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Ballistic resistivity in aluminum nanocontacts
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We perform a representative series of semiclassical molecular dynamics simulations of aluminum nanocon-
tact breakages, coupled to full quantum conductance calculations. This approach allows to obtain realistic
conductance histograms of polyvalent species and understand the origin of their peaked structures. The results
show that the conductance depends linearly on the contact minimum cross section for the geometrically
favored nanocontact configurations. Valid in a broad range of conductance values, such relation suggests the
definition of a transport parameter for the nanoscale, that represents the novel concept of ballistic resistivity.
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One of the major industrial challenges is to profit from
some fascinating physical features present at the nanoscale.
The production of dissipationless nanoswitches (or nanocon-
tacts) is one of such attractive applications.! The inelastic
electron mean free path is usually larger than nanocontact
typical cross sections (of the order of few atoms in controlled
experimets) even at room temperature, and, therefore, the
electronic transport through these nanoconstrictions is ex-
pected to be ballistic. Nevertheless, the lack of knowledge of
the real efficiency of this electronic ballistic/nondissipative
transport limits future innovations.

For contact sizes of the order of a few Fermi wavelengths
N\p, well defined modes (channels) appear associated with the
transversal confinement of electrons. For this situation, the
conductance G is given by the Landauer formula G
=GOZnN=1Tm where Gy=2¢>/h is the conductance quantum (e
being the electron charge and h Planck’s constant), 7, is the
transmission probability of the nth channel, and N is the
number of propagating modes with energies below the Fermi
energy.” It has been shown that the number of conducting
channels is determined by the number of valence electrons of
the respective chemical element.’ For monovalent noble met-
als such as Cu, Ag and Au, the transmission probability 7 has
been estimated to be approximately equal to 1 (i.e., each
noble-metal atom contact contributes with G, to the conduc-
tance value*3). But for monovalent alkali metals or polyva-
lent chemical species, single-atom contact studies revealed
that this channel transmittivity can have a result smaller than
one.>67

Nowadays, there exist several experimental techniques to
characterize the electronic transport through nanocontacts.
Among them, the measurement of the conductance histo-
gram during nanocontact breakages®'” is one of the most
used. By putting in contact two opposite electrodes and then
separating them, one observes a stepwise decrease in the
electrical conductance (i.e., a conductance scan), until the
breakpoint is reached."'~'* It has been shown that each scan
of the conductance dependence on the electrode retraction
differs from one another, since the nanocontact structural
evolutions during breakages are not identical.””> Notwith-
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standing for fixed experimental parameter conditions (such
as temperature and applied voltage), the accumulation of
data from many scans gives rise to a conductance histogram
with a well reproducible peaked structure. The histogram
peaks have been associated with preferred geometrical neck
configurations during the nanocontact breakages.”!%!® Nev-
ertheless, a consensed relation between the conductance and
the contact size is lacking in the literature.'”2° On one hand,
many theoretical studies have neglected the statistical feature
of the experiments. On the other hand, almost all of these
studies were based on semiclassical approximations,'’!?
which tend to fail at the atomic scale because they do not
describe the quantum character of the scattering process.’
Besides, in a contact of few atoms it is not clear how to
express the number of atoms in terms of the contact size (i.e.,
the cross-sectional area!®20),

Although there exist powerful ab initio codes able to de-
scribe both, the atomic motion and the electron transport, on
a full quantum mechanics basis, nowadays it is unfeasible to
use them to construct and understand theoretical conductance
histograms since they involve huge computational resources.
In order to overcome the existing difficulties in this paper we
have implemented an approach where the state-of-the-art
embedded atom molecular dynamics method for the simula-
tions of aluminum nanocontact ruptures'®!'>?! has been
coupled with full quantum calculations of the electron trans-
port using a procedure based on the ab initio Gaussian
embedded-cluster method.?”> The results reveal a statistically
linear relationship between the conductance and the number
of aluminum atoms contact. A similar strategy has been re-
cently proposed?® for constructing computational gold con-
ductance histograms, although a parametrized tight-binding
approach has been used to calculate conductance values.

For the aluminum nanocontact simulations, we considered
a similar procedure as introduced elsewhere,! in which 1008
aluminum atoms were initially distributed in a supercell
formed by 18 layers perpendicular to the (111) fcc direction,
containing 56 atoms each. The lattice constant is initially
taken to be 4.05 A. The direction (111) corresponds to that in
which the contact is elongated until breakdown. Simulations

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.72.245405

HASMY et al.

PHYSICAL REVIEW B 72, 245405 (2005)

Minimum cross-section (S )

Conductance (G/G,)

FIG. 1. Time evolution of the minimum cross section (black symbols) and the quantum conductance (open symbols) corresponding to
two aluminum wire breakages at T=4 K, illustrating two rupture mechanisms: (a) the formation of a single-central atomic configuration
before breakage, and (b) the formation of a dimer-chain contact before breakage. Insets depict several atomic configurations during nanowire
stretching. Arrows and dashed vertical lines denote the corresponding conductance and minimum cross section associated with these

nanoneck configurations.

are performed at 4 K. In a first stage the system is relaxed
during 50 ps. After this relaxation, two bilayer slabs are de-
fined at the top and bottom of the relaxed supercell, and are
separated. We have considered a stretching velocity (2 m/s)
much bigger than in typical nanocontact experiments, but it
is still small compared to the speed of sound through the
material (i.e., there is enough time for the system relaxation).
The atoms inside these slabs are frozen during subsequent
stages, defining the bulk supports of the nanocontact during
the breaking process. The other atoms move and reaccom-
modate into new configurations during the elongation pro-
cess. The full determination of atomic positions during con-
tact stretching allows the evaluation of the evolution of its
minimum cross-section S,,. The determination of S,, (in units
of number of atoms) has been done following standard nu-
merical procedures.'” This method has been previously used
to construct minimum cross-section histograms!'®!> able to
determine the important role deserved for favorable atomic
configurations during the breakage process.

Pursuing a similar strategy to that of nanocontact trans-
port experiments, we performed many numerical realizations
of wire breakages for the statistical analysis of the conduc-
tance. For all scans, and resulting configuration, each 20 ps,
we computed the conductance using a full quantum mechani-
cal procedure based on the ab initio Gaussian embedded-
cluster method.?? Due to computer time limitations, the con-
ductance was computed for configurations with S, <35
restricting the quantum calculation to a nanocontact region
formed by five atomic layers, describing the narrower (and
most important, in terms of electronic transport) nanocontact
section. This narrow layer is formed by the minimum cross-
section layer (where S,, is evaluated) and its two neighboring
layers below and above. For different minimum cross-section
regions, we have checked that the conductance values were
not altered when including more layers in the calculations. In
the present study the number of atoms involved in the con-
ductance quantum calculations range between 20 and 50, de-

pending on the constriction minimum cross-section size.
Typical evolution of the minimum cross-section S,,, and
the corresponding conductance G, during the nanocontact
breakage are shown in Fig. 1. The shapes of the curves re-
veal the existence of a strong correlation between conduc-
tance and the nanocontact neck section size, in agreement
with previous numerical results for other materials.*!*2* A
striking fact is that for values S,,~ 1 (defining a nanocontact
of one-atom section) there are two different conductance val-
ues (G/Gy=2 and =1). We have confirmed that this fact is
explained in terms of the presence of two different atomic
arrangements’ at the last stage of the breaking process. On
the one hand, the monomer contact configuration [see Fig.
1(a)] provides conductance values of the order of G/Gy=2,
while on the other hand, the dimer contact configuration [see
Fig. 1(b)] gives rise to conductances close to G/Gy= 1. This
conductance bi-valuation, for the §,,=~ 1 case, shows that the
orbital valence accommodates differently depending on the
contact coordination and on the separation between the con-
tact atom and its neighbors, a finding that confirms previous
observations.”2> Also, we have noticed that when a neck
section of two-atom contact lifts under stretching, a dimer-
chain contact is formed, giving rise to a conductance jump
from a value greater than 3-1.2 [see Fig. 1(b)]. With increas-
ing stretching (time in the figure), G slowly decreases and
then increases from 0.90 G, to 1.05 G,. This occurs when the
dimer-chain contact evolves from a position perpendicular to
the (111) direction toward a parallel alignment with this di-
rection (which is perpendicular to the supporting slabs). Such
increase of G before the rupture reproduces STM transport
measurements,2® confirming the validity of our model, and
reveals the possible improvement of electronic resonant con-
ditions with strain, as predicted by previous numerical
calculations.>?® Finally, the simulated conductance curve
falls to O as the nanocontact breaks. In some cases (as those
appearing in Fig. 1), these slow decays are different from
those noticed in low voltage experimental curves. We at-
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FIG. 2. Conductance per minimum cross-section G, as a func-
tion of the minimum cross-section S,,. The figure shows more than
800 points corresponding to 50 simulated aluminum nanocontact
breakages. The dotted line is a guide to the eye and denotes the
quantum conductance value G,

tribute such discrepancy to the higher time resolution that
can be monitored by our molecular dynamics calculations.
For more than 800 aluminum nanocontact configurations
(obtained from the evolution of 50 stretching sequences), by
using full quantum procedures we have calculated the con-
ductance per minimum cross-section G,=G/S,,. This quan-
tity is equivalent to the sum of the three channel transmitivi-
ties available for aluminum atoms at the narrowest neck
section. Figure 2 depicts G, as a function of the minimum
cross-section S,,. In spite of the data dispersion, the figure
suggests that G, converges to a constant value as §,, in-
creases. We recall that the independence of G, on the contact
size has been previously observed experimentally for gold
nanocontacts,* where it was observed that G,=G,, which is
the maximum possible value for the atomic conductance of
any monovalent material.*!%2* For the aluminum case, Fig. 2
shows that for almost all configurations, G, results are larger
than G, and converges to a value between G, and 1.5 G,,.
Then, the data suggest that aluminum nanocontacts are, per
atom, better conductors than any monovalent metal wire.
As is usually done in experiments,”!%?72% we accumu-
lated all G traces and constructed the first computational alu-
minum conductance histogram (see Fig. 3, top). Note that,
within the estimated errors (which is of the order of G,/2 for
S,,<5, see the error bars in Fig. 4), such histogram shows a
similar peak structure to that found in experiments. The most
important result is that the conductance histogram shows
peaks close to integer multiples of the conductance
quantum.®?7-?® Here, the peak-to-valley ratio is smaller than
in experimental conductance histograms, but this could be
caused by the relatively small number of configurations used
in our calculations. Also, the statistical analysis could im-
prove by taking into account different orientations of the
nanowire main axis. A more exhaust statistical treatment will
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FIG. 3. Calculated conductance histogram for aluminum (top)
using those points shown in Fig. 2. Below this histogram, we sepa-
rately show the partial conductance histograms for those configura-
tions corresponding to effective number of atoms N,=1, 2, 3, 4, 5
and 10. Gray bins denote the maximum value of the conductance
G(N,). Vertical dashed lines denote the computed average conduc-
tances (G(N,)) for each depicted conductance distribution.

require a huge computational effort, but we believe that the
appearance of a well defined peaked structure in the compu-
tational histogram of this trivalent metal is the most remark-
able result of this work. Note that the presence of some con-
ductance traces with slow conductance decays at the last
stage of the nanowire breakage (as those shown in Fig. 1)
modifies the conductance histogram below G, but not the
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FIG. 4. Conductance per atom as a function of the effective
number of atom contacts N, (open circles). Average conductance
(G(N,)) (black circles) and peak conductance Gy(N,) (gray
squares) as a function of the effective number of atom contacts.
Bars denote the standard error. Dashed line represents a linear fit to
the Gy(N,) data.
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peaked structure at higher conductance values. We recall that
a peaked structure has also been observed in minimum cross-
section histograms,'>?? reflecting the existence of energeti-
cally favorable atomic configurations at the nanocontact
neck.

Regarding experiments, the main advantage, when per-
forming molecular dynamics simulations, is that we can
separate the corresponding conductance contributions in
nanocontact configuration families, grouping configurations
that possess a similar number of atoms at the narrowest
nanocontact cross section. In order to identify such configu-
ration families, we use the integer label N, (N,=1,2,3...) to
describe the set of configurations with minimum cross-
section §,, comprised between N,—1/2 and N,+1/2. This
label is equivalent to the effective number of atoms defining
the narrowest nanocontact region. Partial conductance histo-
grams concocted in the previous fashion are depicted in Fig.
3 and show that for all N, values, there corresponds a peak at
a conductance value G, (N,). For comparison, we also show
in Fig. 3 the average conductance (G(N,)) for each partial
conductance histogram (see vertical dashed lines). Note that
for the monoatomic contact case (N,=1), two conductance
peaks appear at G/Gy=1 and G/G(=2, which correspond,
respectively, to the conductance contributions of the dimer
chain [see inset of Fig. 1(b)], and the single-central one-atom
[see inset of Fig. 1(a)] contact configurations. For N,=2 the
average conductance (G(N,)) is close to the peak position
Gy(N,) indicating that conductance distributions are rather
symmetrical around its maximum value. A very important
conclusion regarding our calculations is that the first two
peaks of the aluminum conductance histogram (centered
around G=G,; and G=2G,) exhibited by experiments are
originated by the N,=1 group, and correspond to dimer and
monomer-like configurations, respectively. In addition, it is
clear that the minimum cross-section histogram is unable by
itself to provide such specific information, and therefore this
kind of computational procedure requires further analysis.

Figure 4 plots the quantity G,,(N,)/N, (open circles) as a
function of the effective number of atom contacts N,. In this
figure, we have included two points corresponding to par-
ticular aluminum nanocontact configurations with N,=20
and 30. The convergence of the atomic conductance to a
constant value between 1 and 1.5 is now much more evident
than in Fig. 2. Figure 4 also includes a plot of the conduc-
tance maximum G (N,) as a function of N, (gray squares,
corresponding label figure appears at the right hand side).
The good quality of a linear fit of the data (x>*=0.9995) sug-
gests that the conductance converges to a straight line (with a
slope of 1.16 G,). Additionally, we plot the average conduc-
tance (G(N,)) for each contact configuration family N,
(small black circles in Fig. 4), and its corresponding standard
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error. Within the estimated error bars, the (G(N,)) values
reflect the same linear behavior observed for G,;(N,). There-
fore it is evident that a linear relation between the conduc-
tance and the effective number of atom contacts N, can be
established. A finding which is far to be obvious,'” mainly
because at the quantum limit the backscattering process can
be the determinant of the electronic transport features in
many materials. For aluminum, platinum as well other mul-
tivalent nanocontacts, it has been evidenced that the trans-
mission probability per channel can result much smaller than
13, a fact that cannot be accounted for by any semiclassical
approximation.'”!® Furthermore, semiclassical approxima-
tions based on the free electron model have a fundamental
shortcoming in the face of the previous result: They only
depend on geometry, and the Fermi wavelength is the only
material dependent parameter, while backscattering due to
both geometrical and electronic structure constraints is the
main culprit for the appearance of ballistic resistance in
nanomaterials.»?* In our conductance calculations, the scat-
tering phenomenon is implicitly described in the considered
quantum methodology. The slope of the curve in Fig. 4 is
now an electronic structure specific property that can be
bundled into a peculiar ballistic resistivity defined by

G=Na/pb7

where N, is dimensionless and 1/p, has the dimensions of
conductance. Here, p, retains the value of 0.86 R,, where
Ro=1/Gy=12907 Q. In that sense the new ballistic resistiv-
ity is a result of a novel scaling behavior of the material
conductance at the mesoscale. It is this scaling that promises
to be an universal material independent property.

In our work, the notion of the area A, instead of N, is
inadequate since any consideration defining it in a complex
electronic structure of few atom contacts results speculative.
Notwithstanding it is intuitive that a first order approxima-
tion for such an area should behave linearly with the effec-
tive number of atom contacts N,,.

Finally, one should expect that the described ballistic re-
sistivity p, will also depend on thermodynamical variables,
as the minimum cross-section histograms depend on
temperature.'> Such properties, and the extension of this kind
of study, on other chemical elements with different electronic
structures, seem to conform to a field of a promising research
activity, due to the obvious attractive applications of this
knowledge in the emerging nanoelectronic industry.

We thank J. J. Sdenz for helpful discussions, and Cecal-
cula (Venezuela) for computer facilities. This work has been
partially supported by the CSIC-IVIC researchers exchange
program and the Spanish DGICYT (MEC) through Project
No. BEM2003-01167/FISI.

A review on the current status on metallic nanowires research is:
N. Agrait, A. Levy-Yeyati, and J.-M. van Ruitenbeek, Phys.
Rep. 377, 81 (2003).

2R. Landauer, Philos. Mag. 21, 863 (1970).

3E. Scheer, N. Agrait, J. C. Cuevas, A. Levy-Yeyati, B. Ludoph,
A. Martin-Rodero, G. Rubio-Bollinger, J. M. van Ruitenbeek,
and C. Urbina, Nature (London) 394, 154 (1998).

4V, Rodrigues, T. Fuhrer, and D. Ugarte, Phys. Rev. Lett. 85, 4124

245405-4



BALLISTIC RESISTIVITY IN...

(2000).

3Y. . Lee, M. Brandbyge, M. J. Puska, J. Taylor, K. Stokbro, and
R. M. Nieminen, Phys. Rev. B 69, 125409 (2004).

6J. C. Cuevas, A. Levy-Yeyati, and A. Martin-Rodero, Phys. Rev.
Lett. 80, 1066 (1998).

7P. Jelinek, R. Pérez, J. Ortega, and F. Flores, Phys. Rev. B 68,
085403 (2003).

8 A. L. Yanson and J. M. van Ruitenbeek, Phys. Rev. Lett. 79, 2157
(1997).

9A. L Yanson, I. K. Yanson, and J. M. van Ruitenbeek, Nature
(London) 400, 144 (1999).

I0E. Medina, M. Diaz, N. Leén, C. Guerrero, A. Hasmy, P. A.
Serena, and J. L. Costa-Krdmer, Phys. Rev. Lett. 91, 026802
(2003).

1IN, Agrait, J. G. Rodrigo, and S. Vieira, Phys. Rev. B 47, R12345
(1993).

2. Olesen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, J.
Schiotz, P. Stoltze, K. W. Jacobsen, and J. K. Norskov, Phys.
Rev. Lett. 72, 2251 (1994).

137, M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, and
L. J. de Jongh, Nature (London) 375, 767 (1995).

147 L. Costa-Krimer, N. Garcia, P. Gacia-Mochales, and P. A. Ser-
ena, Surf. Sci. 342, L1144 (1995); Erratum in Surf. Sci. 349,
L138 (1996).

SA. Hasmy, E. Medina, and P. A. Serena, Phys. Rev. Lett. 86,
5574 (2001).

PHYSICAL REVIEW B 72, 245405 (2005)

16 A. 1. Yanson, 1. K. Yanson, and J. M. van Ruitenbeek, Phys. Rev.
Lett. 87, 216805 (2001).

17Y. V. Sharvin, Zh. Eksp. Teor. Fiz. 48, 984 (1965) [Sov. Phys.
JETP 21, 655 (1965)].

18], A. Torres, J. 1. Pascual, and J. J. Sdenz, Phys. Rev. B 49, 16581
(1994).

19 A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, Phys. Rev. B
52, 5036 (1995).

20T. Lépez-Ciudad, A. Garcia-Martin, A. J. Caamafio, and J. J.
Sdenz, Surf. Sci. 440, L887 (1999).

21y, Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopou-
los, Phys. Rev. B 59, 3393 (1999).

22§, J. Palacios A. J. Pérez-Jiménez, E. Louis, E. SanFabidn, and J.
A. Vergés, Phys. Rev. B 66, 035322 (2002).

23M. Dreher, F. Pauly, J. Heurich, J. C. Cuevas, E. Scheer, and P.
Nielaba, Phys. Rev. B 72, 075435 (2005).

24 A. Nakamura, M. Brandbyge, L. B. Hansen, and K. W. Jacobsen,
Phys. Rev. Lett. 82, 1538 (1999).

2N. D. Lang, Phys. Rev. B 52, 5335 (1995).
26]. C. Cuevas, A. Levy-Yeyati, A. Martin-Rodero, G. R. Bollinger,
C. Untiedt, and N. Agrait, Phys. Rev. Lett. 81, 2990 (1998).
2TM. Diaz, J. L. Costa-Krimer, P. A. Serena, E. Medina, and A.
Hasmy, Nanotechnology 12, 118 (2001).

28 A. Halbritter, Sz. Csonka, O. Yu. Kolesnychenko, G. Mihdly, O.
I. Shklyarevskii, and H. van Kempen, Phys. Rev. B 65, 045413
(2002).

245405-5



