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Effects of intertube interactions on transport are studied numerically in incommensurate double-wall carbon
nanotubes. The intertube transfer at each lattice site oscillates around zero in a complex plane as a function of
position in a quasiperiodic manner and therefore cancels each other when being summed up. The cancellation
is not perfect in the presence of sharp edges, giving rise to an intertube conductance much smaller than e2 /��

and determined by the structure at edges. The conductance exhibits a wild and almost irregular oscillation as
a function of the length with average and fluctuations independent of the length due to the change of the edge
structure.
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I. INTRODUCTION

Carbon nanotubes1 are often self-assembled to be multi-
wall tubes and bundles. In these systems electrons can trans-
fer from one tube to another and such intertube transfer may
modulate electronic properties of constituent single-wall
nanotubes. The purpose of this paper is to clarify intertube
effects on their transport properties by studying incommen-
surate double-wall tubes as a simplest but representative ex-
ample.

The structure of double-wall tubes has two features. One
is that the lattices of outer and inner tubes are incommensu-
rate. That is, the ratio between the periods of the outer and
inner tubes in the axis direction is irrational, indicating that
there is no translational symmetry in the system.2,3 The other
is that the distance between the tubes is about 3.6 Å,4 which
is almost independent of the tube radius and larger than the
layer distance of graphite known as 3.35 Å. It is considered
that multiwall tubes have the similar features. Therefore, in-
tertube transfer of electrons in multiwall tubes is expected to
be smaller than in graphite. However, the incommensurate
lattice makes the intertube transfer a difficult problem.

Experimental results on the electrical transport of an indi-
vidual multiwall tube remain very controversial. A conduc-
tance quantization was observed indicating ballistic transport
although the quantized value is a half of the expected value.5

A more recent measurement gave a quantized value in agree-
ment with the expectation.6 The diffusive behavior and cor-
responding weak-localization effects were observed more
commonly.7–9 The conductance due to intertube transfer was
directly measured in telescoping multiwall tubes.10,11

Theoretically, special cases of commensurate armchair or
zigzag double- and multiple-wall tubes have been studied
intensively. It was shown that degeneracy is lifted for some
energy bands and in less symmetric tubes small pseudogaps
open, which sometimes leads to reduction of the number of
conducting channels.12–15 In double-wall tubes consisting of
an infinitely long outer tube and a finite inner tube and in
telescoping tubes, antiresonance of conducting channels with
some quasibound states was shown to cause large conduc-
tance oscillations.15–18

For more realistic incommensurate tubes, on the other
hand, calculations of electronic states19,20 and transport

properties21–24 reported so far seem to show that intertube
transfer is small. It was suggested that this is due to differ-
ence between crystal momenta of states of inner and outer
tubes.22 A similar mechanism of suppression of intertube
transfer was also suggested in studies on carbon-nanotube
ropes25 and crossed carbon nanotubes.26

In this paper, the intertube conductance is studied in
double-wall tubes with incommensurate lattice structure be-
ing fully taken into account. The paper is organized as fol-
lows. In Sec. II our model and method are introduced. Nu-
merical results are shown in Sec. III and discussed in Sec. IV.
Summary and conclusion are given in Sec. V.

II. MODEL AND METHOD

A. Tight-binding model

A tight-binding model with � orbital is used. A double-
wall tube consists of an outer tube �tube 1� and an inner tube
�tube 2�. Each tube is modeled by a two-dimensional �2D�
graphite with a periodic boundary condition in the circum-
ference direction.

Figure 1 shows schematic illustrations of �a� a 2D graph-
ite and �b� a carbon nanotube. We define the x�y� coordinates
on the 2D graphite in Fig. 1�a� and the xy coordinates for the
tube in Fig. 1�b� where the x axis is along the circumference
direction and the y axis is along the tube-axis direction. As
shown in Fig. 1�a� primitive lattice vectors are chosen as a
=a�1,0� and b=a�−1/2 ,�3/2� and three vectors which con-

FIG. 1. Schematic illustrations of �a� a 2D graphite and �b� a
carbon nanotube.
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nect neighboring two sites are introduced as �1=a�0,1 /�3�,
�2=a�−1/2 ,−1/2�3�, and �3=a�1/2 ,−1/2�3�, where a is
the lattice constant of the 2D graphite. A unit cell of the 2D
graphite includes two sites A and B. Every tube can be speci-
fied by a chiral vector L=naa+nbb with na and nb being
integers. Let n1=na−nb and n2=nb or na=n1+n2 and nb=n2.
Then, the tube is usually called the �n1 ,n2� tube. In the fol-
lowing we shall use this convention.

A wave function �1 of tube 1 satisfies the following
Schrödinger equation:

E�1�R1� = − �0�
l=1

3

�1�R1 � �l� − �
R2

t�R1,R2��2�R2� ,

�1�

where the upper and lower signs correspond to A and B sites
of tube 1, respectively, �2�R2� is the wave function of tube 2
at R2, E the eigenenergy, −�0 the intratube resonance integral
between the nearest-neighbor sites, and −t�R1 ,R2� the inter-
tube resonance integral between sites R1 and R2. In Eq. �1�
the energy of a � orbital is chosen as the origin. The equa-
tion for tube 2 is similarly obtained.

The intertube resonance integral −t�R1 ,R2� is chosen
as23,26,27

− t�R1,R2� = ��1 exp�−
d − c/2

�
��p1 · d

d
��p2 · d

d
�

− �0 exp�−
d − a0

�
�

	��p1 · e��p2 · e� + �p1 · f��p2 · f�� , �2�

where a0 is the distance between neighboring carbons in 2D
graphite given by a0 /a=1/�3, c the lattice constant along
the c axis in graphite given by c /a=2.72, and � the decay
rate of � orbital. Further, �1 is the resonance integral be-
tween nearest-neighbor sites of neighboring layers.28,29 Vec-
tors p1 and p2 are unit vectors directed along � orbitals at R1
and at R2, respectively, d a vector connecting the two sites,
and e and f unit vectors perpendicular to d and to each other.

In the following numerical calculations we use parameters
� /a=0.185,19 �1 /�0=0.119,30 and �=1.4. The value of � is
chosen by fitting the energy dispersion of graphite in the
c-axis direction calculated with the use of Eq. �2� to that in
the effective model.28,29 Since the intertube resonance inte-
gral Eq. �2� follows exponential decay with the short decay
length �, intertube transfer into those of the other tube lying
near the site is important.

In this paper we consider double-wall tubes with metallic
outer and inner tubes near the Fermi energy in the undoped
case. Conductance between the inner tube and the outer tube
due to intertube transfer is calculated in two systems. One is
a two-terminal system illustrated in Fig. 2�a� and the other is
a four-terminal system in Fig. 2�b�. In the latter system, in-
tertube transfer is present only in the hatched double-wall
region with length A, while tubes are independent outside the
region and connected to reservoirs.

The four-terminal system is very advantageous to theoret-
ical analysis of effects of intertube transfer itself, while the

two-terminal system is similar to the telescoping tubes used
in Ref. 11. As will be demonstrated in the following, inter-
tube electron-transfer is extremely small and therefore the
most of incident wave is reflected back at the tube edge in its
presence. In the two-terminal geometry, the amplitudes of
both incident waves and transmitted waves exhibit a strong
spatial variation due to interferences caused by the edges and
the presence of evanescent waves decaying exponentially
away from the edges are likely to play significant roles. As a
result, the intertube conductance is modified drastically by
such a change in the wave function. In the four terminal
geometry, on the other hand, both incident and transmitted
waves have amplitude uniform in space and therefore the
information on intertube transfer can be obtained directly.

Calculation of conductance for long tubes requires a re-
cursive Green’s function technique.31 Because the lattice
structure of an inner and outer tube is incommensurate, the
most complicated �time consuming also� procedure lies in
the generation of a Hamiltonian matrix in each recursion
step. In order to avoid this complication and make the cal-
culation process much smoother, we shall restrict ourselves
to a nanotube with a set of edges selected beforehand.

For this purpose a unit cell is separated into columns in
such a way that the number of atoms in each column is the
same as that of independent modes �going in the positive y
direction, for example� of the tube and that each atom is
connected through bonds to those in the neighboring col-
umns in both sides. Figure 3 shows columns for �1,4�, �4,7�,
and �7,4� nanotubes. This separation is usually not possible
for all atoms contained in a unit cell and therefore remaining
isolated atoms are absorbed into the column lying in the right
hand side. Each column in a unit cell will be denoted by
integer m in the following. It is clear that there can be many
different ways of separation of a unit cell into columns.

In each recursive step several columns are combined to
form a segment. The segment size, i.e., the number of col-
umns, should be determined such that only intratube and
intertube couplings between nearest neighbor segments are
present and couplings between other segments can be ne-
glected completely. For an outer tube the number of columns
in a segment is fixed as N, while in an inner tube is chosen as
N+1 or N−1 depending on the inner tube is shorter or longer

FIG. 2. Schematic illustrations of �a� a two-terminal tube and �b�
a four-terminal tube. Intertube transfer is considered only in hatched
double-wall regions with length A. The tube-axis direction is chosen
as the y direction. Arrows indicate current flow for which the con-
ductance is calculated.
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than the outer tube in the previous recursive step. In this way
we can generate uniform length distribution between inner
and outer tubes.

The boundary of the double-wall region is given by the
edge of the first segment at the left edge and that of the final
segment added after each step of the recursion at the right
edge. Therefore, the left edge is fixed and the right edge
changes as a function of the length. The length of each tube
is defined by Ai=Ni��3a2 /4� /Li with i=1,2 where Ni is the
number of carbon atoms in the double-wall region of tube i.
The length of the double-wall region is defined by a geomet-
ric mean A=�A1A2.

Using Landauer’s formula,32 the conductance is given by

G =
e2

��
�

,�

	S
�	2, �3�

where S
� is the scattering matrix describing transmission
from a channel � to a channel 
. For the current flowing
from the left lead of the inner tube to the right lead of the
outer tube as shown in Fig. 2, for example, the summation is
taken over channels with positive velocities in the inner tube
and those in the outer tube.

B. Lowest-order approximation

Consider the four-terminal geometry. Near the Fermi en-
ergy, a metallic single-wall tube has four states in the vicinity
of the K and K� points with wave vectors K= �2� /a�
	�1/3 ,1 /�3� and K�= �2� /a��2/3 ,0� at the corners of the
hexagonal first Brillouin zone of 2D graphite. They are right-
going states with positive velocities �K�+� and �K��+�, and
left-going states with negative velocities �K�−� and �K��−�. In
order to make system-size dependence clear, we shall choose
the normalization in such a way that the amplitude of these
traveling waves is unity at each site.

The matrix element of intertube transfer between state �1



of tube 1 and �2
� of tube 2 is written as

V
� =
1

�N1N2
�
R1

�
R2

t
��R1,R2� , �4�

with

t
��R1,R2� = �1

�R1�*t�R1,R2��2

��R2� . �5�

In the lowest order approximation, the corresponding scatter-
ing matrix is given by

S
� = − i
A

��	v
v�	
V
�, �6�

where v
 and v� are the velocities of states 
 and �, respec-
tively. Exactly at K and K� points we have 	v
	= 	v�	=� /�
with �= ��3/2�a�0.

At the Fermi energy, �
 is given by

�
�R� = exp�ik · R + i�� , �7�

where k=K or K� and � is a phase dependent on K or K�
points, A or B sites, and the sign of the group velocity. In
particular, the relative phase at A and B sites varies between
right- and left-going waves, giving rise to difference between
transition probabilities into two directions.

Because the parameter �1 dominantly determining inter-
tube transfer at each site is much smaller than �0 the scatter-
ing matrix is approximated quite well by Eq. �6� when the
region is not so large, as has been shown in the case of
crossed nanotubes.26 Further, the lowest-order expression
continues to be valid if V
� remains small even with the
increase of the region.33,34 As will be demonstrated below,
this is always the case in incommensurate nanotubes.

III. NUMERICAL RESULTS

In the following we shall show results for double-wall
tubes consisting of an outer �4,16� tube �with a unit cell four

FIG. 3. Unit cells of �a� �1,4�, �b� �4,7�, and �c� �7,4� tubes and
their separation into columns. Isolated sites are denoted by a closed
circle.
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times as large as that of the �1,4� tube� and an inner �4,7� or
�7,4� tube as typical results among about a hundred double-
wall tubes studied. They will be called �4,16� / �4,7� and
�4,16� / �7,4� tubes in the following. Separations of unit cells
into columns are shown in Fig. 3. The left boundary of the
outer and inner tube is chosen as m=1. We use N=6 as the
number of columns for one segment in outer tubes in the
recursive Green’s function method. Further, the probability
of the transmission from the left inner tube to the right outer
tube will be discussed exclusively in the four-terminal geom-
etry. The other transmission probabilities are discussed in the
next section.

A. Intertube conductance

Figures 4�a� and 4�b� show conductance in the lower pan-
els and its average 
G� and fluctuation G in the upper pan-
els for �4,16� / �4,7� and �4,16� / �7,4� tubes, respectively.
The length is measured in units of the circumference of the
outer tube L1 /a=4�21. The results show that the conduc-
tance remains much smaller than e2 /�� and exhibits a wild
and irregular oscillation as a function of the length. Its aver-
age and fluctuation, however, are independent of the length.
This behavior continues up to nanotubes with realistic length
of about 10 
m.

Figure 5 compares the exact conductance plotted by
squares with that calculated in the lowest-order approxima-
tion plotted by crosses for short nanotubes. It is clear that the
lowest-order approximation can reproduce the length depen-
dence of the conductance almost exactly when the tube
length is sufficiently short. As has been discussed in Sec.
II B, intertube transfer at each site is much smaller than in-
tratube transfer �0 and therefore the scattering matrix is ap-
proximated quite well by V
�. Figure 5 means that V
� re-
mains small even with the increase of the region, showing
that intertube transfers at different sites tend to cancel each
other when being summed up.

Figure 6 shows the conductance calculated in the lowest-
order approximation for the same system as that in Fig. 4�a�.
In Fig. 7 distributions of conductance in Figs. 4�a� and 6 are
plotted by a solid and dotted lines, respectively. These two
figures show that the lowest-order approximation works well
even for very long nanotubes. In fact, the average and fluc-
tuation of the conductance are in agreement between these
results within 1%.

B. Oscillation of inter-tube transfer

In order to understand the behavior of the intertube con-
ductance we shall define an effective intertube coupling of a
site R in tube 1 with tube 2 by

t
��R� = �
R2

t
��R,R2� , �8�

where t
��R ,R2� is given in Eq. �5� and the summation is
over all sites in the double-wall region of tube 2.

Figures 8�a� and 8�b� show the real part of effective inter-
tube couplings for a �4,16� / �7,4� tube, tK�+�K�+��R� and

tK�+�K��+��R�, respectively, as functions of the y coordinate.

They exhibit complex oscillations around the origin. The
imaginary part of tK�+�K�+��R� and tK�+�K��+��R� and the other
components tK��+�K�+��R� and tK��+�K��+��R� exhibit the similar
behavior.

FIG. 4. The conductance in lower panels and its average and
fluctuation in upper panels for the four-terminal �a� �4,16� / �4,7�
and �b� �4,16� / �7,4� tubes. The averages and fluctuations are cal-
culated for 200n�A /L1�200�n+1� with n=0,1 , . . ., where A is
the length of the double-wall region and L1 is the circumference of
the outer tube.
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The effective intertube couplings tK�+�K�+��R� and

tK�+�K��+��R� in Fig. 8 are plotted in complex planes in Figs.
9�a� and 9�b�, respectively. They are scattered on some re-
gions whose centers of mass are close to the origin. The

amplitude is of the order of 0.1�0 which is much smaller than
�0. When the tube length is increased, the effective intertube
couplings densely cover the area enclosed by envelopes of
the points and its average over position R decreases in pro-
portion to the inverse of the length ���10−6	�0�L1 /A� in a
�4,16� / �7,4� tube�.

The phase of the wave function in Eq. �7� jumps by an
amount ±2� /3 when the position changes by a primitive
lattice vector. Because of this rapid phase jump and the qua-
siperiodic nature due to incommensurate lattice structure, al-
most all intertube transfers cancel out in Eq. �4� and remain
nonzero only because of an incomplete cancellation due to
the presence of sharp edges. The situation is analogous to a
series of numbers with alternating signature with an equal
absolute value �+1,−1, +1, . . ., for example�. When the num-
ber of terms in the summation increases, such a series does
not converge but oscillates with an average and fluctuation
independent of the number of terms.

For rapidly oscillating intertube transfers most probable
amplitude of matrix elements of intertube transfer in Eq. �4�
is given by the fluctuation of effective intertube coupling,
i.e.,

	V
�	 
1

�N1N1

�
	t
��R�	2� , �9�

which gives


G� 
e2

��

a2

L1L2


	t
��R�	2�
�0

2 �10�

with the use of Eq. �6�. This is independent of the length A
and also gives 
G��10−4	 �e2 /��� for �
	t
��R�	2� /�0

�0.1 in order-of-magnitude agreement with the calculated
average conductance for �4,16� / �7,4� and �4,16� / �4,7�
tubes.

FIG. 5. The conductance calculated in the recursion method
�squares� and the lowest-order approximation �crosses� for the four-
terminal �4,16� / �4,7� tubes with short length.

FIG. 6. The conductance in a lower panel and its average and
fluctuation in a upper panel for four-terminal �4,16� / �4,7� tube,
calculated in the lowest-order approximation. The averages and
fluctuations are calculated for 200n�A /L1�200�n+1� with n
=0,1 , . . ..

FIG. 7. Conductance distributions for four-terminal �4,16� /
�4,7� tubes. A solid line is calculated in the recursion method and
dotted in the lowest-order approximation.
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C. Edge effects

The present reasoning leads to the conclusion that the
intertube conductance is extremely sensitive to the structure
of edges. Figure 10 shows the distribution function of the
conductance for �4,16� / �4,7� and �4,16� / �7,4� tubes with
three different edges. The solid lines are the results for the
same systems as those in Fig. 4. The dotted lines are results
for the tubes where left edges are chosen as m=2 and 6 for
the outer and inner tube, respectively. A dashed line is the
result for tubes with straight edges that are defined by two
straight lines with distance A, obtained in the lowest-order
approximation �there is no essential complication in dealing
with arbitrary edges within the lowest approximation�.

The figure clearly demonstrates the strong dependence of
the intertube conductance on the structure of edges. Further,

this edge dependence is sensitive to the structure of the nano-
tube also. In fact, the dashed line is shifted to the right-hand
side of the solid line in �a�, but to the left-hand side in �b�.

In order to demonstrate importance of sharp edges, fur-
ther, we make edges smoother by multiplying the intertube
resonance integral Eq. �2� by the following function:

F�y� =
1

2
�1 − erf� 	y	 − 1

2A


�� , �11�

with erf�y� being the error function defined by

FIG. 8. Dependence of the real part of effective intertube cou-
plings on the y coordinate for �4,16� / �7,4� tube, �a� tK�+�K�+��R�
and �b� tK�+�K��+��R�. Squares are results at A sites and crosses those
at B sites.

FIG. 9. The intertube transfer �a� tK�+�K�+��R� and �b�
tK�+�K��+��R� for �4,16� / �7,4� tube in complex planes for 10
�y /L1�10.2. Squares are results at A sites and crosses those at B
sites.
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erf�y� =
2

��
�

0

y

e−t2dt , �12�

where y= �y1+y2� /2 with y1 and y2 being the y coordinate of
sites in outer and inner tubes, respectively, and A is the ef-
fective tube length. This function gradually increases or de-
creases the intertube coupling over the range .

Figure 11 shows the dependence of the conductance for
�4,16� / �7,4� tubes on , obtained in the lowest-order ap-
proximation. With the increase of  the conductance rapidly
decreases and becomes more than three order of magnitude
smaller for  /a�1 than that for  /a=0. All these results

show that detailed information on edges is necessary for the
accurate prediction on the value of the intertube conductance
because a slight change in edge configurations leads to an
order-of-magnitude difference.

D. Two-terminal system

Figure 12 shows the length dependence of the conduc-
tance in the lower panel and that of the average and fluctua-
tion in the upper panel in the two-terminal �4,16� / �7,4�
tubes, obtained using recursive Green’s function technique.
The system is same as that shown in Fig. 4�b� except for the
presence of the edges. The result is qualitatively same as the
conductance in the four-terminal systems. However, there is
a significant quantitative difference. In fact, the average
2.2	10−3e2 /�� is about twenty times and the fluctuation
2.8	10−3e2 /�� is about sixty times as large as that of
the four-terminal system shown in Fig. 4�b�.

This quantitative difference is mainly attributed to waves
reflected at the tube edges. In the two terminal system states
of each tube in the absence of intertube transfer become
standing waves with the maximum amplitude twice as large
as that of traveling waves. Then it is possible that the inter-
tube coupling oscillates as a function of position with an
amplitude four times as large as that for the four-terminal
system. Taking account of a factor 1 /2 which arises from an
average of squared absolute values of oscillating intertube
coupling, the conductance can become eight times as large as
that for the four-terminal system.

Because boundary conditions at edges cannot be satisfied
by traveling waves alone, the wave function contains many
evanescent modes decaying exponentially away from edges.
Such evanescent modes sensitive to the structure of the edge
tend to increase or reduce intertube transfer in the vicinity of
edges considerably and therefore can strongly modify the

FIG. 10. Conductance distributions for �a� �4,16� / �4,7� and �b�
�4,16� / �7,4� tubes with three different edges. For solid and dotted
lines the left edges consist of columns specified by �m1 ,m2�
= �1,1� and �2,6�, respectively, while for dashed lines both edges are
given by vertical straight lines. The solid and dotted liens are cal-
culated in the recursion method and the dashed lines in the lowest-
order approximation.

FIG. 11. Dependence of conductance for �4,16� / �7,4� tubes on
the range , calculated in the lowest-order approximation. Results
for five different values of the length A /a243.5, 304.3, 365.2,
426.1, and 486.9, are shown.

ELECTRONIC INTERTUBE TRANSFER IN DOUBLE-… PHYSICAL REVIEW B 72, 245403 �2005�

245403-7



intertube conductance through the enhancement of the in-
complete cancellation of intertube transfers. Therefore, the
enhancement of the average and fluctuation of the conduc-
tance more than one-order-of-magnitude is to be expected.

IV. DISCUSSION

For sufficiently small energy, the effective-mass approxi-
mation or k ·p scheme provides an accurate description of
the wave functions.35 It shows that the wave functions at A
and B sites change their relative phase by � between right-
and left-going states in the vicinity of the K point and that
the same is applicable in the vicinity of the K� point. As a
result, the probability of transmission to the left outer tube
and to the right outer tube are different for the electron in-
jection from the left inner tube in the four-terminal system.
Numerical results, although not shown explicitly here, show
that these transmission probabilities exhibit almost same sta-
tistical behavior. They show also that the reflection probabil-
ity is approximately of the order of that of inter-tube trans-
mission although it can be larger or smaller depending on the
structure. Therefore, almost all electrons transmit through the
incident tube ballistically. This is certainly the same for the
injection into the outer tube and consistent with the observa-
tion of a conductance quantization in multiwall nanotubes.6

As mentioned already, explicit calculations have been per-
formed for nearly a hundred different double-wall nanotubes
with incommensurate lattice structure. It is found that in
some exceptional incommensurate tubes �for example,

�6,15� / �1,10� and �10,16� / �5,11�� the conductance can be
as large as the conductance quantum. The actual develop-
ment map of tubes should be drawn in such a way that the
circumference of the inner and outer tube agrees with each
other by changing the scale appropriately. It is possible that
in such a deformed map lattices of outer and inner tube hap-
pen to be nearly commensurate over a wide area. This kind
of accidental near-commensurability occurs only in very rare
occasions, however �several percents among the tubes con-
sidered�.

For such exceptional nanotubes the conductance obtained
in the lowest-order approximation deviates from the recur-
sive result considerably. Even for nanotubes with small av-
erage conductance the lowest-order conductance can deviate
from the exact result with the increase of the length. The
reason is that there can be some spatial regions where the
intertube transfer can be as large as �0 when being summed
over and the lowest-order approximation becomes inappro-
priate, depending on the structure sensitively. Further,
higher-order contributions, however, small they might be,
can be accumulated for very long tubes and therefore give
observable contributions due to the cancellation of the inter-
tube coupling. In fact, a careful comparison between Figs.
4�a� and 6 reveals that the lowest-order approximation fails
to reproduce the exact conductance value at each length.
However, the overall statistical behavior, including the dis-
tribution function of the conductance, is almost always re-
produced by the lowest-order approximation quite well.

The average of the intertube conductance has been shown
to be independent of the length and is approximately de-
scribed by Eq. �10�. This equation shows that the intertube
conductance decreases with the circumference or the diam-
eter in proportion to the inverse of the square of the circum-
ference. Indeed, numerically calculated conductance shows
the tendency that the conductance decreases with increase of
tube diameter although the exact dependence is not deter-
mined due to the limitation of computational time for tubes
with large diameter.

At nonzero temperature the presence of phase-breaking
scattering giving a finite phase coherence length L� should
be considered. One way to take into account this effect is to
separate the nanotube into segments with length of the order
of the phase coherence length and assume that the electron
looses the phase information after transmission through each
segment.36 In this case intertube transfer occurs in each seg-
ment with a probability independent of the length as has
been obtained above. Because intertube transfer is incoherent
between different segments, the conductance becomes pro-
portional to the number of such segments, i.e., G�A /L�,
where A is the length of the double-wall region. Using a
phase coherence length of 300 nm at about 10 K obtained
experimentally9 and the average conductance of 10−3e2 /��,
we need A=3 mm to have the conductance of the order of
e2 /��.

The present result that intertube transfer is small in in-
commensurate double-wall tubes is consistent with the re-
sults of other theoretical studies.22,25,26 However, our finding
that the averaged intertube conductance is independent of
tube length is quite in contrast to a power-law decay for the
comparable length suggested previously.22 A similar power-

FIG. 12. The conductance in a lower panel and its average and
fluctuation in a upper panel in the two-terminal �4,16� / �7,4� tubes.
The average and fluctuation are calculated for 200n�A /L1

�200�n+1� with n=0,1 , . . ..
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law decay may be obtained by replacing �
	t
��R�	2� by
	
t
��R��	 incorrectly in Eq. �9�, giving a conductance pro-
portional to inverse of square of the length.

It is known that the wave function sometimes decays fol-
lowing a power law in one- and two-dimensional quasiperi-
odic systems.37–39 The similar behavior is likely to appear
and the intertube conductance may eventually exhibit a cer-
tain power-law dependence when incommensurate double-
wall nanotubes become much longer than those studied here.
The present results show, however, that such a power-law
decay does not occur in realistic tubes with lengths of a few
tens micrometers.

The large conductance fluctuation as a function of the
length originates from the discrete change in the edge. In the
calculations presented above, we have introduced a sharp
edge for both inner and outer tubes and achieved the length
change by adding or removing carbon atoms at an edge. The
effective intertube coupling of these atoms exhibits discrete
jumps as has been discussed in Sec. III B, leading to the
large fluctuation. In actual double-wall nanotubes similar to
that shown in Fig. 2�a�, the left edge of the outer tube is well
defined, but that of the inner tube is broadened over the
distance determined by the spatial extent of the � orbital.
The same is applicable to the right edge. Even if such broad-
ening is considered, the conductance exhibits fluctuations of
the same amount as long as the length of the double-wall
region changes by adding or subtracting carbon atoms at the
edge.

The situation changes when the length of the double-wall
region is varied smoothly for a fixed form of the edges. In
fact, the conductance changes smoothly as a function of the
length with much less fluctuations. This can be demonstrated
by a lowest-order calculation in the four-terminal geometry
shown in Fig. 2�b� as a function of the position of the inner
tube for fixed left and right edges of the outer tube. The
situation is analogous to the case of crossed nanotubes, for
which the intertube conductance shows no fine fluctuations
as a function of the angle.26

In actual telescoping tubes, the conductance is measured
as a function of the length with fixed edges at the left end of
the outer tube and at the right end of the inner tube as shown
in Fig. 2�a�. It is expected, therefore, that the intertube con-
ductance varies more smoothly without discrete fluctuations.
Calculations for such tubes are certainly desirable, but are
quite time consuming and left for future, because the recur-
sive procedure is not directly applicable and even the lowest-
order approximation is not possible. Without explicit calcu-
lations, however, we can say at least that the absolute value
of the conductance is of the same order as obtained above

G�10−3�e2 /��� and remains essentially independent of the
length. Measured intertube conductance10,11 is much larger
�for example, �0.03 and �0.3 in units of e2 /��� and there-
fore cannot be explained by such calculations.

In intertube transport, effects of electron-electron interac-
tion can be important. For metallic single-wall nanotubes,
low-energy properties were theoretically investigated.40–44 In
experiments characteristic power-law behavior of tunneling
conductance45,46 and the density of states47 indicated that the
system is regarded as a Tomonaga-Luttinger liquid. For mul-
tiwall nanotubes, a similar behavior was theoretically sug-
gested,48 but experimental results seem to depend strongly
on samples and conditions.49–53

The present results of intertube coupling is used for the
basis for analysis of such interaction effects. If multiwall
tubes are described as weakly coupled Tomonaga-Luttinger
liquid and intertube transfer is regarded as tunneling, the
intertube conductance is likely to exhibit a power-law depen-
dence on the temperature and bias voltage. Intertube transfer
may act also as weak scatterers and cause strong backward
scattering within each tube,54 possibly leading to a suppres-
sion of the intertube transfer. Such intriguing problems are
left for a future study.

V. SUMMARY AND CONCLUSION

The intertube conductance in incommensurate double-
wall tubes has been numerically studied. Because the inter-
tube transfer at each site is small and exhibits a discrete jump
in a quasiperiodic manner as a function of position, it cancels
out each other almost completely when being summed over
many sites. The conductance appears only in the presence of
sharp edges making the cancellation incomplete. As a result,
the conductance oscillates as a function of the length with a
length-independent small average ��10−3�e2 /���� and fluc-
tuation. It is concluded that intertube transfer can be safely
neglected in multiwall nanotubes.
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