\ (x)

(1)

has to be solved self-consistently for the external potential
Vion(x) due to the ions by iterating the Hartree potential
Vy(x), the XC potential VX¢(x), and the electron density

N
n(x) = > [ (x)|*. )
A=1

The sum in Eq. (2) runs over all occupied states of the
N-electron system. Each KS state is characterized by an
eigenfunction i, (x), an eigenenergy ¢,, and a set of single-
particle quantum numbers A. For a periodic supercell ar-
rangement, A may be replaced by a band index v and Bloch
wave vector k.

The Lagrangian parameters &, in the KS equation (1) do
not represent energies of single-particle excitations. Apart
from the energy of the highest occupied state that equals the
ionization energy,’” they have no physical meaning. Never-
theless, the KS eigenvalues are used in many instances as a
first approximation to the true single-particle excitation en-
ergies. This is motivated by the similarity of Eq. (1) with the
single-particle Schrodinger equation. For bulk crystals, the
band dispersions obtained from the KS equation are indeed
similar to those of measured Bloch bands.?*=3> Irrespective
of their interpretation, the solutions {4 (x)} of Eq. (1) form
an orthonormal and complete set of functions well-suited to
represent the Green’s functions of interest.

B. Quasiparticle equation

Single-particle excitations are measured in photoemission
and inverse photoemission experiments. There are two obvi-
ous reasons why the excitation energies obtained in these
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experiments usually deviate from the corresponding KS ei-
genvalues: (i) The excited electron or defect electron, i.e.,
hole, is not independent of its surroundings. The electronic
system reacts to the excitation by redistributing the electrons,
i.e., by screening. The excited electron or hole is dressed and
forms a quasiparticle.®® This dressing changes the energy re-
quired to remove or add an electron to the system. (ii) The
excitation of the system changes the number of electrons, N.
The KS eigenvalues are, however, calculated for the system
in the ground state with N electrons. To overcome this limi-
tation, the propagation of an electron or hole is described by
the single-particle Green’s function whose poles in the fre-
quency plane define the excitation energies. Using a varia-
tional procedure, Hedin?®?" derived a self-contained set of
five coupled equations. The equation of motion of the single-
particle Green’s function has a structure similar to the Kohn-
Sham equation (1)

n 2 2 v - vm e
i 19[+2m x~ Vion\X) — VylX

—fz(lz)G(zl')dzzé(l-l') 3)

with 1=xt and 1'=x'¢t". The most notable difference is the
replacement of the exchange-correlation potential VXC by the
XC self-energy 3. The Green’s function and the self-energy
have to be determined self-consistently through a set of
coupled equations,

2(12)=ihf W(173)G(14)I'(42:3)d(34), (4)
W(12) =v(12) + J W(13)P(34)v(42)d(34), (5)

P(12)=—ih J G(23)G(42)T'(34;1)d(34), (6)

I'(12;3) = 8(12) 8(13)

53(12) _
@s) G(46)G(75)T(67:3)d(4567), (7)

where W is the screened Coulomb potential, P the polariza-
tion function, and I' the vertex function. In addition

8(12):5(12)—fv(13)1>(32)d3 (8)

yields the dielectric function which determines the screening

W(12) = J v(13)e71(32)d3 9)

of the longitudinal electron-electron interaction in the system
due to the bare Coulomb potential v(11")=e?/|x—x"|&(t
—1"). Starting with the Hartree approximation, where =0,
the vertex and polarization functions result as

I'(12;3) = 8(12)8(13), (10)
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Py(12) =-ih G(12)G(21). (11)
This leads to the GW approximation of the self-energy
3(12)=ih G(12)W(1*2). (12)

The dielectric function (8) occurring in the screened Cou-
lomb interaction (9) of expression (12) has to be calculated
within the random-phase approximation (RPA) (11) or, more
precisely, the independent-quasiparticle approximation.

In general, no Lehmann representation of the single-
particle Green’s function exists.?’® The single-particle wave
functions and eigenvalues depend on the energy. Usually, the
spectral function possesses more than one peak.®”%® Satellite
structures appear, reducing the spectral strength of the main
peak. If the latter is very pronounced, it is a reasonable ap-
proximation to neglect the satellites and to assign the full
spectral strength to this so-called quasiparticle peak. The
lifetime of the quasiparticle determines the width of the QP
peak. In the following we assume an infinite lifetime by ne-
glecting the width of the QP peak. In thermodynamic equi-
librium at temperature 7, the Green’s function for imaginary
time differences r—¢' can be expressed in terms of QP wave
functions & (x) and energies &2 by

1 e W@ (x)
Gxx',f—1')= —— =iz, (=" )Y N AN R
(oo =)= g2 I T T

(13)

with B=1/kgT and hz,=p—inmw/B (n=x1,+3,+5,...;uis
the chemical potential of electrons). In this Lehmann repre-
sentation, we have implicitly assumed that QP wave func-
tions and energies are independent of the energy hz,. This is
true only for quasiparticles with a sharply peaked spectral
function and often approximately the case for states of non-
metallic systems around the band gap.5”-%% We will later show
that this holds also for quasiparticles in molecules. The rep-
resentation (13) of the Green’s function leads to the eigen-
value problem for the quasiparticles

2
[— zh—mAx + Vion(%) + VH(x)] Y (x)
- J Ix'3(xx’ e Y (x) =Y (x).  (14)

The equation of motion for both the Kohn-Sham and quasi-
particle wave function are quite similar. This suggests to ex-
pand the QP wave functions in terms of Kohn-Sham orbitals
according to

P(x) = 2 A, (x). (15)
A

Using this expansion in the quasiparticle equation, one ob-
tains an eigenvalue problem for the expansion coefficients
and the quasiparticle energies in the form
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2 (Bren+Re(NS(e2) - VN )A 00 = XA .,
)\I
(16)

where the matrix element is explicitly given by
(N2 = VAN = f &*x f d3x’¢/f;,(x){2(xx’,sgp)

= V¥(x) 8(x — x" ) (x). (17)

If the nondiagonal elements of the operator 62 (g)=2(g)
—VXC are negligible, one gets the first-order perturbation
theory result. The quasiparticle wave functions are replaced
by the Kohn-Sham wave functions #"(x) = (x),>! and the
quasiparticle energies are given by

P
88 =8)\+A)\,

Ay =Re(A\[2(e2%) — VXN, (18)

It is clear from this expression that the influence of the
precise functional used to describe VX€ in the DFT calcula-
tions on the quasiparticle energies can be expected to be
minor. In most actual implementations, the self-energy dif-
ference in Eq. (18) is not taken at the QP energy &', but
expanded linearly around the KS eigenvalue &,. Further-
more, the Green’s function in G and W in the GW expression
(12) are replaced by the KS Green’s function G, leading to
the so-called G,W, approximation. The QP shifts (18),
|A\|=|e¥~&,|, are rather large for molecules, however.
Therefore the linear expansion is not a good approximation.
Instead, we follow the Blomberg-Bergersen approach®-”
and replace the Green’s function in 3 [Eq. (12)] and W [Eq.
(5)] by a Green’s function of the form(13) with the KS or-
bitals as QP wave functions.

C. Exchange-correlation self-energy

The calculation of the matrix elements of the exchange-
correlation potential VX is straightforward. Somewhat more
complicated to evaluate, however, are the matrix elements of
the self-energy operator 3. With the screened Coulomb po-
tential in a Bloch-Fourier representation and a symmetrized
inverse dielectric function

2 kk' Kk ’
W,Z],:t,}(k/(zm) = 47;; 2 BW,(q - G)BMM’ (q,+ ¢ )g_l(q
16.C’ la+Gllq+G'|
+G,q+G";Z,) (19)

one obtains the matrix element (17) of the self-energy in GW
approximation as

1 /
<Vk|2(hzn)|/~l“k> == EE, % 2/ Wzl:ﬂll((r(Zn

_Z}’l’)GV’V'(k,7ZVl’)' (20)

Here Bl;l:,(Q) denotes the Fourier transform of two Bloch
functions
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B*(Q) = f XY (X)X (). (21)

The diagonal matrix elements of the Green’s function are
given by

1
hz-eP(k)’
The wave vector q in Eq. (19) samples the BZ, and the wave
vectors G and G’ are reciprocal lattice vectors. With the
polarization function in the GW approximation, P=—ih GG,

the symmetrized dielectric function in Eq. (19) follows in
independent-quasiparticle approximation as

G,(k,2)= (22)

e(q+G,q+ G ;w)

8 re?

P SO L S—
" 0lg+Gllg+ G|

B (q+G)BEX(q+G)

v

E [ sgp(k) - squ(k’) + h(w+in)

cv,kk’

B X(q+G)B* (q+G")

s?P(k) - sUQP(k') -h(w+in |’
(23)

where the ¢ sum (v sum) is over empty (filled) states. The
required self-consistency of the QP energies sgp(k) in the
Green’s function (22) and the dielectric matrix (23) compli-
cates the computation of the matrix elements (20). It renders
the computations time demanding, despite the neglect of the
difference between QP and KS wave functions in the self-
energy 2, itself. The starting point usually employed for cal-
culations of extended systems, the replacement of SSP by &),
is not well-suited for molecules, where the quasiparticle en-
ergies are much closer to the Hartree-Fock (HF) values than
to the Kohn-Sham energies. In explicit computations, assum-
ing unchanged wave functions, we replace the quasiparticle
energies sSP by HF-like values 8§IF for starting the iterations.
These HF-like eigenvalues are determined from the un-
screened exchange contribution to the GW self-energy 2.,
which is, however, computed using the KS wave functions
(see discussion below).

The spectral representation of the symmetrized inverse
dielectric function

e (q+G,q+G';2) = 8ggr
s f“" d_wIm[s‘l(q +G,q+G'";0)]

e T

7-w
(24)

allows for splitting the self-energy, %=3*+3C, into an

4q7e?

Q

SNk ho)=-

> X

v k' q,GG’
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energy-independent exchange term and a correlation part
which is frequency dependent. For zero temperature it holds

dare? O Bkk: (q+ G)Bl:;’,*(q +G)

37 (k) =— P ;
" Q v k' q.G |q+G|2
(25)
c 4re?
Skhg=——2 >
v k' q,GG’
Bl:l:,’ (q+ G)Bl;]f,’,*(q +G’)
la+Gllq+ G|
o Y dw Imle '(q+G,q+G';0)]

0 T s?,"(k’) -hz+h wsgn(sg})(k') —m)
(26)

The Coulomb singularity in Egs. (25) and (26) for G=G’
=0 and q— 0 is treated according to previous suggestions.*

The partitioning of the self-energy into an exchange and a
correlation term in Egs. (25) and (26) is very convenient if
dealing with a spectral representation on the real, positive
frequency axis. However, for approximate screening func-
tions, e.g., the plasmon-pole approximation or a static
approximation,?! it is more common to split the self-energy
in a Coulomb-hole and a screened-exchange part, 3 =30
+35EX 4 PYN 27 I the limit of static screening one finds for
the self-energy®”

oee Kk’ kk'* ’
47re? | B,,(q+G)B,, (q+G’')
S0=-To 3 3 e e @
v k' q,GG’ qa+ qa+
+G,q+G';0), (27)
2mre? B¥(G -G’
Al (SE ;e s, Bul ), {e(q+G,q+G';0)
q,GG' |q+G||q+G|
- g} (28)

The static expression is obtained by setting hz:s?,P (k') in
the denominator of Eq. (26). We used the completeness of
the KS eigenfunctions to arrive at the explicit form (28) of
the COH term. This is an important point because numeri-
cally the convergence with respect to the intermediate states
is hard to reach for the COH part. The dynamical contribu-
tion to the self-energy follows from the correlation part (26)
by subtracting the static limit as

B (q+G)BY (q+G)

la+Gllq+G'|
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Im{e " (q+G,q+G';0)][e> (k') - hz]

“ dw
X — .
fo om[eF (k') - hz+ hosgn(e (k') - w)] sen(ed (k') - w)

Only the dynamical contribution (29) to the total XC self-
energy requires one to sum over all intermediate (occupied
and empty) states. This is advantageous from a numerical
point of view, since the self-energy 2 is dominated by the
static COH and SEX contributions (27) and (28). We evalu-
ate the frequency integral in the dynamical contribution (29)
at 250 mesh points with a spacing of 0.2 eV up to an energy
of hw=50 eV. Above this energy threshold the spacing is
increased in such a way that another 150 mesh points are
applied to perform the frequency integration between 50 and
150 eV. This ensures complete convergence for the mol-
ecules considered. It means that the dielectric matrix (23) has
to be calculated and inverted for 400 frequencies to compute
one integral. The number of reciprocal lattice vectors G and
G’ used in the computations of the three self-energy contri-
butions (27)—(29) is another numerical and, hence, conver-
gence issue. It is correlated with the number of electronic
states. The number of bands ¢, v in the dielectric matrix (23)
should roughly be twice the number of G vectors for con-
verged quasiparticle calculations.3!32

D. Pair excitation energies

Excitation energies obtained within the quasiparticle for-
malism describe single-particle excitations such as involved
in direct or inverse photoemission experiments. For the de-
scription of the optical absorption, however, one has to go
beyond the single-quasiparticle approximation. Spin-singlet
pair excitations as measured in optical spectroscopies are de-
scribed by the poles of the macroscopic, frequency-
dependent dielectric function. This function is related to the
microscopic dielectric matrix in the optical limit q—0 (q

=q/|q|) by”"!

1
ey(q,w)=qéy(w)q= lim .
m(@,0) = qéy(w)q T+ G.ar G.0) | s

(30)

This function contains local-field effects defined as the dif-
ference between Eq. (30) and the G=G'=0 head element
limg_oe(q.q;w) of the microscopic matrix, but no excitonic
effects.

Approximating exchange and correlation within the GW
approach (12), the kernel 62(12)/8G(45) in the integral
equation (7) is approximately given by ~W(1*2)4(1
—4)8(2-5).30 The combination of Egs. (6) and (7) then leads
to a Bethe-Salpeter equation of the form P=P,—P,WP. The
optical properties are, however, described by the polarization

function P of the macroscopic dielectric function. Local-field
effects can be included using’>"3

(29)

P=Py+Py(5-W)P. (31)

The bare Coulomb potential without its long-range part me-
diates the electron-hole exchange interaction,>3* where P,
[Eq. (11)] represents the polarization function in
independent-quasiparticle approximation. The attractive
screened Coulomb interaction W in the Bethe-Salpeter equa-
tion (31) is usually approximated by its static limit. This is
justified for electron-hole binding energies that are small
compared to the lowest pair energy of the system.>® More-
over, for the spectral properties it has been shown’”> that
the dynamical effects in electron-hole screening and the one-
particle Green’s function in P tend to cancel each other.
Using these approximations, the tensor elements of the
macroscopic dielectric function can be rewritten in the
Bloch-Fourier representation (using the KS eigenfunctions).

The polarization function P of the macroscopic dielectric
function may then be obtained via inverting an effective two-
particle (in general: non-Hermitian) Hamiltonian reduced by
the photon energy.3®%% If the nonparticle conserving contri-
butions to the Coulomb interaction as well as the coupling
between the resonant and antiresonant contributions are ne-
glected, one obtains for the tensor elements

8 e*h?
Q

8%(0’) = 51','—

XSS MM, (K)Bcvk.c'v'k ;o)

c,v.k v k'
+c.c. and w < — w}, (32)
with the matrix elements of the velocity operator v

1

e.(K) — oy(K) J XY (X0 gh(x).  (33)

ML) = o™

The sums in Eq. (32) run over pairs of electrons in empty
states ¢ and holes in occupied (in the ground state) valence

states v. The polarization function P obeys a BSE of the
form

> {H(cvk,"v"K") - h (o
C",v”,k”
+ ly) 560”51)1)”5kk”}ﬁ(c”vﬂk”vC,vIk, ;w) == 5cc'5vv’ 5kk’ ’
(34)

where hy represents the damping energy. The effective
electron-hole pair Hamiltonian of excited electrons and

holes, more precisely quasielectrons and quasiholes, is given
by2937.73

H(cvk,c'v'k') = [2(k) — £2°(K)16.c B,y Sitc
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e’ B (q+G)B,y' (q+G')
> > , e (q+G.q
Q q G,G' |q+G||q+G |
+G';0)
877622 5 B*(q+ G)B:'fv’f(/(q +G)
+ ! (35)
Q q G |q+G|2

Our calculations for molecules show that in contrast to the
static contributions to the XC self-energy (27) and (28), con-
tributions due to the off-diagonal elements of the inverse
dielectric function in the statically screened electron-hole at-
traction [second right-hand side (rhs) term] are nearly negli-
gible. The Coulomb singularity in the screened electron-hole
attraction of Eq. (35) is treated as in the XC self-energy. The
pair Hamiltonian (35) describes spin-singlet excitations. If
the third rhs term is not included, spin-triplet excitations are
obtained.

For molecules the numbers of empty (c) and occupied (v)
bands are small, in particular if low-energy optical excita-
tions are considered, which do not lead to photoionization.
Moreover, since one k point is sufficient for the BZ sam-
pling, the polarization function P in Eq. (32) is easily ob-
tained by diagonalizing the eigenvalue problem of the pair
Hamiltonian (35).3%%8 For larger systems, a time-evolution
approach suggested by our group”7® has been shown to lead
to identical results.

III. MONOSILANE: NUMERICS AND RESULTS
A. Numerical details

Monosilane, SiHy, is used to probe the dependence of the
excitation energies on the details of the implementation. The
ground-state calculations are performed as described in Sec.
IT A. Assuming 7,; symmetry, i.e., H-Si-H angles equal to the
tetrahedron angle, we obtain a Si-H bond length of 1.477 A,
only slightly below the measured 1.481 A. Previous
calculations®®”” slightly overestimated the bond lengths.

The number of G vectors needed for convergence can be
estimated by a Hartree-Fock calculation with &(q+G,q
+G'; w)= g /. We find an energy-cutoff h?/2mG? of 6 Ry
to be sufficient. The Fock operator (25) is then converged
with a residual error of less than 0.05 eV. Though 6 Ry is a
rather small cutoff value, the number of G vectors in the
sums (27), (28), and (35) can be appreciable. It is about 2500
for a SiH, molecule in a 11.9 A single cubic (sc) supercell.
Considerably more G vectors need to be taken into account
for larger molecules that require larger supercells. To check
the influence of the number of bands needed for numerical
completeness, we tested the validity of the relation between
Bloch integrals (21)

BXG-G)= 3 B (6B (") (36)
v k'

for the molecular orbitals of SiH,. Figure 1 shows the rhs of
Eq. (36) for the lowest occupied molecular state of SiH, as a

PHYSICAL REVIEW B 72, 245425 (2005)

1.00

0.75

0.50

0.25

0 1 2 3 4 5 6
IGI [2rv/a]

FIG. 1. Square of the Bloch integral (21) of the lowest SiH,
molecule state calculated via the sum (36) in dependence on the
size of the G vector. Solid, dotted, dashed, and dash-dotted lines
show results for 16, 64, 256, and 1024 intermediate states. A super-
cell with an edge length a,=11.9 A is used.

function of the length of G, (G’ =G) for different numbers of
molecular states. Completeness is clearly not achieved for
large G even for a large number of intermediate states. In the
case of SiH,, we take G vectors up to an absolute value of
8.3 X2m/ay into account. Even for 1024 reference bands one
is far from completeness, the Bloch integral for the lowest
molecule orbital is not converged for large G vectors. The
situation is even worse for less localized molecule orbitals at
higher energy. Large G vectors require more than 5000 ref-
erence states for fulfilling the completeness. This number of
states is computationally demanding even for ground-state
calculations and restricts the calculations to relatively small
systems.

In Fig. 2 the influence of the number of intermediate mol-
ecule states on the quasiparticle energies is shown. Two
methods are compared. In one approach the completeness of
the KS eigenstates is exploited analytically. According to
Egs. (22) and (28), the sum over intermediate states only
occurs in the dynamical contribution (29). In the second

Shift [eV]
(@]
n 1 n

)
—
T
1

100 1000
# states

FIG. 2. Correlation contributions (26) to the SiH, quasiparticle
shifts, (v|2C(eQ%)| ), vs the number of intermediate states. The
completeness relation has been exploited analytically, or the sum is
performed numerically. Results for the HOMO (analytical/
numerical) are shown by solid/dotted lines, the LUMO results
(analytical/numerical) are shown by dashed/dot-dashed lines. The
dielectric functions are calculated using KS eigenvalues.
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FIG. 3. Correlation contributions (26) to the SiH, quasiparticle
shifts, (v|2¢(e9")| ), vs the number of intermediate states. The
completeness relation has been exploited analytically. The eigenval-
ues in the dielectric matrix were taken to KS-like values or QP
energies. Solid/dotted lines show the QP/KS results for the HOMO.
Dashed/dash-dotted lines show the QP/KS results for the LUMO.

approach, the sum over intermediate states occurs also in the
COH term. The energies of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) are considered. The analytical exploitation of the
completeness leads to QP shifts that are almost converged for
about 100 states. The second approach requires to take about
ten times more states into account, in particular to achieve
convergence for the HOMO. This is due to the COH operator
that is very sensitive to the number of states. To reduce the
numerical effort the completeness of the states is therefore
exploited analytically wherever possible.

Another problem concerns the use of the QP energies in
the self-energy expression (29) and in the screening function
(23). In order to compute the shifts presented in Fig. 2, the
dielectric matrix is calculated with KS eigenvalues and
hence is not involved in the self-consistent determination of
the QP eigenvalues. The true quasiparticle energies entering
the dielectric function are much closer to the HF-like ener-
gies

el =g, + (VX - VX, (37)
however, than to their KS analog. Here, 3X denotes the ex-
change self-energy operator (25). In Fig. 3we compare qua-
siparticle shifts for LUMO and HOMO of SiH,, obtained
using either KS or HF-like energies in the dielectric function.
The dependence on the number of states is quite similar for
both approximations. Discrepancies in the absolute values of
the quasiparticle shifts are below 0.3 eV. However, due to
the smaller screening of the dielectric function constructed
from HF-like energies, the convergence with respect to the
bands is improved. Consequently, we use SUHF as start values
for sgp throughout the paper.

The self-consistency condition (18) for the QP energies in
conjunction with the large QP shifts suggests to investigate
the energy dependence of the self-energy. In Fig. 4 we
present the real diagonal part of the self-energy calculated by
means of Egs. (27)—(29). The self-energy is a smooth func-
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FIG. 4. Real part of the self-energy differences (18) added to the
corresponding KS eigenvalues vs single-particle excitation energy.
The dielectric function has been calculated with 256 bands. Solid,
dotted, dashed, and dash-dotted lines represent the state 1 (HOMO-
1), states 2,34 (HOMO), state 5 (LUMO), and states 6,7,8
(LUMO+ 1), respectively. The straight short-dashed line represents
the linear function . The crossings with the other lines define the

QP energies sS" .

tion of the energy for all orbitals between single-particle ex-
citation energies from —25 to 20 eV. For larger positive or
negative energies, however, one observes satellite structures
corresponding to shake-off and shake-up excitations in the
spectral function of the molecular system, the energies of
which are defined as the poles of the density-density re-
sponse function. In bulk systems these excitations are domi-
nated by plasmons of the electron gas. The energy derivative
B,=—0d/ de Re X, (¢)|.ep of the self-energy between —20
and 10 eV is nearly constant and amounts to 0.13 for the
occupied orbitals, while for the unoccupied orbitals a much
weaker energy variation of less than 0.04 appears. This dif-
ference is mainly due to the reduced interaction, spatially
and energetically, of an excitation in an unoccupied orbital
with the electron density. This results in a reduced overlap of
the wave functions and, therefore, smaller matrix elements.
In addition, the larger energy differences in Eq. (29) reduce
the effective dynamical screening. The quasiparticle energies
are derived from the intersection 8=8(3P of &,+Re(v|2(e)
—VXC|v) with the straight line &. Numerically an iteration is
used to determine the QP energies. In the cases studied here,
the iteration always converges for starting values between
—25 and 20 eV.

B. Quasiparticle energies

The real and imaginary parts of the energy-dependent
self-energy can be also used to construct the spectral func-
tion of the quasiparticle Green’s function. The spectral rep-
resentation of the Green’s function reads

“ dwA,,()

GVV(Z)= 27 - .

(38)

The spectral function in diagonal approximation is given by

(62=3-VXC)
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2/Im 8%,,(h(w+ i)

A@) =i{G,(0+in) -G, (w—in}=

It is shown in Fig. 5.The line shape is largely determined by
the energy variation of the imaginary part of the self-energy,
which nearly vanishes between —20 and 10 eV for silane.
The vanishing imaginary part of the self-energy leads to a
sharp quasiparticle peak in the spectral function at the qua-
siparticle energy 88*’. The reciprocal linewidth of this quasi-
particle peak corresponds to the lifetime of the quasiparticle.
The actual spectral weights of the quasiparticle peaks depend
on the considered system and the state occupation. For mol-
ecules we find that more than 80% of the spectral weight is
accumulated in the quasiparticle peak for occupied orbitals
and even more for empty molecular states. Moreover, the
electronic quasiparticles (defined by the sharp main peaks in
Fig. 5) are only weakly damped. These findings a posteriori
justify the approximations made so far to describe molecular
excitations.

Quasiparticle energies obtained within several approxima-
tions are listed in Table I. In this table we give the KS ei-
genvalues ¢,, the HF-like energies sf,“: [Eq. (37)], and QP
energies S(BP for different approaches to describe the screen-
ing in the SiH, system. The quasiparticle energies were ob-
tained iteratively from Eq. (18). Self-consistency is achieved
after four iterations starting from both KS- or HF-like eigen-
values. The first column contains the KS energies of SiH,,
where the HOMO of 7, symmetry (v=2,3,4) and the
LUMO+1 (v=6,7,8) are triply degenerate, while the
LUMO of a; symmetry (v=5) and the lowest occupied mo-
lecular orbital (v=1) are nondegenerate. The HOMO-LUMO
gap amounts to 7.92 eV. The last column contains the values
that have been calculated with a vacuum screening, i.e., W
=v, which is equivalent to the Hartree-Fock approximation
for the XC self-energy 2 =3*. In the HF case the HOMO-
LUMO gap amounts to 13.9 eV. The quasiparticle energies
calculated for different approximations of the screening are

[hw-e,-Re 8%, (h(w*in)F +[Im &, (h (0 in)]

(39)

between these two extremes. The second and third column
denoted with DYN(KS) and DYN(HF) show QP values
which are self-consistently computed by means of Egs.
(27)-(29) but with either Kohn-Sham or Hartree-Fock-like
energies in the dielectric function, as described above. Com-
pared to the KS values, the HOMO energy is significantly
lowered in energy by more than 4 eV, while the LUMO
position is shifted to higher energies by more than 1 eV. The
quasiparticle corrections thus increase the HOMO-LUMO
gap by about 5 eV. The comparison of the self-consistently
obtained QP values, DYN(HF), with values from a static
screening calculation, STAT (column 4), exhibits significant
differences for HOMO and HOMO-1, while the values for
the unoccupied orbitals remain nearly the same. The large
differences between static and frequency-dependent calcula-
tions show the importance of the dynamics of the screening.
The static-screening limit also allows for testing the fre-
quency integration in Eq. (26) or Eq. (29) by setting hz
=8(3,P k’) in the energy denominators. The result of this cal-
culation in the fifth column, STAT", is nearly indistinguish-
able from the true static calculation, STAT. This proves that
the frequency integration in Egs. (26) and (29) is converged
and numerically stable. The DIAG column in Table I is ob-
tained by using a diagonal inverse dielectric function with
G=G’'. We know from crystals and surfaces that diagonal
dielectric functions, even model dielectric functions, are in
many instances  sufficient for GW  self-energy
calculations.”***8_ This does not hold for molecules, where
the result for diagonal screening is close to the case of no
screening at all.

The QP eigenvalues resulting for single-particle excita-
tions in the silane molecule in Table I may be compared with
earlier calculations and experimental data. The diagonal
DYN(HF) approach that is the most accurate method studied

TABLE I. Calculated SiH, quasiparticle energies in eV for different approximations of the screening:
DYN(KS) — full GWA but use of KS eigenvalues instead of QP energies in screening (23), DYN(HF) — full
GWA but use of energies (40) instead of QP values in screening (23), STAT — neglect of dynamical screening,
i.e., of the contribution (29), STAT" — neglect of dynamical screening by setting hz:sS,P (k') in Eq. (26),
DIAG - full GW approximation as DYN(HF) but neglecting the local-field contributions G # G’ to the
screening in Egs. (27)—(29). In all cases, the diagonal approach (20) has been applied and the dielectric
matrix is constructed from 1024 bands and HF-like energies (40). The QP energies are compared with the KS

eigenvalues and the HF-like energies, 3 =3%.

State KS QP HF
DYN(KS) DYN(HF) STAT STAT" DIAG

1 -13.45 -17.40 —-18.26 -19.62  -19.65 -1949  -19.67

2,34 -8.42 -12.41 -12.67 —-13.55 -13.58  -12.65 -12.77

5 -0.50 0.50 0.63 0.56 0.59 0.91 1.13

6,7,8 -0.04 1.95 2.23 2.07 2.11 3.24 343

HOMO-LUMO gap 7.92 12.91 13.30 14.01 14.07 13.40 13.90
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TABLE II. Calculated SiH, quasiparticle Hamiltonian 8, ,/[&,+(r|2(e9") = VXC| )]+ (1= 6, )(v|SCOH 4 SSEX_VXC| /) in eV for the
first 12 states. The upper triangle and the diagonal contain the real parts of the elements of the Hermitian matrix, the lower triangle represents

the imaginary parts of the self-energy matrix elements.

State 1 2 3 4 5 6 7 8 9 10 11 12

1 —-18.257 0.002 -0.001 -0.001 0.563 0.003 0.000  -0.006 -0.423  0.012 0.036 0.014
2 0.003 —-12.666 0.000 -0.001 -0.001 0.011 -0.001 0.001 0.003 0.328 0.028  -0.028
3 —-0.001 0.000 -12.668 0.000 -0.001 0.001 0.006  -0.001 0.003 0.034  -0.071 0.310
4 0.002 -0.002 0.000 -12.665  0.001 -0.003  -0.003  0.004 0.033 -0.020  0.338 0.071
5 —-0.052 0.000 0.000 0.000 0.633  -0.023 -0.001 0.029  -1.296  0.017 0.133 0.043
6 -0.001 -0.001 0.000 0.001 0.001 2.164 0.012 0.006 0.001 0.335  -0.033 -0.045
7 0.000 0.001 —-0.006 0.003 0.002  -0.011 2.223 0.034 0.010 0.026  -0.078  0.429
8 0.000 0.001 0.000 -0.001  -0.002 -0.002  0.042 2.320 0.077 0.164 0.661 0.414
9 -0.102 0.005 0.001 0.008 -0.440  0.008 0.018 0.040 1.187  -0.002  -0.007  0.001
10 —-0.003 0.108 0.000 -0.003 -0.013  0.157 0.037 0.041 0.005 1.369 0.025 0.021
11 —-0.002 0.004 —-0.001 -0.013 0.005  -0.037 -0.084  0.079 0.002  -0.007 1.418 0.061
12 —-0.007 0.001 —0.133 -0.033 -0.016 -0.010 0.238 -0.095 -0.001 -0.012 -0.021 1.415

here gives —12.67 eV for the HOMO and 0.6 eV for the
LUMO. Other GW calculations find values —12.7 and
1.1 eV.>>" A quantum Monte Carlo simulation’® leads to
values of —12.6 and 0.2 eV. DFT calculations’® that use the
asymptotically accurate exchange-correlation functionals due
to Leeuwen and Baerends (LB94)% or Casida and Salahub
(ACLDA)®! predict HOMO values of —=12.9 and —12.2 eV,
respectively. The experimental value for the ionization en-
ergy (i.e., —e20 o) is 12.6 eV.82 Other experimentalists re-
port a broad peak at 11.5-13.5 eV in the photoemission
spectrum of SiH, (cf. discussion in Ref. 56).

C. Beyond first-order perturbation theory

We now drop the restriction to diagonal self-energies
3.,.,(g) and take the nondiagonal elements of Egs. (27) and
(28) into account. To reduce the numerical effort, we calcu-
late the diagonal elements self-consistently as described
above, but obtain the off-diagonal elements in the static ap-
proximation, i.e., account for the SEX and COH contribu-
tions (27) and (28) but neglect the dynamical contribution
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FIG. 5. Spectral function (39) of the quasiparticle Green’s func-
tion. The shake-up satellite structures are clearly visible. Solid, dot-
ted, dashed, and dash-dotted lines represent state 1 (HOMO-1),
states 2, 3, 4 (HOMO), state 5 (LUMO), and states 6, 2, 8
(LUMO+1), respectively.

(29). This approximation can be made because the off-
diagonal elements, in particular their frequency-dependent
parts, are smaller than the diagonal elements. This is illus-
trated by the numerical results for the calculated quasiparti-
cle matrix for the 12 lowest molecule states &,5,,+A,,, with
A,,=Re(w|2(e¥)-V¥C|v)  and A, =Re(v| 25X 43 COH
—VXC|uy in Table ILA supercell with an edge length of
11.9 A has been used. The first four states are occupied
bonding orbitals and the next four states are unoccupied an-
tibonding orbitals. The states above these eight orbitals are
scattering states that are strongly affected by the supercell
size. Note that the diagonal quasiparticle energies of the
states nine and ten are energetically below the states six to
eight, while the corresponding KS values were above. Hence
the energetic order of the bands, commonly preserved during
a quasiparticle calculation, is changed. This is rather inde-
pendent of the numerical details and occurs already in the
HF-like approximation &/ [Eq. (37)]. Most off-diagonal el-
ements are small compared to the diagonal elements of the
operator S/(e)—V*C. There is, however, one exception. The
interaction of the LUMO with the first scattering state is
quite large (at least for the 11.9 A supercell) and leads to
their strong interaction and hence mixing. This was also ob-
served by the authors of Ref. 36.

To obtain the true quasiparticle energies and wave func-
tions, the eigenvalue problem (16) must be diagonalized. The
result (restricted to bonding and antibonding orbitals only) is
listed in Table III. Compared to the diagonal energies of
Table II, the eigenvalues are only slightly shifted. Further-
more, the matrix formed by the eigenvectors is practically
diagonal. Thus we find that the quasiparticle wave functions
are almost equal to the KS wave functions. There seems to
be one exception. The degenerate orbitals two, three, and
four, forming the HOMO, are mixed in their subspace upon
diagonalization. However, this is only a numerical artifact.
The original character of the KS orbitals is shown in Figs.
6(a)-6(c). Though they are degenerate in energy, the orbitals
do not have the symmetry of the molecule. The correspond-
ing quasiparticle orbitals are obtained as a linear combina-
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TABLE III. Eigenvalues in eV and eigenvectors of the quasiparticle matrix in Table II for the first eight

QP states.

State Eigenvalue  Eigenvector

1 -18.27 0.9996 0.0006  0.0002 0.0005 0.0299 0.0002  0.0000 0.0003
2 -12.66 0.0006 0.4184 0.8290 0.3711  0.0000 0.0002  0.0006 0.0002
3 -12.66 0.0005 0.6601  0.5384 0.5238 0.0001  0.0004 0.0002 0.0002
4 -12.66 0.0001 0.6239  0.1511  0.7667  0.0001  0.0006  0.0003  0.0002
5 0.64 0.0299 0.0001  0.0001  0.0000 0.9993 0.0154 0.0018 0.0175
6 2.16 0.0002 0.0007  0.0001 0.0001 0.0129 0.9487 0.3065 0.0766
7 2.20 0.0002 0.0001  0.0006 0.0004 0.0134 03091 0.8585 0.4089
8 2.34 0.0002 0.0001  0.0002 0.0001 0.0142 0.0651 0.4110 0.9092

tion of these KS orbitals according to the eigenvectors in
Table III. The resulting QP wave functions are nearly iden-
tical and show the T; symmetry of the molecule [see Figs.
6(e)-6(g)]. The linear combination of the three KS orbitals
only describes a subspace transformation.8® The states 6, 7,
and 8 in Table III are not degenerate. This is a consequence
of the fact that the periodic arrangement of the SiH, mol-
ecules in sc supercells reduces the symmetry and affects less
localized molecular states. The relatively minor influence of
the diagonalization on the quasiparticle energies and wave
functions also indicates a minor influence of the specific
form of the XC correlation functional used in the DFT cal-
culations on the final excitation energies.

If the diagonalization is done for more than the lowest
eight molecule orbitals there occurs a strong interaction of
the LUMO with the first scattering (ninth) state. Though the
latter is not a bound state of the molecule, its wave function
still overlaps with the LUMO, resulting in a non-negligible
interaction. The eigenvalues of both states change according
t0 &59=(eL+6¥) /22 (e¥ - )2/ 4+|Re 535> with £
as the diagonal QP energies, 88P—8?P=0.55 eV, and
|Re 6259/ =1.30 eV. Because of the mixing of the LUMO
with the ninth state, the resulting quasiparticle orbital is less
localized as shown in Figs. 6(d) and 6(h). Similar observa-
tions were made with scattering states even higher in energy.
We come back to this problem further below.

D. Optical pair excitations

The calculated optical spectra are strongly influenced by
many-body effects. However, they are also very sensitive
with respect to the supercell size and description of the scat-

9 @'s.
\V
ea f . g’ hw
FIG. 6. Upper row: Squares of the degenerate KS HOMO orbit-
als of SiH, (a)—(c) and the KS LUMO (d). Lower row: correspond-

ing QP wave functions of the HOMO orbitals (e)—(g) and the
LUMO (h).

a

tering states. We study these effects by calculating the optical
absorption spectrum of silane, more precisely the imaginary
part of its macroscopic dielectric function (32) in a supercell.
Because of the high symmetry, only the diagonal element
eM(w) exists.

We start by calculating spectra in the approximation of
independent KS particles, for which the pair Hamiltonian
(35) is diagonal and given by [e.(k)—g,(k)]. Figure 7 shows
the results for different supercell sizes. The two prominent
peaks at 7.9 and 8.4 eV stem from the HOMO-LUMO and
HOMO-LUMO+1 transitions, respectively. These peaks are
almost identical for the four supercells. Only the lowest peak
is slightly shifted by 0.1 eV towards higher photon energies
due to the reduced binding of the LUMO state. However,
convergence seems to be achieved for edge lengths of
15.9 A. Above the ionization edge at about 8.5 eV, the spec-
trum is dominated by transitions into scattering states. They
are strongly suppressed with increasing supercell size.

Figures 8 and 9 indicate clear limitations of the supercell
approach. In Fig. 8 spectra are shown, where the off-diagonal
elements of the XC self-energy are taken into account, but
the electron-hole attraction is not included. Neglecting the
scattering states, i.e., the quasicontinuum of states above v
=8, the well-known two absorption peaks related to the
HOMO-LUMO and HOMO-LUMO+1 transitions appear at
13.4 and 14.9 eV, respectively. They occur at 9.5 and
11.0 eV with electron-hole attraction (Fig. 9). We thus obtain
a large exciton binding energy of about 3.9 eV in monosi-
lane. This magnitude is in reasonable agreement with earlier
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FIG. 7. SiH, absorption spectra calculated on the KS level of
theory with 16 molecular states for different supercell sizes of
11.9 A (solid line), 15.9 A (dotted line), 19.8 A (dashed line), and
35.5 A (dash-dotted) line.
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FIG. 8. SiH, absorption spectra calculated on the independent-
quasiparticle level of theory. Solid line: 8§ states, diagonal and full
QP approach cannot be discriminated on the scale of the figure.
Dashed/dash-dotted line: 32 states, diagonal/full (including off-
diagonal elements) QP approach.

calculations.®*> The inclusion of scattering states with ener-
gies above the ionization edge and, in particular, their cou-
pling via the off-diagonal elements does not only give rise to
high-energy transitions. Rather, there is a tendency to redis-
tribute the double-peak structure over more peaks, at least for
a supercell size of a,=11.9 A. This effect is strongly reduced
for larger supercells (not shown in Figs. 8 and 9). It is also
reduced when the electron-hole attraction is included in the
calculations (Fig. 9), because this increases the localization
of the electron states. That this problematic issue arises in the
first place is largely caused by the incorrect description of the
continuum of scattering states in a supercell. The continuum
becomes a quasicontinuum of eigenvalues with confined
wave functions. The increase of the supercell size delocalizes
these states and, hence, gives rise to smaller off-diagonal
matrix elements of the XC self-energy.

In order to avoid the dilemma of the description of the
scattering states in a supercell approach (that should also
occur when representing these states by Gaussians>), we
restrict our calculations to the optical absorption at relatively
low photon energies and use large supercells, where the in-
fluence of scattering states on the low-energy spectra is sup-
pressed. The latter effect is demonstrated in Fig. 10. Despite
the inclusion of many scattering states, large supercells re-
cover the two main absorption peaks known from the restric-
tion to eight molecular states (Fig. 9). Here, the peak posi-

2_0 T T T T T T T

Im &M (w)

8 10
Energy [eV]

FIG. 9. SiH, absorption spectra calculated including both full
quasiparticle corrections and electron-hole interaction. Solid, dot-
ted, dashed, and dash-dotted lines represent the results obtained for
8, 12, 16, and 32 states, respectively. Vertical dotted lines indicate
the experimental peak positions (Ref. 82).
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FIG. 10. Influence of the supercell size on the absorption spec-
trum of SiH, calculated by including both full QP corrections and
the electron-hole interaction for 32 molecular states. Solid, dotted,
and dashed lines show results obtained for a,=15.9 A, a,=31.8 A,
and a,=47.6 A, respectively. In order to make the calculations nu-
merically possible, the vacuum dielectric function &(q+G,q
+G';w)=8gq’ was used, corresponding to a HF-like approach.

tions are blueshifted by about 0.5 eV because of the neglect
of the screening, i.e., the use of e(q+G,q+G’;w)=35;¢. As
a consequence, in practical computations only the first eight
molecule states may be taken into account. These states are
below the ionization edge in KS approximation (cf. Table I).
Of course, the localization of the empty QP states, in particu-
lar of the LUMO, is somewhat overestimated.’® However,
the Coulomb attraction of electrons and holes also localizes
the electrons in the pair excitations. This behavior is sche-
matically indicated (within the single-particle picture) in Fig.
11. The localization of the electron due to the electron-hole
attraction gives an additional justification for restricting the
number of states used in the calculations. The restriction to
eight states, i.e., the neglect of the scattering states, leads to
the spectrum of Fig. 12. Besides the two main peaks, which
are still dominated by single-particle transitions, a small peak
occurs in between. It is a consequence of the Coulomb at-
traction and hence cannot be understood in a single-particle
picture. The measured positions of the three lowest absorp-
tion peaks of 8.8, 9.7, and 10.7 eV are not exactly repro-

Energy DFT-LDA DIAG-GWA FULL-GWA BSE
/' _A\ e~
Vacuum | - N e T T A
LUMO
HOMO

VANEERSEVAN

FIG. 11. Schematic representation of the localization of the
HOMO and LUMO wave functions in different approximations for
the electron-electron interaction.
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FIG. 12. (Color online) SiH, absorption spectrum calculated
including both full quasiparticle corrections and electron-hole inter-
action for the lowest eight molecular orbitals. The vertical dotted
lines indicate experimental peak positions (Ref. 82).

duced by the computed peak energies 9.0, 9.6, and 10.5 eV
in Fig. 12. The maximum deviation of 0.2 eV indicates the
accuracy that can be expected from the kind of calculations
presented here. We observe, however, that increasing the su-
percell size shifts the transitions to higher energies. For su-
percells with a,=15.9 A values of 9.3, 9.7, and 10.7 eV are
obtained. Our results agree relatively well, at least for the
lowest transition, with the energies of 9.0, 10.2, and 11.2 eV
computed in a previous work using a similar approach.>®> A
quantum Monte Carlo calculation® leads to a value of
9.2 eV for the lowest pair excitation, again close to our re-
sult. The TDLDA calculations in Ref. 84 lead to somewhat
lower excitation energies of 8.2, 9.2, and 9.7 eV, while the
usage of the asymptotically corrected exchange-correlation
functionals LB94/ACLDA results in values of 8.8/8.5, 9.5/
9.3, and 10.8/10.3 eV, respec:tively.86
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FIG. 13. Real part of the diagonal self-energy differences (18)
added to the corresponding KS eigenvalues (see inset) vs single-
particle excitation energy. The frequency-dependent dielectric ma-
trix (23) has been computed including 512 states. The straight short-
dashed line represents the linear function &. The crossings with the
other lines define the QP energies P

v -

PHYSICAL REVIEW B 72, 245425 (2005)

IV. APPLICATIONS TO OTHER MOLECULES
A. Disilane

Disilane, Si,Hg, has D5, symmetry in the ground state. We
model it in a supercell with a,=13.8 A. Consequently, the
number of G vectors in the k-space representation is in-
creased to 4000. The bond lengths obtained are dg;g;
=232 A and dgiy=1.49 A. 512 molecule states are used to
compute the frequency-dependent dielectric matrix.

Disilane possesses 14 valence electrons and hence seven
occupied molecule states. Their energy levels are given in
Table IVtogether with those of the subsequent seven empty
states. Within the KS approach, the first 11 levels are below
the ionization edge. Test calculations for a larger supercell
with a,=30 A yields similar results. Only the states 12/13
move slightly below (-0.03 eV) the vacuum energy. As a
consequence of the lower symmetry, only nondegenerate or
doubly degenerate states occur. The inclusion of the full GW
self-energy (or the exchange term only, called HF-like) shifts
the occupied (empty) levels towards lower (higher) energies.
The quasiparticle shifts of the occupied (empty) states are of
the order of —4 eV (1.5 eV). The shifts are larger by restrict-
ing the calculation to the exchange contributions. The effect
of the off-diagonal elements of the XC self-energy is small.
Only the states 14 and 8 mix. The absolute QP value of the
HOMO (state 7) of 10.74 eV is very close to the measured
ionization energy of 10.66 eV3? and previous calculations™
that obtained 10.6 eV.

The QP energies are again strongly influenced by the dy-
namical screening. This effect is indicated in Fig. 13. The
energy variations are similar to the case of monosilane (Fig.
4). They are smoother, however, in the range of the satellite
structures. This may already indicate that in larger molecules
the isolated shake-up and shake-off excitations start to be
replaced by the continuum of wave-vector-dependent plas-
mons typically for the solid. The variations are also smaller
around the QP energies. The energy derivatives f,=
—d/ de Re E,,,,(s)|8:€8p are about 0.13 for the highest occu-

pied states and almost vanish for the empty states. That
means that only about 13% of the total spectral weight of the
holes are related to the satellite structures while the spectral
weight of the satellites practically vanishes for the electron
excitation.

Optical absorption spectra of disilane calculated using 13
and 14 states are represented in Fig. 14. The self-energy
effects (16) and the electron-hole interaction (35) are fully
taken into account. Because of the increased number of mol-
ecule states with respect to monosilane, the spectrum above
the absorption edge in Fig. 14 shows more peaks. The cou-
pling of the KS states due to the off-diagonal elements
7+ 14 of the self-energy mainly influences the peaks around
or above the photoionization limit. However, this coupling
tends to reduce the spectral strengths of the transitions
around 9 eV and to redistribute them towards higher ener-
gies. For photon energies below 10 eV, there are small peaks
around 7.73 and 8.25 eV and a well-pronounced peak at
9.82 eV. With increasing number of states, the double-peak
structure at 8.94/9.15 eV is redistributed to structures around
8.97 and 9.57 eV. Optical spin-singlet excitations have been
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TABLE IV. Single-particle energy levels in eV of the lowest molecular states of Si;Hg in three different

. P HF
approximations, €,, 8(3 ,and g, [Eq. (37)].

State 1 2 3/4 5/6 7 8 9 10711 12/13 14
KS -14.06  -12.39 -8.80 -8.11 -7.23 -0.63 =051 -0.65 0.12 0.21
QP -18.75 -1695 -12.86 12.10 -11.03 0.62 0.94 1.26 1.66 0.65
HF -2045 -1823 -13.18 -1237 -10.49 1.96 2.71 3.62 3.27 1.25

found experimentally®? at 7.6, 8.4, 9.5, and 9.9 eV. Apart
from the small additional structure somewhat below 9 eV,
our calculated results well-describe the experimental find-
ings. A similar many-body calculation but representing the
KS eigenfunctions by Gaussians® yields peaks at 7.6, 9.0,
and 9.6/9.8 eV in the energy range below hw=10 eV. De-
pending on the choice of the exchange-correlation func-
tional, TDDFT calculations predict the lowest two transition
energies at 7.1-7.3 and 8.6-8.8 eV.%

B. Water

The water molecule is more polar and less symmetric than
mono- and disilane. Its point group C,, contains a rotation
by 180° around the molecule axis and two mirror-symmetry
operations. We model it in a supercell with a,=10 A. The
real-space grid contains 64 X 64 X 64 grid points. This sug-
gests the use of 6000 G vectors for a converged quasiparticle
calculation. The ground-state calculation within the DFT-
GGA gives a length of the oxygen-hydrogen bonds of dqg.y
=0.966 A and an angle between the two bonds of 104.49°.
The corresponding experimental values for gas-phase mol-
ecules are 0.957 A and 104.47° (see data in Refs. 87 and 88).

According to the molecule symmetry, the atomic orbitals
are derived from six linear combinations of a,, a,, by, and b,
symmetry with nondegenerate energy levels. The eight va-
lence electrons occupy the four lowest states. Results for the
levels obtained by using different approximations for the
electron-electron interaction are given in Table V.The high-

s
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FIG. 14. Si,Hg absorption spectrum calculated including both
quasiparticle corrections and electron-hole interaction for the lowest
13 (solid line) and 14 states (dashed line). The vertical dotted lines
indicate experimental peak positions (Ref. 82).

est molecular state considered here (state 6) is above the
vacuum level already within DFT-GGA. This does not
change if PAW pseudopotentials®® and the VASP code®* are
used in the calculation. Only calculations for considerably
larger supercells drag its energy below the vacuum level.
However, it is numerically very expensive to perform quasi-
particle and exciton calculations for supercell sizes of ag
~20 A. When off-diagonal elements of the XC energy are
considered, a coupling occurs only with the sixth molecular
state. This can be expected to vanish for larger supercells.
The influence of the energy dependence of the screening
on the QP energies is indicated in Fig. 15. It is most impor-
tant for the occupied molecular states with B,=0.11(v
=2,3,4), but nearly vanishes for the unoccupied states. The
resulting QP eigenvalues in Table V are shifted towards
negative (positive) energies for the occupied (empty) mo-
lecular states. The QP shifts vary between —7.7 and —4.7 eV
(0.4 and 0.8 eV) for the occupied (empty) states. For the
HF-like eigenvalues (37), these shifts with respect to the KS
energies are again larger. Since the geometry of the H,O
molecule is fixed at the ground-state coordinates, the nega-
tive QP eigenvalues in Table V correspond to vertical ioniza-
tion energies. We compare the resulting values with results of
other calculations and measurements in Table VIfor the three
highest occupied molecular levels 1b,, 3a;, and 1b,. Refer-
ence 59 is a modified QP approach that can be considered as
a generalized GW Tamm-Dancoff approximation. It starts
from a hybrid functional B3LYP within the DFT. The other
work® is a outer-valence Green’s function (OVGF) calcula-
tion. The underlying DFT calculations have been performed
with Becke’s exchange functional and Perdew’s correlation
functional. The theoretical results in Table VI agree with an
accuracy of about 0.3 eV. The comparison of the calculated
results with the measured values shows excellent agreement
for the lower state 2 with b, symmetry. The agreement for
the HOMO with b; symmetry is less convincing. The energy
is underestimated by about 0.7 eV. We believe this is par-

TABLE V. Energy levels in eV of the six lowest molecular
states of the H,O molecule in four different approximations: &,
(from DFT-GGA), SSP (from full and diagonal GW), and s}V{F [Eq.
37)].

State 1 2 3 4 5 6

KS -25.19 -13.11 -927 -721 -0.88 0.61
QP (diag.) -32.93 -18.80 -1442 -11.94 0.64 1.06
QP (full) -3295 -18.79 -1442 -1194 -0.13 1.83
HF -36.92 -19.14 -1547 -13.16 093 1.86
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TABLE VI. The lowest vertical ionization energies of the H,O
molecule in eV from calculations (Refs. 59 and 89) and measure-
ments (Refs. 90 and 91).

Molecular QP QP OVGF Expt. Expt.
orbital (this work) (Ref. 59) (Ref. 89) (Ref. 90) (Ref. 91)
1b, 11.94 11.90 12.24 12.61 12.78
3a, 14.42 14.18 14.51 14.73 14.83
1b, 18.79 18.35 18.56 18.55 18.72

tially due to the DFT-GGA calculation using the 10 A super-
cell: The KS eigenvalue is —=7.21 eV (Table V), while other
approaches® yield —=7.63 eV. In general, however, we can
conclude that the GW approximation gives excellent single-
particle excitation energies also for H,O. A scaling of the
self-energy effects by a factor of 0.5 as observed for less
sophisticated GW approaches®” is not necessary.

The water molecule is optically anisotropic. Here we con-
sider only the trace of the optical tensor (32), see Fig. 16.
Whether or not the molecular state 6 is taken into account
has an obvious influence on the high-energy region of the
absorption spectrum. The HOMO-LUMO peak at about
7.2 eV results from strong excitonic effects: The redshift
with respect to the corresponding QP peak of uncorrelated
electron-hole pairs is about 5.2 eV. The excitonic effects
thus largely compensate the blueshift of the KS position of
the HOMO-LUMO transition of 6.3 eV. The strong excitonic
effects in the water molecule are also indicated by an exciton
radius of R,,=2.27 A (i.e., the average distance between
electron and hole in the LUMO-HOMO pair), which we have
calculated using the two-particle electron-hole wave function
of the Hamiltonian (35) in real space. The hole is strongly
localized at the oxygen atom of the molecule. Therefore the
probability to find the electron of the pair has its maxima
outside of the molecule that has a characteristic dimension of
doyy~1 A. The first three transitions (including six states)
are obtained at 7.24, 9.62, and 10.07 eV for the 10 A super-

gy + RedvIZ(g) - VXCly) [eV]

Energy [eV]

FIG. 15. Real part of the H,O diagonal self-energy differences
(18) added to the corresponding KS eigenvalues (see labels) vs
single-particle excitation energy. The frequency-dependent dielec-
tric matrix (23) has been computed including 260 states. The
straight short-dashed line represents the linear function e. The
crossings with the other lines define the QP energies £2°
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FIG. 16. Optical absorption spectrum of the H,O molecule in-
cluding quasiparticle and excitonic effects calculated with six (solid
line) and five states (dashed line). Vertical dotted lines indicate the
measured singlet pair excitations (cf. data collection in Ref. 92).
The optical anisotropy has been neglected and an averaged spec-
trum is shown.

cell. The experimentally reported transitions occur at
7.3-7.49 eV for the first, 9.69-9.73 eV for the second, and
9.99-10.10 eV for the third peak (cf. data collection in Ref.
92). The agreement between our results and the experiment
is excellent. The GW/BSE method yields water optical exci-
tation energies that are no less accurate than sophisticated ab
initio quantum-chemical methods. A complete active space
self-consistent field (CASSCF) calculation,’” for example,
predicts transition energies of 7.58, 9.80, and 10.45 eV. CC
calculations are of comparable accuracy with 7.53 eV for the
lowest singlet transition, whereas the corresponding value of
6.86 eV obtained from TDDFT in Ref. 93 is clearly below
the experiment. However, similar to the case of monosilane,
the wusage of an asymptotically corrected exchange-
correlation functional in the TDDFT leads to an increase of
the excitation energies: Cai et al.”* predict a value of 7.61 eV
for the lowest transition.

V. SUMMARY AND CONCLUSIONS

We have shown that the many-body perturbation theory
based on Green’s functions and an electron self-energy in
Hedin’s GW approximation can be successfully applied to
investigate electronic single-particle and two-particle excita-
tions of molecules. SiH,, Si,Hg, and H,O were studied as
prototypical molecules. We have shown that the computed
excitation energies are close to the measured values, with
maximum deviations smaller than 0.5 eV. The accuracy of
the Green’s function method is thus similar to that of sophis-
ticated quantum chemistry methods. This is somewhat sur-
prising, given that the approach to treat the electron-electron
interaction in the presence of electrons, holes, or electron-
hole pair excitations is based on the physical description of a
dynamical screening response. However, the treatment of the
interaction effects on the same footing, i.e., the GW approxi-
mation for the self-energy and the electron-hole attraction,
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and the accurate computation of the frequency- and wave-
vector-dependent dielectric tensor, obviously ensure excel-
lent results for the energies and the spectral strengths of elec-
tronic excitations also for small systems with localized
electronic states.

For numerical reasons, but also because of future applica-
tions to large systems with both extended and localized elec-
tronic states, the considered molecules were modeled in sc
supercells. It turns out that the size of the supercell is a very
critical issue in several respects. The edge length has to be
large enough to avoid coupling of the molecule with its im-
ages via electron-electron interaction or related to local-field
effects. Numerical criteria of a sufficient supercell size are
the vanishing wave-vector dispersion of the bands and the
vanishing splittings of states that should be symmetry degen-
erate. In contrast to true crystals, the continuum of scattering
states with energies above the vacuum level is difficult to
describe. There may be spurious effects due to an artificial
localization of such states in the supercell and related to the
number of such states. Fortunately, for not too large excita-
tion energies the effect of the scattering states is surpressed
in both the self-energy and optical-spectra calculations when
increasing the supercell size. In that case the molecular states
below the ionization edge dominate the results. This suggests
to restrict the many-body calculation to those molecular
states below the vacuum level that are already needed to
obtain converged results for the ground state. However, for
computing the screening function many more states, occa-
sionally more than one-thousand, have to be used in order to

PHYSICAL REVIEW B 72, 245425 (2005)

ensure the correct variation of the self-energy for large exci-
tation energies.

Given that molecular single-particle and spin-singlet pair
excitations have energies of typically about 10 eV, the rela-
tive accuracy of the Bloch function GW/BSE method for
molecular studies is comparable to that achieved for bulk
crystals with fundamental quasiparticle gaps of about 2 eV
and an average error bar of the calculations of roughly
0.1 eV. In the latter case, quasiparticle shifts are of the order
of 1 eV, and the redshift of the optical absorption caused by
excitonic effects is typically of the order of 0.1 eV. The rela-
tive accuracy of the computations for the electronic excita-
tions is the same, irrespective of the localization of the elec-
tronic states. The described method is therefore suitable to
describe electronic excitations in hybrid systems, containing
both extended and localized states. The many-body perturba-
tion theory thus allows for studying, e.g., interfaces formed
between crystalline solids and organic or biologically active
molecules. Starting from the density functional theory, the
calculations can be performed without any experimental pa-
rameter.
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