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The spin splitting of the electronic subbands in a parabolically confined quantum wire in a strong magnetic
field is calculated using the self-consistent Hartree-Fock approximation. The effective g-factor and the critical
density at which the subbands become almost spin-degenerate are determined. The results are compared with
recent experimental data.
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I. INTRODUCTION

At high magnetic field the energy spectrum of noninter-
acting electrons in electron inversion layers in semiconductor
heterostructures consists of Zeeman split, disorder broadened
Landau bands. In AlGaAs/GaAs the corresponding Landé
g-factor can be much larger than the bulk value �g=−0.44�
and it decreases with increasing electron concentration.1–3

This is assigned to electron exchange interaction. When the
electron density is varied such that the Fermi energy
traverses a Landau band, the Zeeman splitting acquires a
maximum when only the energetically lower band �with spin
s=↑� is occupied. Then, the exchange energy of the electrons
will dominate, and the occupied band will be shifted to lower
energy.

Confining the two-dimensional electron system �2DES� in
lateral direction it forms a quasi-1D electron system. The
degeneracy of the Landau levels is lifted due to the confine-
ment. Still, the enhancement of the Zeeman splitting is
present although the Landau subbands corresponding to the
two directions of the spin overlap at high energies. For high
electron density �, such that the partial densities �↑��↓, and
there is no spin polarization, the Zeeman splitting is close to
the bulk value. However, for densities below some crossover
value ���c, only the lowest spin polarized subband will be
occupied at temperatures close to zero. Due to the alignment
of the spins, the exchange interaction will decrease the en-
ergy and enhance the Zeeman splitting. Eventually, all of the
electrons will only occupy the polarized state. It has been
suggested that this is similar to a quantum phase transition.4

Such effect has been observed in magnetotransport measure-
ments done on GaAs/AlGaAs quantum wires5 and on nar-
row silicon inversion channels.6

In previous works on the 2DES1,3 and quantum wires4,7

the Hartree contribution to the self-energy has been ne-
glected. However, for quantum wires, it has been shown that
the Hartree term is very important for quantitatively estimat-
ing the energy dispersion and the self-consistent potential.8

Then, one can expect that this must influence �c and change
the g-factor. It is indeed not clear whether the g-factor en-
hancement in a quantum wire is similar to a phase transition
or must be considered as a simple crossover, even at zero
temperature.

In this paper, we address this question by using the self-
consistent Hartree-Fock method. We find that the spin inde-
pendent Hartree term supports the polarizing effect of the

exchange interaction and assists to force the system into the
polarized state.11,12

We compare the results with magnetocapacitance
experiments9 in which �c and the Zeeman splitting have been
estimated. Within experimental errors, the Hartree-Fock re-
sults can be fitted reasonably well to the experimental data if
the interaction is assumed to be exponentially screened. In
contrast to the earlier suggestions4,7 we find a smooth cross-
over from the polarized to the unpolarized state. Our results
indicate that correlation effects beyond mean field are likely
to be important for understanding the g-factor in nanostruc-
tures.

II. THE MODEL

The interacting 2DES in a perpendicular magnetic field,
parabolically confined to 1D, is described by the Hamil-
tonian H=H0+Hi where

H0
s =

1

2m
�
i=1

N ��pi − eA�2 +
m

2
�0

2xi
2 +

s

2
g�0B� �1�

with the vector potential A= �0,Bx ,0�, the effective mass m,
the confinement frequency �0, and s= ±1 the spin directions.
We model the interaction Hi=�i�jV�ri−r j� with a Yukawa
potential V�r�=V0 exp�−�r� /r with V0=e2 /4���0�0 and a
screening parameter �, rather than treating the screening
within a time-dependent Hartree-Fock calculation.12 In our
model for the interaction, the screening length is independent
of the density. To compensate this somewhat artificial form
of the screened Coulomb interaction, we define � empirically
from comparison with experimental data.9 We do not con-
sider edge stripe reconstruction effects which become rel-
evant in wider quantum wires.13–15

The eigenvalues of the noninteracting part H0

	nk
s = 
��n +

1

2
� +
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2m�B�
+

s
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consist of the discretization energy due to the confinement
and the magnetic field, the kinetic energy in the nonconfined
y-direction, and the Zeeman contribution. Periodic boundary
conditions in y-direction imply wave numbers kj =2�j /Ly
�integer j, wire length Ly�. The effective mass m�B�
=m�2 /�0

2 contains the renormalized frequency �
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=	�0
2+�B

2 ��B=eB /m cyclotron frequency�. It diverges in
the quantum Hall limit, B→�. The corresponding wave
functions 
x ,y �nk�=Ly

−1/2 exp�−iky�n�x−Xk� contain the
states n of the 1D harmonic oscillator at position Xk=k�2A
with the characteristic length �=	
 /m� and A=�B /�.

III. HARTREE-FOCK EQUATIONS AND g-FACTOR
FOR THE QUANTUM WIRE

The Hartree-Fock equations in Landau representation

�
n�k�


nk��H0
s + Fs��n�k��c�

s �n�k�� = E�
s c�

s �nk� �3�

determine the expansion coefficients 
nk ��s�=c�
s �nk� of the

electron states and the eigenenergies E�
s . The size of the basis

in a Landau level is determined by the degeneracy N�

=LxLy /2��2. We use indices i , j ,a ,b for labeling the basis
states. The Fock matrix is

Fij
s = �

ab

�abMijab + �
ab

�ab
s Mibaj , �4�

with interaction matrix elements

Mijab = dqV�q�
i�eiq·r�j�
a�e−iq·r�b� �5�

and density matrices

�ab
s = �

��occ�s

c��occ�
s* �a�c��occ�

s �b� . �6�

Here, ��occ� denotes the label for the occupied states with an
energy below the Fermi level, E��occ���F.

Furthermore, 
i�eiqr�j�= 
nk�eiqx�n� ,k���qy,k−k�,


nk�eiqx�n�k�� = e−��qA�2+iq�k+k��A��2/2
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with qA= iq−sgn�n−n���k−k��A, n=Min�n ,n��, m
=Max�n ,n��, and Ln

m−n the associated Laguerre polynomials.
The single particle energies E�

s =��
s +��

s , obtained by solv-
ing Eq. �3� self-consistently, contain the self-energy

��s = �
ij

Fij
s c�

s*�i�c�
s �j� � ��

H + ��s
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with Hartree and Fock terms, ��
H and ��s

F , respectively.
In the self-consistent Hartree-Fock method the charge dis-

tribution in the system is determined by searching for the
electronic configuration for which the ground state energy

Eg = �
ab

�ab
s �H0,ab

s + Fab
s � �9�

is minimized. This implicitly determines the spin polariza-
tion

� =
�↑ − �↓

�↑ + �↓
=

��

�
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with

�s = �
��g�

�
nk

�c�
s �nk��2, �11�

where ��g� denotes the labels of the occupied states after
reaching self-consistency.

The effective g-factor is defined by

g* = g�k = 0� = g +
���k=0�↑ − ���k=0�↓

�0B
. �12�

This coincides with the definition of the optical g-factor in
Refs. 3, 7, and 12 and, evaluated at the band center k=0,
maps the quantity obtained in the experiment.9 The self-
consistent numerical solution of the Hartree-Fock equations
requires a truncation of the complete othonormal set �nk�.
This is done by defining a cutoff wave number kmax via
Xk,max=kmaxl

2=Lx. The integral over qx in Mijab �Eq. �5�� is
approximated by a sum over discrete wave numbers qx
=2�nx /w with w�Lx and nx integer. We have achieved con-
vergence for the integrals, spectra, and the wave functions
for w�50Lx and −w / l�nx�w / l. For obtaining the results
described in the following we have used w=100Lx.

For electron numbers such that the Fermi energy is lo-
cated in the second Landau level, there are states with low
wave numbers at approximately the same energies as states
with high wave numbers of the lower Landau levels �Fig. 1�.
In order to treat these correctly, inter-Landau level interac-
tion matrix elements have to be taken into account. The
maximum system size Lx depends then on the number of
Landau levels included and the confinement strength. We
have estimated Xk,max by using the spectrum of noninteract-
ing electrons. We have done calculations for increasing Lx
�Xk,max until the eigenenergies became insensitive to the
value of Lx. The system length Ly was used to adjust the size
of the basis, independently of Lx, but always Ly �Lx.

We have assumed that convergence of the self-consistent
Hartree-Fock procedure was achieved when �� /��10−7

with �� the difference between the densities �=�↑+�↓ cor-
responding to successive interations. In all of the results

FIG. 1. Hartree-Fock energies of a quantum wire in a magnetic
field for the four lowest subbands at densities where the second
�spin ↓, left� and third �spin ↑, right� subbands start to be occupied
�bullets: s=↑, circles: s=↓, dashed: Fermi level�.
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shown below, the electronic energies have converged within
a relative error of 10−3. Due to the translational invariance in
the y direction k is a good quantum number for the Hartree-
Fock states.

IV. RESULTS

Figure 1 shows the energy dispersions of the four lowest
subbands for different electron numbers. The dispersions
keep a more or less parabolic shape similar to the noninter-
acting system. If the electron density is small such that only
energy levels in the lowest subband �spin ↑� are occupied,
the Zeeman splitting is large. With increasing density the
second subband �spin ↓� becomes occupied. Then, the Zee-
man splitting decreases until it reaches the bulk value. This is
periodically repeated when higher spin subbands are occu-
pied.

In order to identify the roles of the Hartree and the Fock
parts of the self-energy, we consider the lowest subband �n
=0, ↑ �. In a strong magnetic field, both Fock and Hartree
terms depend on the wave number. The Hartree energy is of
the same order as the Fock energy, but of opposite sign. The
total interaction energy � is then much smaller than the ab-
solute values of �H and �F. The latter are comparable to the
kinetic energy �k �Fig. 2�. This suggests that for determining
the crossover density one can replace the self-consistent
Hartree-Fock approximation by lowest-order perturbation
theory.4 The result for the lowest subband is

�k
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2V0

	2l
�
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dk� dq
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	q2 + q�
2

, �13�
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2�/2K0��k�2 + q�

2�/2� ,
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where Q±= l�k±kFs� /	2, q�=�l /	2, and K0�z� is a modified
Bessel function.

In 2DES the Hartree term is often neglected. It is argued
that it yields only a constant shift of the energy scale.1,3

Intuitively, one would neglect it also for the quasi-1DES.4,7,10

However, for a quantum wire in a strong magnetic field the
wave number is associated with a transversal position X
=kl2. At zero temperature, in the totally polarized state, �↑
=� and �↓=0, when only the lowest subbands are occupied
with electrons, additional electrons will occupy states with
wave numbers near the Fermi wave number kF↑=��↑. These
have to be added near the edge of the wire, �xF↑�=kF↑l

2 �Fig.
1� thus minimizing the electrostatic repulsion. However, if
the spin-↓ subband starts to become occupied, additional
electrons would be added at smaller wave numbers in the
center of the wire, near the minimum of E↓�k� where the
electron density is large. This would lead to a strongly repul-
sive energy contribution. Thus it is energetically favorable to
continue with the occupation of the states near the edges in
the lowest subband before occupying the states in the second
subband. The crossover density �c is increased and it is due
to the avoided Hartree energy—supporting, not compensat-
ing the Fock energy—that the system remains in the totally
polarized state.

Figure 2 shows results for the Zeeman splitting averaged
over the wave number as a function of the mean electron
density �. In a given Landau level, g* increases with increas-
ing density until the upper spin subband starts to become
occupied. Then, at crossover density �c, g*��� starts to de-
crease. The oscillating behavior of g* is accompanied by
oscillations in the spin polarization �. For ��0, g*�g. In
the lowest subband, the crossover density �c, at which the
g-factor starts to decrease, agrees within 10% with the result
obtained in lowest order perturbation theory. Taking into ac-
count the Hartree term, the crossover to the bulk value is
smooth, in contrast to the case when only the Fock term is
considered.4 This is consistent with a recent theory taking
edge state correlations into account.12 It was found in that
theory that the collapse of the g-factor can be understood in
two scenarios, the first without any, the second with strong
redistribution of charges, making the inclusion of the Hartree
term essential.

The influence of the screening length on �c is shown in
Fig. 3. The crossover density decreases with increasing �. As
expected, the self-energy decreases with decreasing interac-
tion range. For comparison with experiment we assume �
=2/ l. This turns out to reproduce the experimental findings
reasonably well.

V. COMPARISON WITH EXPERIMENTAL RESULTS

The crossover density in the lowest subband as a function
of the confinement energy has been determined from mea-
surements of the capacitance of a quantum wire in a strong

FIG. 2. Spin polarization � �top� and effective g-factor g* �bot-
tom� as functions of the density � obtained from the self-consistent
Hartree-Fock method taking into account the three lowest Landau
bands �parameters: B=14 T, 
�0=6 meV, �c=1.1/ l in the lowest
subband, screening parameter �=2/ l�. Inset: Energy ��k� �dashed�
in the noninteracting limit; self-energies �, �F �Fock�, and �H �Har-
tree� at �c, respectively, as functions of the wave number kl; solid:
perturbative, bullets: self-consistent results.

CONFINEMENT-INDUCED DEPLETION OF THE… PHYSICAL REVIEW B 72, 245317 �2005�

245317-3



magnetic field.9 It has been found that the crossover density
increases with increasing magnetic field �Fig. 4� and with
decreasing the voltage applied to a side gate, Vside. For esti-
mating the confinement energy �exp a parabolic confinement
has been assumed. By varying the side-gate voltage from
−1.5 to −3.5 V 
�exp increases from 4.8±0.5 to 6.6±0.7
meV.

The potential, which corresponds to the experimentally
determined confinement energy 
�exp, is composed of the
parabolic external confinement potential 
�0 tuned by Vside
and of the screening potential due to the charge density of
the electrons in the wire. The confinement energy 
�0 in
general will be larger than the experimentally determined

�exp. We assume that the external confining potential domi-
nates such that 
�0�
�exp. It is difficult to obtain the con-
finement energy from experimental data with high accuracy.9

We therefore choose a mapping of the measured side gate
voltage to the corresponding confinement energy �see Fig. 4�,
which fits our calculations reasonably well to the experimen-
tal data and is consistent with the confinement estimates of
Ref. 9 With the screening length 1/�= l /2 the calculated
crossover density �c fits the decrease of experimental data
with increasing confinement energy qualitatively �Fig. 4�.
Neglecting the Hartree term,4 the dependence of �c on the
confinement is considerably weaker even if the screening
length is assumed to be � and thus the exchange-enhanced
critical density is maximized �Fig. 4 inset�.

However, our model does not reproduce the experimental
data at very small side gate voltages, �Vside��1 V. We be-
lieve that in this regime the external potential of the wire is
modified by impurities and thus cannot be described by a
parabolic potential. Also there are quantitative discrepancies
between experimental data and the self-consistent theory at
smaller magnetic field strength �B=9 T�. Given the rela-
tively large experimental errors, we did not try to get a better
fit. In summary, we confirm the experimentally observed

trends, namely that by increasing the confinement energy,
i.e., decreasing the effective wire width, and decreasing the
magnetic field strength, the crossover density for the en-
hancement of the Zeemann splitting is depleted considerably.

VI. CONCLUSIONS

In summary, we have calculated the Zeeman splitting of
the subbands in a quasi-1D quantum wire in a strong mag-
netic field by using the self-consistent Hartree-Fock approxi-
mation to electrons interacting via a screened Coulomb in-
teraction. We have found that Hartree and Fock parts of the
self-energy are of the same order but of opposite sign such
that the total self-energy becomes small. We have quantita-
tively determined the effective g-factor and the spin polar-
ization. When � vanishes g* is close to the bulk value while
it is strongly enhanced if the spin polarization is close to one.
Our results imply that the Hartree term cannot be neglected
for the enhancement of the g-factor in quantum wires. Espe-
cially, it appears that it plays a crucial role in determining the
crossover density quantitatively. By comparing calculated
crossover densities with experimental data we have found
the dependence on the confinement energy can be repro-
duced within experimental uncertainties for not too small
side gate voltages if the screening length is assumed to be
about half of the magnetic length. Since the screening can be
viewed as being due to correlations, our results imply that
these cannot be neglected for understanding the g-factor en-
hancement in quantum wires.
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FIG. 4. Crossover density �c at magnetic fields as indicated as a
function of the confinement energy 
�p. Full lines: Hartree-Fock
results with screening length l /2; open symbols: experimental data
of Ref. 9 corresponding to side gate voltages Vside from −1.5 to
−4 V. Inset: results for B=9 T and B=14 T obtained self-
consistently �dots�, and perturbatively �full lines� compared with the
results obtained by neglecting the Hartree term �dashed�.

FIG. 3. Crossover density as a function of the screening length
�−1. Data points: self-consistent Hartree-Fock approximation with
B=14 T, 
�0=6 meV in the lowest subband; wire width 16 l and
wire length 50 l. Inset: self-energy with �=0.5/ l �dashed�, �
=2.0/ l �full�, and �=6.0/ l �dotted�.
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