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Spin-photovoltaic effect in quantum wires due to intersubband transitions
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We consider the current induced in a quantum wire by external electromagnetic radiation. The photocurrent
is caused by the interplay of spin-orbit interaction (Rashba and Dresselhaus terms) and an external in-plane
magnetic field. We calculate this current using a Wigner functions approach, taking into account radiation-
induced transitions between transverse subbands. The magnitude and the direction of the current depend on the
Dresselhaus and Rashba constants, strength of magnetic field, radiation frequency, and intensity. The current

can be controlled by changing some of these parameters.
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I. INTRODUCTION

The energy spectrum of free electrons in a perfect quan-
tum wire without a spin-orbit interaction consists of spin-
degenerate subbands due to the transverse confinement in
two directions. In each subband, the energy depends qua-
dratically on the one-dimensional (1-D) momentum. In the
presence of an external radiation intersubband excitation
probabilities are equal for states with opposite momentum.
Therefore, there is no change in current associated with ex-
ternal radiation.

During the last 15 years there has been great interest in
theoretical and experimental investigations of photovoltaic
effects and photoconductance in quantum wires (see Refs.
1-14 and references therein). Mechanisms for pure spin cur-
rent generation in 2-D and 1-D systems with a spin-orbit
interaction have also been discussed.'®!? It is known that a
photovoltaic effect is possible in quantum wires without in-
version symmetry. For example, a photovoltaic effect in
quantum wires with spatially dependent lateral confinement
was predicted in Ref. 3. In the present paper we consider a
different spin-based mechanism for the photovoltaic effect,
which is very interesting in the context of the fast growing
field of spintronics.'>"!7 The most important component of
our scheme is the spin-orbit interaction. However, the spin-
orbit interaction alone is not sufficient to generate a charge
photocurrent if the quantum wire is spatially homogeneous.
Therefore, we consider a wire in an in-plane magnetic field
that breaks the inversion symmetry.

We can identify the following groups of intersubband
transitions that lead to a photovoltaic effect in quantum
wires.

(1) Transitions between spin-splitted subbands with the
same confinement quantum numbers.

(2) Transitions between subbands with different confine-
ment quantum numbers.

The main difference between these two groups is that the
first is generated by the magnetic field component of electro-
magnetic radiation, while transitions from the second group
are due to the electric field component. In a recent paper'® a
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spin-photovoltaic effect in quantum wires due to transitions
of the first type was considered. It was found that a special
role in the photovoltaic effect is played by transitions in
which the direction of electron velocity changes. The impor-
tance of this velocity inversion was outlined earlier, see, e.g.,
Ref. 4, in studies of photoconductance. Here we consider
intersubband transitions of the second type. An important
feature in semiconductor-based quantum wires is that the
spin-orbit interaction constants are different for subbands
with different confinement quantum numbers. This peculiar-
ity is essential in our scheme for the generation of photocur-
rent. As we show below, the coupling of an electron to the
electric field component of electromagnetic radiation is ex-
pected to be much stronger than the coupling to a magnetic
component.

Our goal in this paper is to calculate the current in a
quantum wire at zero bias voltage due to external radiation.
The current as a function of radiation frequency is found
numerically from coupled equations involving Wigner func-
tions. The Wigner function formalism has many advantages
for investigating transport problems.?*->> Among them we
mention the phase-space nature of Wigner functions that are
similar to the classical Boltzmann distribution functions.
This feature makes it possible to separate the incoming and
outgoing components of the electron distribution at the
boundaries, which, in turn, facilitates the modeling of an
ideal contact. The commonly used assumptions are: the dis-
tribution of electrons emitted in the quantum wire can be
described by the equilibrium distribution function of the
leads reservoirs, and all electron are collected by the leads
reservoirs without reflection. In this work we extend the de-
scription of the transport dynamics to include intersubband
transitions due to electromagnetic wave excitation.

We show that the current is sensitive to many control
parameters like, e.g., the spin-orbit coupling and external
magnetic field. Therefore, the current can be used to deter-
mine material parameters. The calculated current strength for
a realistic set of parameters is of the order of 0.1 nA and,
consequently, can be measured using standard experimental
techniques.
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FIG. 1. (Color online) Quantum wire with an applied magnetic
field in the (x,y) plane, and irradiated by an electromagnetic wave
linearly polarized in the y direction.

This paper is organized as follows. The single-particle
energy spectrum and wave functions are introduced in Sec.
II. A set of coupled equations for Wigner functions is derived
in Sec. III. The discrete model used for numerical solutions
is presented in Sec. IV. Numerical results are given and dis-
cussed in Sec. V and concluding remarks are in Sec. VI.

II. SYSTEM

Figure 1 shows a possible experimental realization of the
system under investigation. The two-dimensional electron
gas is split into two parts by a potential applied to the gate
electrodes. The narrow channel between the gates then forms
a quantum wire. Let us define a coordinate system such that
the direction of the electron transport through the wire is in
the x direction and the lateral confinement is in the y direc-
tion. We assume that an external magnetic field is applied in
the (x,y) plane. Previously, several interesting investigations
of quantum wires with a spin-orbit interaction in the pres-
ence of an in-plane magnetic field were reported.?>-2

In the quantum wire, the Hamiltonian for the conduction
electrons can be written in the form

H=H,+H,, (1)
where
2 *
p o ﬂ 8 MB
Hy=3 == 2P0y = p.o+ V() + UQ) + =~ 0B,
(2)
and
e eE\p
H =-—Ap=-— cos(wr). (3)
m m w

Here, H, is the time-independent part of the Hamiltonian, H,;
describes the interaction with the electromagnetic field, p is
the momentum of the electron, m" is the effective mass, V(y)
is the lateral confinement potential due to the gates, U(z) is
the confinement potential in the z direction, up and g* are the
Bohr magneton and effective g factor, E, and w are the am-
plitude and frequency of electric field of the polarized elec-
tromagnetic wave, and o is the vector of the Pauli matrices.
The effect of the external field B on the spatial motion is
neglected, assuming strong confinement in the z direction.
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The second and third terms in (1) represent the Rashba and
Dresselhaus spin-orbit interaction®2? for an electron moving
in the x direction, and « and S are the corresponding cou-
pling constants.

The spin-orbit interactions included in the Hamiltonian
(2) originate from bulk inversion asymmetry (giving rise to a
Dresselhaus interaction®) and structural inversion asymme-
try (giving rise to a Rashba interaction®®). It is well known
that the spin-orbit interaction constants are different for elec-
trons in different transverse subbands.!® In our model we
assume that the Rashba spin-orbit interaction constant « de-
pends on the index n and the Dresselhaus spin-orbit interac-
tion constant B depends both on m and n, where m
=0,1,..., and n=0,1,..., are subband indices due to con-
finement in the y and z directions, respectively.!®3 In the
model of rigid quantum wire walls B, ,=H[7(n+1)/W_J*
—[m(m+1)/W,]%}, where v is a constant.

At E,=0, the solutions of the Schrodinger equation can be
written in the form

\I’ eikx (iei‘Pm,n )

(k) =—= m n > 4
m,n,_( ) \/5 1 ¢ ()’) 77 (Z) ( )
where

N - a,k+ g ;BBy
O = wﬁ(ﬁm’nk - %BJ +arctan| —-——— |,
- Bm nk + me
’ 2
(5)

6(---) is the step function, ¢,,(y) and 7,(z) are the wave
function of the transverse modes [due to the confinement
potentials V(y) and U(z)]. The eigenvalue problem can be
solved to obtain

2,2
o +€,+E,

* 2 * 2
+ \/(— ak + %By) + (— Bk + %BJ .

(6)

Em,n,:(k) =

In this expression, €,, and E, are the eigenvalues of decou-
pled Schrodinger equations in y and z directions. In the ex-
perimental setup depicted in Fig. 1, the confinement in the z
direction is stronger than the confinement in the y direction,
thus we will consider E;—Ey> €, —¢,.

Recent calculations show that the dependence of the
Rashba spin-orbit coupling constant « on n is rather weak.’!
Therefore, in principle, « could be considered as n indepen-
dent. However, the particular dependence of « on n is not
important for our calculations, since we consider transitions
between subbands with n=0 only. A useful list of Rashba
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FIG. 2. (Color online) Dispersion relations (two lowest spin-
splitted subbands) calculated for (a) B,=2 T, B,=2 T and (b) B,
=2 T, B,=-2T. These plots were obtained using the parameters
values: M*=0.067me, g’ =—044, ap=05%x10""" eV m, Bo=0.84
X107 eV m, B (=0.36X 107! eV m, € —€=3.64 meV.

constants in different structures is given in the review
paper.’? The numerical value @=0.5X10""" eV m used in
our calculations is close to the value a=0.4X10"'1 eV m
experimentally observed in  asymmetrically doped
GaAs/Ga,_,Al,As quantum wells.3>33 We would like to em-
phasize that the mechanism of the photovoltaic effect does
not depend on the value of the Rashba constant used by us,
but particular dependencies will be different at another value
of this parameter.

In what follows we assume that in the absence of radia-
tion the chemical potential in the wire is located between the
ground (0,0) and first (1,0) transverse subbands so that only
the ground subband is occupied by electrons, and we focus
our attention on radiation-induced transitions between these
two transverse subbands. The energy spectrum in Eq. (6) is
illustrated in Fig. 2 for various directions of B. Notice that
the energy dispersion is different (not simply shifted) for the
ground and the first transverse subbands. Figure 2 shows that
the energy spectrum is strongly asymmetric and significantly
dependent on the magnetic field direction. We also note that
the gaps between spin-splitted subbands are due to the mag-
netic field.

The electron velocity is defined by the slope of E,, ,, .(k)
and is given by

PHYSICAL REVIEW B 72, 245327 (2005)

1 0Em,n,t(k) ﬁ

+ k = =
e
an<ank_ g MBBy) + ﬂm n(:Bm nk_ g MBBX)
2 ’ ’ 2
+ = > = >+
f \/<— ak + g—;BBy> + (— Bk + g—:BBx>

(7

We emphasize that the direction of velocity changes in local
extrema points of the spectrum. The radiation-induced tran-
sitions that we will consider conserve k. Since the positions
of local extrema are different in the ground (0, 0) and first (1,
0) transverse subbands, transitions reversing the velocity di-
rection are possible. The spectrum asymmetry results in
asymmetric transition rates and as a result in a finite current
at zero bias voltage.

III. WIGNER FUNCTIONS
A. Interaction Hamiltonian

Assuming a parabolic confinement in the y direction we
write the ground and the first excited wave functions of the
corresponding transverse mode explicitly as

9 \-l4 2
¢o<y>=(5) p(y—ﬁ)

~1/4 2
¢1(y)=2<$) yem(y_—i), (®)

where y is the characteristic width of the quantum wire in the
y direction. The energy gap between the ground and the first
excited states can be estimated as €, — ,=(242)/(m"y?). Tak-
ing the form of the solution for the Schrodinger equation (5)
and (8) we obtain the matrix form of the interaction Hamil-
tonian (3)

H, =ihg(e' + e (%" = H.c.), (9)

where g=(fieE,)/ (2m*jw) is the coupling constant, o™ is the
ladder operator acting on the y component of the wave func-
tion: 0*¢,,(y) = ¢b,.1(y) and s°! is an operator in the space of
spin degree of freedom,

O = <S+ s‘). (10)

Here st:(l /2)[1 ieXP(i AQDn)] and AQDnzgol,n_gDO,m and Pm.n
is defined in Eq. (5). Neglecting high-oscillatory terms we
can write the Hamiltonian (9) in the rotating wave
approximation®* as

H,=ihg(eo*s"' —H.c.). (11)
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One can see that for the chosen parameters the coupling
constant g=10° s~! is several orders of magnitude larger
than the corresponding coupling constant for the interaction
with the magnetic component of electromagnetic radiation®*
k=(upg 12)(nE,/c)=10° s7!, where n is the refractive in-
dex of the material and c is speed of light in vacuum. There-
fore, we suggest that the photovoltaic effect based on the
proposed mechanism is much stronger than that due to the
interaction with the magnetic component of the electromag-
netic field.

B. Equations for the Wigner functions

The Liouville-von Neumann equation for the density op-
erator of the electron p,,, . (x,x",1) is given by

ifip=[H,p],

where 5,5’ =+ are variables associated with the spin degree
of freedom. Henceforth we omit the indices n,n’ due to con-

(12)
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finement in the z direction since we are interested only in the
transitions between the ground m=0 and m=1 transverse y
subbands. The Wigner function can be obtained by
integrating®

Wmm’,ss’(R’k’t) = f pmm’,ss’(R’Ar»t)exp(_ ik Ar)d Ar7

(13)

where the density operator is written in the new spatial vari-
ables R=(r+r')/2 and Ar=r—r' and k is the electron wave
vector.

Following the standard procedure (see, e.g., Ref. 36) we
neglect nonlocal correlations and derive a set of transport
equations for Wigner functions in the rotating frame,

W00,++ + Vo4 ﬂVIZ;))(C),H + %Ex ﬁVlj;)]g,H =gl(s,Wyg p+c.c)+ (s-Wyo_, +cc)], (14)
Woo + vo,_‘”‘;})‘;’“ . % ’9“;02 = g5 Wigs. +c.c) + (5, Wy +cic)], (15)
W“’__ +U_ Wii.- + %Ex (m;l]i’" =—gl(s_Wyo_,+c.c)+ (s, Wyo__+cc)l, (16)
Wi+ U1,+(9W1 s %Ex av{;]]:H == gl(s; Wy +cc) + (s_Wyg,_+c.c)], (17)
Wope + %% + %Ex% — (@1 40— @) Wo 4 = 8Lse (Wi 1o = Woo ) +5- (Wi o = W)l (18)
Wor 4 + %% %Ex% = i(@o1 4-— @)Wy o= gls (Wi 4o = Woo ) +5_(Wyy = Wyo )], (19)
Wi+ %% %&% —i(wy - — @)Wy __=gls,(Wyy = Woo_) +s_(Wy o= W )], (20)
Wo o+ %% + %Ex% — (@1 — @)Wy = g[s (Wi = Woo ) +5_(Wyy 1y = W )], (21)
Woo_s + fe= ; fs (91/1;);) =+ %Ex av{j;)lg’_Jr —iwgo,_Woo—+ = 8L(s_Wyg sy + 5, Wyg_) + (ss Wy _y +5- Wy, )], (22)
Wy, + s ; 0 H% + %Ex% —iwyy Wy == gL Woy s + 5, Wor ) + (s, Wio_ +5 Wyo_)].  (23)
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For completeness we also included a static electric field
E. along the x direction, for example, due to a bias voltage.
wmm,,s_yf:h‘l(Em/,X/—Em,x). The left part of the equations
(14)—(23) describes the ballistic transport of the electron in
the quantum wire, the right part is responsible for excitations
induced by the radiation. We consider the “ideal” contact
boundary conditions for a wire of length L,

Wmm,ss(o’k)|vm,s(k)>0 :f(k, ILLI) s (24)

Wmm,ss(Lsk)|vm,s(k)<0 Zf(k’ /-Lr) P (25)

where f(k,u)=1/(1+exp[(E,, (k)—u)/(kgT)]) is the Fermi
function, kj is the Boltzmann constant, 7 is the electron tem-
perature, and wy,, are chemical potentials of the left/right
lead, respectively. We also assume that only the internal part
of the quantum wire is irradiated, that is, E,=0 for x<0 and
x>L.

The electron charge density, electric charge, and spin cur-
rents can be obtained from Wigner functions as

n(x) = iz f Wi oo, KV, (26)

©

UI?‘l,S(k) Wmm,ss(x’ k)dk’ (27)

—o0

e
Ix)="—2
27,

and

, 1 ”
Iéy(x) = _E f <‘Pm s|0-7|‘1,m s>Um _)(k) Wom ss(x7k)dk7
Pk A ’ ’ ’ ’

(28)

respectively. Here y=(x,y,z) and different matrix elements
can be found in accordance with (5) as (¥, .|o\|V¥,, )
==cos(¢,), (V,.0y|V,, )= Fsin(g,). The details of the
numerical model and solution for the derived system of
equations are given in the next sections.

IV. DISCRETE MODEL

The form of Eqgs. (14)—(23) does not allow us to solve the
problem analytically, even for the stationary case dW/dr=0
and unbiased channel E,=0. The solution is complicated by
different inter-subband transitions with the change of spin
state s originating from the subband asymmetry in the k do-
main. This effect plays a central role in the electric current
generation and should be taken into account. Thus, the sys-
tem of equations (14)-(23) was solved numerically for y
=25 nm, ©=0.0001 eV, and 7=0.1 K. We model the domain
xe[0,L] and k €[—kpyax,kmax] With the mesh sizes of Ax
=L/(N,—1) and Ak=2k,,/(N—1), respectively. In the cal-
culation we used N,=25 and N,;=80 and the length of the
quantum wire L=2.5 um. The value k,,=3.37% 10" m~!
was chosen to ensure that all filled states in k space are taken
into account. We fixed the values of diagonal components
W ,um.ss o the boundaries at x=0 for k with v,, (k) >0 and at
x=L for k with v,, (k) <0, according to (24) and (25). Simi-
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larly, for off-diagonal components we fixed the values
Wtmr s25r=0 at x=0 for k with [v,, (k) +v,, +(k)]>0 and
at x=L for k with [v,, ((k)+v,, (k)] <O0.

The first-order upwind difference scheme was used for the
propagation of the Wigner functions in the {x,k} domain and
second-order two-step Lax-Wendroff scheme’’ to describe
the time-dependent intersubband transfer due to the interac-
tion with the electromagnetic field. The discretized Liouville
equation for the Wigner function can be written as

At AW(x;,k;,t)
W(xikjst1a12) = Wxikjp 1) — —(v(kj)—u
2 Ax
- F[W(.xl,k],tl)]> 5
AW(x;, ki t
W(xi’kj’tl+]) = W(xiakjatl) - At<v(kj)—(zl.;l)
X
- F[W(xi’kj’tlﬂ/z)])' (29)

where we consider the case E,=0 and do not show subband
indices for brevity. The upwind/downwind difference is cho-
sen in accordance with

W(xi,kj,tl)—W(xi_l,kj,tl), if U(kj) >O,
W(xi+l’kj’tl) - W(xhkjatl)’ lf U(kj) < O
(30)

AW(x,-,kj,tl) = {

The function F[W(x;,k;,t;)] embodies the remaining part of
Egs. (14)—(23) which depends only on the Wigner function
Wi(x;, kj, 1)) itself and does not contain partial derivatives. The
upwind differencing is stable,” provided the time step is
small enough: Ax/Ar<uv,,, where v, is the maximum
possible absolute value of the velocity. Additionally, the time
step must be much smaller than the highest frequency of the
solution. This condition is satisfied by (Q**Ar<1, where
QR =max[ (@ 55— ®)?+4g%] is the maximum possible
Rabi frequency involved in the problem. The calculation
proved to be stable if these two conditions are met.

The investigation of the effects of the external bias and
charge redistribution in the quantum wire is not in the scope
of this paper. However, the way to include these effects is
straightforward. To consider the effect of voltage applied to
the quantum wire, it suffices to add the x component of the
electric field E,[x, V(¢)] in the discrete model (29). This elec-
tric field is a function of the applied potential difference
V(t)=(m,— m;)/ e, which can be time dependent and x depen-
dent. The latter is defined by the lead geometry. Additional
components of electric field E/[n(x)] can be calculated self
-consistently at each time step to incorporate the effect of
charge redistribution.

As was mentioned earlier, transitions between subbands
can force the electron to change the direction of the velocity.
As a result, the flows of electrons moving in the opposite
directions inside the quantum wire intermix, as shown in Fig.
3. Without reflections in the wire, the steady-state solution
can be obtained by simply imposing the condition dW/dt
=0 and advancing from the given values at left/right bound-
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FIG. 3. (Color online) The different subband transition due to
the interaction with an electro-magnetic wave are sketched. The
interaction causes some electrons to change the direction of the
velocity.

aries for v(k) = k. However, in the presence of radiation, the
electron distribution at the boundary acquires an additional
component, due to the electrons whose velocity direction is
changed, and the described above scheme fails. In order to
achieve the steady-state solution we considered the temporal
dynamics of the system evolving from some initial state until
it reached stationary conditions: dW/dr=0 and I(x)=1I(x")
for all x,x" € [0,L]. As a initial state we took the values of
the Wigner function at equilibrium W,/ o (x,k)
=8,m' 0551 f(k, ). This corresponds to the uniformly distrib-
uted electron density along the channel and is a solution of
Egs. (14)—(23) in the absence of radiation and external bias:
E,=FE,=0. The chosen method of obtaining the steady-state
solution provides us also with the transient behavior and,
thus, gives more insight into the problem. The drawback is a
serious computational effort. The electron distribution
reaches the stationary state within the effective time of flight
through the quantum wire. Electrons constantly change the
direction of velocity due to the interaction with an electro-
magnetic wave, therefore, this time can be very long com-
pared to the time step Ar. Fortunately, the slower electrons
give the smaller contribution to the current and a steady-state
solution can be always found within certain accuracy. The
number of steps in time can reach values as much as N,
~10°. The results of the numerical simulation are presented
in Sec. V.

V. RESULTS AND DISCUSSION

The photoinduced current through the wire is shown in
Fig. 4 as a function of the photon energy. The directions and
strength of the magnetic field in this graph are the same as in
Fig. 2. The amplitude of the electric field £,=200V/m used
in our calculations was selected close to the electric field
amplitude used in recent experiments.’® Figure 4 clearly
shows a number of current peaks corresponding to different
transitions. These peaks depend on the magnetic field
strength and direction, as a consequence of the magnetic
field dependence of the energy spectrum.

In order to understand transitions leading to a specific
peak formation, we consider in detail the current dependence
on photon energy for B,=2 T, B,=-2 T (Fig. 4(b)). It fol-
lows from Fig. 4(b) that the current as a function of photon

1x10™"" 4 o \

b

\ M o o o o G 4

AL

0 v 5

3.5 3.6 3.7
o (meV)

4x10™"
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v V-V-V-y.
D AMIM vV

e

-4x10™"" 4 Y]

Current (A)

-6x10™""

-8x10™"" v

35 3.6 Y Y
ho (meV)

FIG. 4. (Color online) Current through the wire as a function of
photon energy Ao for (a) B,=2 T, By=2 T and (b) B,=2 T, B,=
-2 T. The parameters values are as in Fig. 2, E;,=200 V/m.

energy has a well pronounced positive peak at fw
=3.64 meV, a double negative peak with a minimum at
hw=3.67 meV, a small negative peak at Aw==3.565 meV,
and a broad positive peak of small amplitude at Aw
=3.75 meV. Figure 5 represents a graphical determination
of relevant transitions.

The energy spectrum of two lowest spin-splitted subbands
is plotted in the top panel of Fig. 5. The bottom panel of Fig.
5 shows the energy difference between different transverse
subbands. By plotting horizontal lines corresponding to the
peak energies, in the bottom panel and, by drawing vertical
lines through the intersection points of those horizontal lines
with energy difference, we can finally identify the points in
the top panel corresponding to the peak formation. As it was
mentioned above, the important transitions are those that
lead to a change of the electron velocity direction. These
transitions are shown by arrows in the top panel of Fig. 5.

In particular, let us consider the large negative peak in the
current at Aw=3.67 meV (Fig. 4(b)). Figure 5 shows that the
horizontal line 3.67 meV intersects only the E;,_—Ejq
curve in two points. We are reminded that the electron ve-
locity is determined by the slope of E,,, .(k) according to
Eq. (7). The left intersection point gives a k vector of tran-
sition in which the electron velocity direction is conserved),
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FIG. 5. (Color online) Transitions in the regions of photocurrent
peaks for B,=2 T, B,=-2 T. The energy spectrum and difference
energies are shown in the top and bottom panels, respectively. Hori-
zontal lines in the bottom panel correspond to excitation energies in
peak regions; vertical arrows in the top panel denote transitions
when electron velocity direction changes.

because the slopes of E| 5 _ and E o _ at this value of k are in
the same direction. The right intersection point of 3.67 meV
line with an E;,_—FE,,_ curve gives a transition with a
change of electron velocity direction, specifically, with a
backscattering of left-moving electrons. Consequently, the
electron flux from the right to the left decreases and, because
of the negative electron charge, a negative current appears.
Similarly, one can consider transitions at other radiation
frequencies. An interesting situation occurs for fiw
=3.64 meV excitation, since at this particular frequency
three out of four transitions are characterized by the reverse
of electron velocity direction. We summarize transitions con-
tributing to the photocurrent at selected radiation frequencies
in Table I. The same analysis can also be applied to the result
presented in Fig. 4(a), but, because of a more distorted spec-
trum, the roles of different possible transitions are more dif-

TABLE I. Transitions giving contribution to photocurrent at se-
lected radiation frequencies for B,=2 T, By=-2 T.

Excitation energy, meV Transitions
3.565 E0’0’+—>E1’0’_
3.64 Eoo-—E10-5 Eoo+—Eroq
367 EO,O,—_>E|,0,—
3.75 E(),O,,—>E|,0,Jr
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FIG. 6. (Color online) Spin current components for B,=2 T,
B,=-2 T at x=0.

ficult to interpret. Moreover, we would like to note that, gen-
erally, transition probabilities from E,,_ to E;, and from
Ey .+ to Ey o _ subbands are smaller than transition probabili-
ties from Ey,_ to E;o_ and from Eyq, to E;(, subbands
because of the different spin direction in initial and final
states. This results in a smaller current peaks at Aw
=3.565 meV and fiw=3.75 meV in Fig. 4(b).

As electrons carry spin as well as charge, the external
radiation also changes the spin current through the wire. No-
tice that even without the radiation, the spin current is not
zero, due to the spin-orbit interaction. Figure 6 shows spin
current components at x=0 for B,=2 T, B,=-2 T. We note
that the spin current dependence on the radiation frequency
has features similar to the charge current (Fig. 4(b)). How-
ever, we found that radiation-induced changes in spin current
are much less than the equilibrium spin current in the wire.
From an experimental point of view, the spin currents are not
so easy detectable. Therefore, the observation of this photo-
voltaic effect through spin current seems unpractical.

VI. CONCLUSIONS

In summary, in this paper we have investigated the pho-
tovoltaic effect in quantum wires with a spin-orbit interaction
and an in-plane magnetic field. We have found that the pe-
culiarities of the energy spectrum lead to a photocurrent gen-
eration. The dependence of the photoinduced current on the
excitation frequency was calculated numerically using the
Wigner functions formalism. A system of coupled equations
for the Wigner functions was derived and solved numerically
for “ideal” contact boundary conditions. We used the first-
order upwind differencing for the propagation in the spatial
domain and the second-order two-step Lax-Wendroff differ-
encing for time-dependent inter-subband transitions due to
electromagnetic wave excitation. Stable numerical solutions
were found under appropriate choices of the time step Ar.
The calculations can be extended to introduce the effects of
an external bias and self-consistent potentials due to charge
density redistributions, which can be a topic for a future
investigation. The frequency dependence of the photoin-
duced current consists of a set of peaks related to transitions
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between different points of the spectrum. Therefore, the en-
ergy spectrum can be reconstructed from photocurrent mea-
surements. Material parameters, such as spin-orbit coupling
constants, can be obtained from the analysis of the photocur-
rent.

PHYSICAL REVIEW B 72, 245327 (2005)
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