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Universal quantum signature of mixed dynamics in antidot lattices
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We investigate phase coherent ballistic transport through antidot lattices in the generic case where the
classical phase space has both regular and chaotic components. It is shown that the conductivity fluctuations
have a non-Gaussian distribution, and that their moments have a power-law dependence on a semiclassical
parameter, with fractional exponents. These exponents are obtained from bifurcating periodic orbits in the

semiclassical approximation. They are universal in situations where sufficiently long orbits contribute.
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I. INTRODUCTION

Experiments on mesoscopic semiconductor devices have
exhibited a variety of features that can be attributed to quan-
tum chaos.'”3> Modern fabrication techniques make it pos-
sible to produce extremely pure semiconductor microstruc-
tures in which the motion of the electrons is confined to
two-dimensional domains whose relevant dimensions are
much smaller than the phase coherence length and the trans-
port mean-free-path. In this ballistic regime semiclassical
methods have been very successful in connecting quantum
interference effects to the underlying classical dynamics.*>

There has been a considerable emphasis on systems in
which the confinement potential leads to chaotic motion. As
in disordered systems, certain transport properties are found
to be universal, like conductance fluctuations and weak lo-
calization properties of transport through cavities.®"!! In con-
trast, if the dynamics is integrable, these features are in gen-
eral not universal but depend on the specific system.
Semiclassical methods have been applied to explain univer-
sal properties of chaotic transport as well as the nongeneric
behavior of integrable cavities.®7%1213

Other experiments have been concerned with revealing
signatures of classical periodic orbits in quantum phenom-
ena. Examples are orbital magnetism in ballistic micro-
structures'* and transport through antidot superlattices.' 1
The latter consists of a two-dimensional electron gas at the
interface of a GaAs/Al,Ga,_,As heterostructure into which a
periodic array of holes is drilled. The effective potential is a
periodic structure of high potential peaks, and if the potential
is steep it may be considered as an experimental realiza-
tion of the Sinai billiard. Experiments on ballistic transport
at temperature 7=1.5 K show a series of pronounced
peaks in the longitudinal conductivity vs magnetic field
that can be explained by classical electron transport within
the Drude formalism.!>!® Experiments at a lower temp-
erature 7=~0.4 K reveal additional quantum oscillations su-
perimposed on the classical peaks.!” These quantum oscilla-
tions can be attributed to unstable periodic orbits of the elec-
trons in the confinement potential by a semiclassical theory
for the conductivity.!81?

Generic systems have a phase space which is neither com-
pletely chaotic nor integrable but contains a mixture of regu-
lar islands and chaotic regions. This is relevant for experi-
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ments because confinement potentials are not hard-wall
potentials, and soft-wall potentials typically lead to mixed
dynamics. A natural question is whether ballistic mesoscopic
systems have characteristic properties that differ from those
of chaotic and integrable systems. One signature of mixed
dynamics has been found in the ballistic transport through
cavities. It was predicted and observed experimentally that
the variance of conductance fluctuations, as a function of the
magnetic field, has a power-law dependence with a noninte-
ger exponent that is related to the trapping of chaotic trajec-
tories near regular islands.?%?! The purpose of this paper is to
show that there is a different mechanism in ballistic transport
through antidot lattices which leads to universal behavior in
mixed systems.

Amongst the main characteristics of the dynamics in
mixed systems are bifurcations of periodic orbits, events in
which different periodic orbits coalesce when parameters of
the system are varied. Bifurcations are important for semi-
classical approximations because bifurcating orbits carry a
semiclassical weight that is higher than that of unstable pe-
riodic orbits and sometimes even that of tori of regular or-
bits. The dominating influence of bifurcations on transport
through antidot lattices has been demonstrated in Refs. 22
and 23. Bifurcations occur in different forms, and depending
on the physical quantity that one considers, they are of dif-
ferent importance. In the following we consider moments of
conductivity fluctuations. We show that they are dominated
by a competition between different types of bifurcations,
leading to a power-law dependence on a semiclassical pa-
rameter with fractional exponents. These exponents are uni-
versal if the competition is amongst all generic bifurcations.
Similar results have been obtained for moments of spectral
counting functions and wave functions in closed mixed
systems.?*-%7

In the following we briefly review the semiclassical
theory of transport through antidot lattices and discuss modi-
fications in the presence of bifurcations. We give an over-
view of different types of bifurcations and discuss their in-
fluence on moments of conductivity fluctuations.

II. SEMICLASSICAL THEORY FOR THE CONDUCTIVITY

The starting point for the semiclassical theory is the Kubo
linear response theory. The conductivity is given in terms of

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.72.245334

KEATING, PRADO, AND SIEBER

matrix elements of the current operator. The semiclassical
approximation of the matrix elements®® and the application
of the stationary phase method for evaluating integrals then
yields a semiclassical expression for the conductivity as a
sum over the classical (Drude) component!® and an oscilla-
tory component in terms of periodic orbits. 319

The Kubo formula for the longitudinal conductivity is*

2nti A .
0= M0 O Ep = D0 Ep =)}, ()

where I:I=(1/2m)[f)—ef&(f')]2+ U(r) is the Hamiltonian of a
two-dimensional electron gas in a perpendicular magnetic
field, A=(-By/2,Bx/2) is the vector potential taken in the
symmetric gauge, U(r) is the confinement potential, and 0, is
the x component of the velocity operator. Er denotes the
Fermi energy, m is the effective mass of the electron, and V
is the area of the system. Weak disorder is taken into account
at the level of Born approximation by giving the & functions
a finite width I'=A/27,, where 7, is the elastic scattering
time. This is sufficient for our investigation of the influence
of periodic orbits on the conductivity. Although a particular
realization of the smooth disorder potential changes the clas-
sical trajectories slightly, this does not affect the following
analysis of the generic bifurcations that they undergo if sys-
tem parameters are changed.

To evaluate the Kubo formula (1) it is convenient to write
the delta function in terms of retarded and advanced Green

functions:  Sp(Ep—H)=—(1/2m)[G*(Er)-G(Ep)]  with
ét(E)=[E—I:IilT]_1. In the semiclassical limit as # — 0, the
longitudinal conductivity is reduced to terms that involve

only products of the retarded and advanced Green functions,
because terms that involve products of Green functions of

the same type vanish:'31°
Eah 1\
O =2 v\ fdzrdzr'vx(r)vx(r')
X G, . (Ep)Gy, (Ep). ()

The Green function G:, L(E) is semiclassically approximated

by a sum over classical trajectories vy that start at the initial
position r and end up at the final position r’ with energy £

given by3*3!
i T
G =~ —— (_ —L>D 12
o Vzﬂﬁ% expl =5 I
S T
Py L
Xexp{l P (r',r) —12 777] (3)

S,(r',r)=/[,p-dr is the classical action of the trajectory y
with the canonical momentum p, 7, is the number of conju-
gate points along 7, T is the traversal time of the trajectory,
and the first exponential is the weak disorder factor. The
amplitude factor D, involves second derivatives of §,,. It is
convenient to express it in terms of local coordinates
r=(z,y), with coordinate z along the orbit and y perpendicu-
lar to it. Then
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where v and v’ are the velocities at z and z'. Inserting
Eq. (3) into Eq. (2) one finds that the longitudinal conduc-
tivity is given by a double sum over oscillatory terms. Due to
the fact that G*(E) and G~ (E) are complex conjugates,
G;’r,(E)=[G:,,r(E)]*, the phase of the oscillatory terms con-
tains the action difference of two trajectories (y; and 7,).
The conductivity is then split into two parts, a nonfluctuating
one from the diagonal terms (y;=7,=7v) and a fluctuating
one from the nondiagonal terms (with 7y, # y,), that is

- 1
Oy = Oy t O{Zx' (5)
The mean conductivity a'_xx,

2

_— e

=13 d*rdr' Y, v (0 (r')D,exp(-T,/7,),
yrx')

(6)

can be transformed into a familiar form as a phase-space
average (denoted by (-).,) where it is recognized as the
Drude conductivity!$!1?

0=’ p(Ey) f di{v (0)v,(1))yp exp(=tl7,),  (7)
0

where p(Ep)=m/2mh? is the density of states per unit area at
the Fermi energy in two-dimensional systems.

The fluctuating part o{l is a quantum correction to the

Drude conductivity and is given by the semiclassical formula

2
. e
O{(i =— 2 f dzrdzr’(vl)x(vé)X\/Dy D,
h V71~72 : :
T71-72>
27'6]
i

, i
hS'yl,yz(r7r 7EF) - ?7771,'}/2> s (8)

Xexp(—

X exp(

where TY1,72=(T71+Ty2); Sy;,=5y,=8,, and 7, . =7,
— 7y, A correct evaluation of these integrals requires detailed
knowledge of classical phase space structures as will become
clear as we proceed.

The main contribution to the integrals comes from the
stationary points where

VS, 5t EEp) =py—p1 =0,

V'S, (X', rEp) =p', —=p’5=0. )

Here p; and p’; denote the initial and final momenta of tra-
jectory ;. The two trajectories y; and 7y, must hence have
the same initial and final momenta in addition to having the
same initial and final positions. One way of satisfying these
conditions with y; and 7, not being identical is that both
trajectories are part of a primitive periodic orbit y. In fact,
for each periodic orbit vy there is an infinite set of pairs that
satisfy the stationary-phase conditions. They differ only by
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the number of times they wind around 7y and their action
difference is a multiple of the action of the primitive periodic
orbit Sy, =Sy,=1S,

The evaluation of Eq. (8) is closely related to performing
the trace in the derivation of Gutzwiller’s trace formula. The
integration is done in the local coordinates r=(z,y) with
d*rd®r' =dzdz'dydy’. In the case of isolated periodic orbits
the integrals over y and y' are evaluated by the stationary
phase method while the integrals over z and z’ are performed
exactly.'®!” This results in

A=25S oo 2 o)

y r=1
cos[rS (Ep)/h — mru,/2]
|det(M, - 1|2 ’

(10)

where C,(v,,v,) is a correlation function of the longitudinal
components of the velocity along the orbit y

T7 % ,
C,(v,.0,) = f dtf dr'v (o (t+1)e™ . (11)
0 0

Formula (10) applies to the fully chaotic case where all or-
bits are unstable. In a lattice there are many copies of an
orbit, so when counting different orbits one has to multiply
each one with a degeneracy factor, depending on the geom-
etry. Finite temperature and spin effects lead to additional
factors of (7T, /#8)/sinh(7rT,/%B) and 2 cos(rT,upzB/h),
respectively, where ug=efi/2m, is the Bohr magneton. There
are similar formulas for the Hall conductivity o,,.>!%1

Close to a bifurcation the saddle-point approxunatlon
leading to Eq. (10) breaks down because the saddle point is
not isolated. There are nearby saddle points from the other
periodic orbits that participate in the bifurcation. This occurs
when, by changing the energy or parameters of the system,
the eigenvalues of M"— 1 and Eq. (10) diverges. In order to
obtain the correct semiclassical contribution one has to inte-
grate over the neighboring saddle points as well. This results
in transitional or uniform approximations for the bifurcating
orbits.

Bifurcations occur in specific forms that depend on the
repetition number  for which det M"=1. They are character-
ized by normal forms which describe the characteristic mo-
tion of trajectories in the vicinity of a periodic orbit.>* Before
describing the normal forms we transform the integral in Eq.
(8) into a form that is more appropriate for treating bifurca-
tions.

One of the integrals over y and y’ is done in stationary
phase approximation, and the other is transformed to an in-
tegral over normal form coordinates.’>3¢ Afterwards the in-
tegral over the z and 7z’ coordinates can be performed. The
resulting contribution from the rth repetition of a bifurcating
orbit 7y is
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TCY(UX,UX)D‘{[eXp(%rSO —iy V,) Q(EF)] ,

(12)

where
1 .
GED) = f dQ'dpP exp(édw',m). (13)

Here S is the action of the periodic orbit at the center of
the Poincaré surface, and v, is the number of conjugate
points along r repetitions of this orbit. ®(Q’'P) is a generat-
ing function for the Poincaré map in normal form coordi-
nates from (Q,P) to (Q',P’). At the position of a periodic
point

ob P
Q"
and ® is stationary.
Equation (12) is a transitional approximation for the bi-
furcating orbits. It is correct when the orbits are close to a
bifurcation, where its semiclassical effect is lalrgest.35 If, due
to a change of parameters, the orbits move further apart, it
reduces to a sum of single terms as in Eq. (10) where, how-
ever, the amplitudes for the neighboring orbits are inaccu-
rate. The transitional approximation is sufficient for our pur-
pose. A uniform approximation which has the correct single
orbit limit can be obtained by including the correlation func-
tion C,(v,,v,) into the integral (where it is evaluated along
neighboring trajectories) and including also the Q' and P
dependence of the preexponential factor that comes from the
determinants D.3%37 In Eq. (12) this factor has been evalu-
ated at the central orbit and has the value one.
Let us look at an example of a pitchfork bifurcation with
normal form

p=0, P _0_0'=0 (14)
oo T

p2
D(Q,P)=—+e0>+cQ", (15)
where ¢>0 and the primes have been dropped for conve-
nience. For £>0 there is only one solution of 0=d®/JQ
=d®/JP at (0, 0) corresponding to the central periodic orbit.
If, by changing parameters, &£ goes through zero, two new
solutions appear which are located symmetrically about
0=0. In the generic situation (in systems without symme-
tries) this is a period doubling bifurcation. It occurs if the
lowest repetition number r for which det(M"—1)=0 is r=2.
At the bifurcation one new orbit of double the period arises
which intersects the Poincaré section twice.

The integral (13) can be evaluated in closed form for the
normal form (15) and is given by a sum of two Bessel func-
tions with index ﬁ and —i. At the bifurcation, £=0, it has the

simple form
7' (1/4)exp(3mil4)
G(E) = \f AT (16)

The exponent of # in the denominator, 8=5/4, shows that
the bifurcation term is by a factor #~/# stronger than that of
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TABLE I. The relevant parts of the normal forms for bifurca-
tions of period-r orbits with codimension K=2.
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TABLE II. Exponents S , and g , for generic bifurcations with
codimension K=1 or K=2.

r (Dr,Z r ﬁl r Yir BZ,r Y2.r
1 P24x,0+x,0°+0* 1 7 2 5 5
2 P +x,0%+x,0*+ 0 6 3 4 4
3 (P2+0%)+x,(P*+0Q) +x, Re[ (P+iQ)’] 2 3 1 4 1
4 P20%+x;(P?+ Q%) +x,)(P?- 0%)? 4 2 3
5 Re[(P+iQ) ]+x,(P2+ Q%) +x,(P*+ 0%)? 3 4 1 3 3
=6 (P?+ Q%) +x)(P?+0%) +x5(P?+0?%)? 3 3 2 4
4 3 ! 3 1
2 2 2 2
a single orbit. The contribution of pitchfork and tangent bi- 5 3 1 8 4
furcations to the conductivity were evaluated in Refs. 3 and 2 2 5 5
23. ~6 3 1 5 1
We note that the constant ¢ in the normal form that ap- 2 2 3

pears in Eq. (16) can be obtained by following the actions
and stabilities of the orbits through the bifurcations. It fol-
lows from?’

2
Tr My—Tr M, ~ — 68, 50—51~z—. (17)
C

Hence one finds

2
c=lim w_ (18)
e—0 144(50 - Sl)

There is a second exponent, y, which characterizes the
semiclassical importance of bifurcations for spectral and
transport properties. It specifies the region in parameter
space (e in the example) in which the contribution of the
bifurcation is strongest. Both 8 and 7y can be obtained from
the normal form by a scaling argument. We perform a scaling
of O, P, and & such that the integral in Eq. (13) takes the
form

1 g
g(EF,S’h):ﬁ_Bg<EFs;ysl>' (19)
In the example of the pitchfork bifurcation the argument
of the exponent is made %-independent by changing the in-
tegration variables and a subsequent scaling of e.

P=4"2P, 0=4"Q, e=h"%. (20)

As aresult B=2-1/2-1/4=5/4, as before, and y=1/2.

Different bifurcations have different exponents 8 and y
and, depending on the quantities that one considers, they are
of different importance. We will consider in the following
statistical properties of the conductivity. It will be shown that
they are dominated by certain kinds of bifurcations, leading
to universal properties in the regime of mixed classical dy-
namics. Before we do that we give an overview of classifi-
cations of bifurcations that are known presently.

The generic bifurcations of codimension K=1 are those
that occur if one parameter of the system is varied. They
have been classified by Meyer and Bruno.’>33 A list of the
normal forms can be obtained from Table I by setting x,=1
(except for r=1 where it is P?>+x,;Q+Q°). These normal

forms are simplified versions in which all constants and
terms that are irrelevant for the determination of B and y
have been removed. The scaling proceedure of Eq. (19)
yields the exponents B, and v, that are given in Table II.

If more parameters than one are varied then other bifur-
cations occur in which more complicated configurations of
periodic orbits coalesce. For example, by varying a second
parameter one can make certain codimension K=1 bifurca-
tions occur at the same instance. The codimension K corre-
sponds to the number of parameters that are varied. Generic
bifurcations of codimension K=2 have been classified by
Schomerus,?® and the normal forms are given in Table 1. For
each parameter x; one has an exponent o; that specifies the
range over which the bifurcation is important, Ax;~ #%. The
total volume in K-dimensional parameter space then scales
as 1” where

y=2 0, (21)

The exponents Bg, and g, for bifurcations of codimen-
sion K=2 are also listed in Table II.

Although bifurcations of higher codimension do not oc-
cur, in general, when only one parameter is varied, they still
affect semiclassical approximations because of their finite
extension in parameter space. This is one of the main reasons
why the semiclassical analysis of mixed systems is so intri-
cate.

For bifurcations of codimension K=3 there is no com-
plete classification. Only partial results exist. Our main inter-
est lies in bifurcations of arbitrary codimension K with rep-
etition number r=2K+2. These have the (simplified) normal
form

K
D, 4(Q,P) = K+ 4+ ) x,I" + O(IK+), (22)

n=1

where I=Q%+ P?. Expressing ® in terms of Q and P, we find
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B, =2 2 _2K+1
K== 2k+1) K+1°
K
n K
:l— = = = . 23
UK,r,n K+ 1 7K,r z O-K,r,n 2 ( )

It will be shown that these bifurcations are the most impor-
tant for determining conductance fluctuations in the next sec-
tion.

III. MOMENTS OF THE CONDUCTIVITY FLUCTUATIONS

We estimate the semiclassical size of the conductivity
fluctuations o' by evaluating the %-dependence of the mo-
ments

Mo (R) = (ol (ER) ™), (24)

where (-) denotes a local average over one or more param-
eters of the Hamiltonian, for example, Fermi energy, mag-
netic field, or system parameters. In this section we assume
that very long orbits do contribute to the longitudinal con-
ductivity. The consequence of the damping of the contribu-
tions of long orbits due to disorder and inelastic processes is
discussed in the next section. The central point now is to
replace the average by an average over the parameters in the
normal forms

My, x(h) =B f dKX[O{{K(X’ﬁ)]zm’ (25)

where B is a normalization constant. The scaling procedure
in Eq. (19) yields that each bifurcation, labeled by r and K,
contributes a term that scales as 1/A>"Px=Ykr, With the #
dependence thus extracted, these contributions can now be
compared for different bifurcations. The bifurcation that
wins the competition is that for which the 7 exponent in the
denominator is largest, and it determines that rate at which
the x-averaged moments diverge in the semiclassical limit.
That is

M, (h) ~ k™" as h —0, (26)

where
V= max(zmﬂK,r - 7[(,)‘) . (27)
K,r

The exponents v,, are universal numbers that are deter-
mined by studying the hierarchy of bifurcations. Similar uni-
versal exponents have also been found for moments of the
fluctuating parts of the spectral counting function and wave
functions.”>?’ They have been named “twinkling expo-
nents,” in analogy to the exponents that control the intensity
of twinkling starlight.

For the generic bifurcations with K=1 and K=2 the ex-
ponents v, x ,=2mpBg ,— vk, are listed in Table III. For ge-
neric bifurcations with K>2 and r=2K+2 the exponents
V. k., follow from Eq. (23) and are given by
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TABLE III. Values of v, x,=2mpBg .~ vk,

r Vil M21.r V12 M2

| 5 E 5 15
3 3 4 4
2 2 2 3 1B
2 3 3
3 7 5 2 21
3 4 4
4 5 u 5 un
2 2 2 2
5 3 1 12 28
2 2 5 5
=6 3 1 7 17
2 2 3 3

2K+1 K (28)

12 =2m -,
ko K+1 2

which are independent of r. Although the normal forms for
K>3 and 1=r<K have not been classified completely, it
has been argued in Refs. 26 and 27 that these bifurcations
cannot contribute to the twinkling exponents since they have

a counterpart with K<K and 7>2K+2 with the property
that v,, g 7> v, k- The same argument can be applied in the
present case, and hence the maxima of the exponents given
in Eq. (28) represent the maxima with respect to all generic
bifurcations and are universal. They can be written as

. 2m K
v,,=4m — min +—. (29)
Kk \K+1 2

The exponents v,, are given in Table IV. If m is a square then
v,=4m—2m+1/2. If not, the maximum value is attained at
one or both of the two integer values of K that are closest to
2Vym—1. It is clear from the moments that the conductivity
fluctuations do not have a Gaussian distribution.

Another quantity explored in the literature concerns the
magnetic fingerprint in antidot lattices incorporated in the
autocorrelation function of the conductivity.?® Consider

F(Ax) = (ol (x + Ax) X o, (X)), (30)

where o/ is written as a sum over classical orbits and x is a
parameter of the system, e.g., the magnetic field. The average
(-)xy might be over other parameters as well. At Ax=0 this is
identical to the second moment M,. The bifurcations then
determine the characteristic length scale over which the cor-
relations decay as Ax is increased. In the generic situation all

TABLE IV. Exponents v,, and codimensions K of the dominat-
ing bifurcations for generic two-dimensional systems.

m 1 2 3 4 5 6 7 8

v, 25 55 9 125 16 193 23 26
K 1 2 23 3 34 4 4 5

=[]
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parameters x, in the normal form are affected when the
physical parameter x is changed. Hence the correlation
length scales as 7 where o is the minimum of the o;. For
generic bifurcations with r=2K+2 this yields o=1/(K+1).

IV. DISCUSSION

The semiclassical analysis of the conductivity fluctuations
leads to a power-law dependence of the moments M,,,
~ 1/#h"m, with fractional exponents v,,. In situations where
arbitrarily long periodic orbits contribute to the conductivity
these exponents are universal numbers that are obtained
from the competition between different bifurcation. The
analysis was done in terms of %. If a different semiclassical
variable is used instead of #, e.g., the Fermi wave length,
then the exponents have to be adjusted depending on how the
classical action scales with the semiclassical parameter.

In experiments most of the long orbits are suppressed and
the conductivity is determined by a relatively small number
of periodic orbits. One cannot expect then, in general, to see
the universal exponents in particular for the higher moments,
because they originate from high repetitions of periodic or-
bits. Instead the exponents will be determined by the com-
petition within the much smaller class of those bifurcations
that affect the relevant periodic orbits. The dominating expo-
nent can then be found by comparing the corresponding ex-
ponents v, g, in Table III (assuming that higher codimen-
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sions are not important). Nevertheless, also in this case the
conductivity fluctuations would be non-Gaussian and the
moments would have a power-law dependence with frac-
tional exponents in clear contrast to the chaotic case with
Gaussian fluctuations and v,,=2m. Also the length scale of
the decay of correlations is larger if the classical dynamics is
mixed, and is of order A7 with o<1.

There is, however, one property of antidot lattices that
might make it possible to observe the universal exponents
for the lower moments, and that is their high symmetry. In
systems with discrete symmetries there are also nongeneric
bifurcations which typically have the same normal form as
generic bifurcations, but at lower repetition numbers. For
example, the pitchfork bifurcation Eq. (15) can occur at rep-
etition number r=1 where two new orbits of the same length
appear instead of one orbit of double the length.** Similarly,
if the antidot lattice is, e.g., invariant under rotations of /3
then a bifurcation that is generic for r=6 can occur at the
first repetition of a periodic orbit.*! This might make it fea-
sible to observe the universal regime that in nonsymmetric
systems is restricted to very long orbits.

ACKNOWLEDGMENTS

We are grateful to the Royal Society for funding this
work. J.PK. is supported by an EPSRC Senior Research Fel-
lowship. S.D.P. thanks FAPERGS for partial support.

L Proceedings of the 1994 Les Houches Summer School on Meso-
scopic Quantum Physics, edited by E. Akkermans, G. Montam-
baux, J.-L. Pichard, and J. Zinn-Justin (North-Holland, Amster-
dam, 1995).

2Special issue, Chaos, Solitons Fractals 8, 971 (1997).

3K. Nakamura and T. Harayama, Quantum Chaos and Quantum
Dots (Oxford University Press, Oxford, 2004).

4R. A. Jalabert, Proceedings of the International School of Physics
“Enrico Fermi,” Course CXLIII (I0S Press, Amsterdam, 2000),
pp. 145-222.

SK. Richter, Semiclassical Theory of Mesoscopic Quantum Sys-
tems (Springer, Berlin, 2000).

SR. Bliimel and U. Smilansky, Phys. Rev. Lett. 60, 477 (1988);
Physica D 36, 111 (1989); E. Doron, U. Smilansky, and A.
Frenkel, ibid. 50, 367 (1991).

7R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. Rev. Lett.
65, 2442 (1990); H. U. Baranger, R. A. Jalabert, and A. D.
Stone, Chaos 3, 665 (1993).

8C. M. Marcus, A. J. Rimberg, R. M. Westervelt, P. F. Hopkins,
and A. C. Gossard, Phys. Rev. Lett. 69, 506 (1992).

9H. U. Baranger, R. A. Jalabert, and A. D. Stone, Phys. Rev. Lett.
70, 3876 (1993).

10M. W. Keller, O. Millo, A. Mittal, D. E. Prober, and R. N.
Snacks, Surf. Sci. 305, 501 (1994); M. W. Keller, A. Mittal, J.
W. Sleight, R. G. Wheeler, D. E. Prober, R. N. Sacks, and H.
Shtrikmann, Phys. Rev. B 53, R1693 (1996).

TA. M. Chang, H. U. Baranger, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 73, 2111 (1994).

I2P. Pichaureau and R. A. Jalabert, Eur. Phys. J. B 9, 299 (1999).

BL. Wirtz, J.-Z. Tang, and J. Burgdorfer, Phys. Rev. B 56, 7589
(1997).

K. Richter, D. Ullmo, and R. A. Jalabert, Phys. Rep. 276, 1
(1996).

5D, Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. von
Klitzing, and G. Weimann, Phys. Rev. Lett. 66, 2790 (1991).

I6R. Fleischmann, T. Geisel, and R. Ketzmerick, Phys. Rev. Lett.
68, 1367 (1992).

17D, Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer,
K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 70, 4118
(1993).

8G. Hackenbroich and F. von Oppen, Europhys. Lett. 29, 151
(1995); Z. Phys. B: Condens. Matter 97, 157 (1995).

19K. Richter, Europhys. Lett. 29, 7 (1995).

20R. Ketzmerick, Phys. Rev. B 54, 10841 (1996).

2IALS. Sachrajda, R. Ketzmerick, C. Gould, Y. Feng, P. J. Kelly, A.
Delage, and Z. Wasilewski, Phys. Rev. Lett. 80, 1948 (1998); R.
P. Taylor, A. P. Micolich, T. M. Fromhold, and R. Newbury,
ibid. 83, 1074 (1999); A. S. Sachrajda and R. Ketzmerick, ibid.
83, 1075 (1999).

2F, Nihey, S. W. Hwang, and K. Nakamura, Phys. Rev. B 51, 4649
(1995).

23]. Ma and K. Nakamura, Phys. Rev. B 62, 13552 (2000).

24M. V. Berry, J. P. Keating, and S. D. Prado, J. Phys. A 31, L245
(1998).

M. V. Berry, Proceedings of the International School of Physics
“Enrico Fermi,” Course CXLIII (IOS Press, Amsterdam, 2000),

245334-6



UNIVERSAL QUANTUM SIGNATURE OF MIXED...

pp. 45-63.

26M. V. Berry, J. P. Keating, and H. Schomerus, Proc. R. Soc.
London, Ser. A 456, 1659 (2000).

275 P, Keating and S. D. Prado, Proc. R. Soc. London, Ser. A 457,
1855 (2001).

Z8M. Wilkinson, J. Phys. A 20, 2415 (1987).

29C. Stieda, J. Phys. C 15, L717 (1982).

30M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971).

3IM. C. Gutzwiller, Chaos in Classical and Quantum Mechanics
(Springer, Berlin, 1990).

32K. R. Meyer, Trans. Am. Math. Soc. 149, 95 (1970).

3 A. D. Brjuno, Math. USSR. Sb. 12, 271 (1970).

3A. M. Ozorio de Almeida, Hamiltonian Systems: Chaos and

PHYSICAL REVIEW B 72, 245334 (2005)

Quantization (Cambridge University Press, Cambridge, En-
gland, 1988).

35 A. M. Ozorio de Almeida and J. H. Hannay, J. Phys. A 20, 5837
(1987).

36M. Sieber, J. Phys. A 29, 4715 (1996).

3TH. Schomerus and M. Sieber, J. Phys. A 30, 4537 (1997); M.
Sieber and H. Schomerus, ibid. 31, 165 (1998).

33H. Schomerus, J. Phys. A 31, 4167 (1998).

3T. Nakanishi and T. Ando, Phys. Rev. B 54, 8021 (1996).

40M. A. M. Aguiar, C. P. Malta, M. Baranger, and K. T. R. Davies,
Ann. Phys. (Paris) 180, 167 (1987).

41H. Then, Diploma thesis, University of Ulm, 1999.

245334-7



