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We suggest an operating scheme for the deliberate generation of spin-entangled electron pairs in a normal-
metal mesoscopic structure with fork geometry. Voltage pulses with associated Faraday flux equal to one flux
unit �0=hc /e drive individual singlet pairs of electrons toward the beam splitter. The spin-entangled pair is
created through a post-selection in the two branches of the fork. We analyze the appearance of entanglement in
a Bell inequality test formulated in terms of the number of transmitted electrons with a given spin polarization.
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I. INTRODUCTION

Quantum entanglement of electronic degrees of freedom
in mesoscopic devices has attracted a lot of interest recently.
Early proposals for structures generating streams of en-
tangled particles exploit the interaction between electrons as
a resource for producing entanglement, the pairing interac-
tion in superconductors1 or the repulsive Coulomb interac-
tion in confined geometries.2,3 Recently, another class of de-
vices has been suggested that avoids direct interparticle
interaction; instead, the entanglement originates from a
proper post-selection of orbital4–6 or spin7–9 degrees of free-
dom. The majority of these proposals deal with the situation
where the entangled particles are emitted in a random and
uncontrolled fashion, while entanglement on demand is im-
plicit in the scheme proposed in Ref. 2.

Current interest concentrates on setups which are capable
of producing pairs of entangled electrons “on demand.” Such
controlled entanglement is an essential step toward the real-
ization of quantum computing devices for which electronic
orbital or spin degrees of freedom may serve as qubits.10 In
addition, prospects of converting electronic entanglement
into a photonic one with high efficiency look promising;11

this may open opportunities for the manipulation of en-
tangled photons with an enhanced efficiency.

While entanglement on demand is implicit in the work of
Ionicioiu et al.,2 a detailed discussion of the controlled pro-
duction of entanglement in a mesoscopic device has only
been given recently by Samuelsson and Büttiker;12 they pro-
posed a scheme for the dynamical generation of orbitally
entangled electron-hole pairs where a time-dependent har-
monic electric potential is applied between two spatially
separated regions of a Mach–Zehnder interferometer operat-
ing in the quantum Hall regime. This �perturbative� analysis
concentrated on the limit of a weak pumping potential gen-
erating only a small fraction of entangled electron-hole pairs
per cycle. Later on, several schemes have been suggested
producing entangled pairs on demand with a high efficiency:
In their setup, Beenakker et al.13 make use of a ballistic
two-channel conductor driven with a strong oscillating po-
tential. In their nonperturbative analysis they demonstrate
that this device can pump up to one �spin- or orbital-� en-
tangled Bell pair per two cycles. A different proposal based
on spin resonance techniques acting on electrons trapped in a

double quantum dot structure and subsequently released into
two quantum channels has been suggested by Blaauboer and
DiVincenzo14; their detailed analysis of the manipulation and
measurement schemes demonstrates that the production and
measurement of entangled pairs via an optimal entanglement
witness can be performed with present days experimental
technology.

In the present paper, we discuss an alternative scheme
generating pulsed spin-entangled electron pairs in a normal-
metal mesoscopic structure arranged in a fork geometry, see
Fig. 1. In this device, spin-entangled electron pairs are gen-
erated via the injection of spin-singlet pairs into the source
lead from the reservoir.8 This entanglement is made acces-
sible by splitting the pair into the two leads “u” and “d” and
subsequent projection �through the Bell measurement� to that

FIG. 1. Mesoscopic normal-metal structures in a fork geometry
generating spin-correlated electrons in the two arms of the fork. The
Bell-type setups detect the number of transmitted particles Ni, i
=1,3, with spin projected onto the directions ±a in the upper arm
and correlates them with the number Nj, j=2,4, of particles with a
spin projected onto the directions ±b in the lower arm. �a� Fork
with a simple splitter with particles injected along the single source
lead. �b� Fork in the geometry of a four-terminal beam splitter with
particles injected along one of the incoming channels only. Quench-
ing the transmission Tud between the upper and lower leads allows
elimination of equilibrium fluctuations spoiling the entanglement.
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part of the wave function describing separated electrons trav-
eling in different leads.8,9 Rather then quantum pumping with
a cyclic potential as in Refs. 12 and 13, our proposal makes
use of definite voltage pulses generating spin-entangled elec-
tron pairs. A pulsed sequence of ballistic electrons is implic-
itly assumed in the generation of orbital entanglement by
Ionicioiu et al.,2 however, no description has been given for
how such �single-electron� pulses are generated in practice.
Below we discuss a scheme where voltage pulses of specific
form accumulating one unit of flux �0=−c�dtV�t� and ap-
plied to the source lead “s” generate pairs of spin-entangled
electrons which then are distributed between the two outgo-
ing leads of the fork, the upper and lower arms denoted as “
u” and “d.” These spin-entangled electron states are subse-
quently analyzed in a Bell experiment15 involving the mea-
surement of cross correlations16 between the number of elec-
trons transmitted through the corresponding spin filters in the
two arms of the fork, see Fig. 1. Using time-resolved corr-
elators, we are in a position to analyze arbitrary forms of
voltage pulses and determine the resulting degree of viola-
tion in the Bell setup. We find that Lorentzian shaped pulses
generate spin-entangled pairs with 50% probability, corre-
sponding in efficiency to the optimal performance of one
entangled pair per two cycles as found by Beenakker et al.13

The reduction in efficiency to 50% is due to the competing
processes where the spin-entangled pair generated by the
voltage pulse propagates into only one of the two arms. In
order to make use of this structure as a deterministic entan-
gler, the Bell measurement setup has to be replaced through
a corresponding projection device �post-� selecting that part
of the wave function with the two electrons distributed be-
tween the two arms; alternatively, this post-selection may be
part of the application device itself, as is the case in the Bell
inequality measurement.

In the following, we first derive �Sec. II� an expression for
the Bell inequality involving the particle-number cross corr-
elators appropriate for a pulse-driven experiment. We pro-
ceed with the calculation of the particle-number correlators
for a single voltage pulse associated with an arbitrary Fara-
day flux �Sec. III�. The results are presented in Sec. IV: We
find the Bell inequalities violated for single pulses carrying
one Faraday flux, corresponding to one pair of electrons with
opposite spin. Although the Bell inequality appears to be
violated for weak pulses �producing less than one pair� too,
we argue that this violation is unphysical and that its appear-
ance is due to a misconception in the original derivation of
the Bell inequality arising in the weak pumping limit. We
also generalize the discussion to the situation with more
complex drives �multipulse case and alternating pulse se-
quences� and demonstrate that our Bell inequalities again are
violated only for single-pair pulses flowing in either direc-
tion through the device. Our analysis of an alternating signal
produces an apparent violation of the Bell inequality, which,
however, again appears to be an artifact resulting from an
improper derivation of the Bell inequality for the alternating
signal. In both cases of failure, weak pulses and alternating
pulse sequences, we encounter backflow phenomena that
spoil the proper derivation of the Bell inequality for our
setup.

II. BELL INEQUALITY WITH NUMBER CORRELATORS

The Bell inequality we are going to use here has been
introduced by Clauser and Horne17; it is based on the Lemma
saying that, given a set of real numbers x, x̄, y, ȳ, X, Y with
�x /X�, �x̄ /X�, �y /Y�, and �ȳ /Y� restricted to the interval �0,1�,
the inequality �xy−xȳ+ x̄y+ x̄ȳ � �2 �XY� holds true. We de-

fine the operator of electric charge N̂i�tac� transmitted
through the ith spin detector during the time interval �0, tac�,
where tac�0 is the accumulation time. The charge operator

N̂i�tac� can be expressed via the electric current Îi�t� flowing

through the ith detector, N̂i�tac�=�0
tacdt�Îi�t��. In the Bell test

experiment, see Fig. 1, one measures the number of transmit-
ted electrons with a given spin polarization, Ni, i=1, . . . ,4,
and defines the quantities x=N1−N3, y=N2−N4, X=N1+N3,
and Y =N2+N4 for fixed orientations a and b of the polariz-

ers �and similar for x̄ and ȳ for the orientations ā and b̄�, see
Ref. 16. Our Bell setup measures the correlations

Kij�a,b� = �N̂i�tac�N̂j�tac�� = 	
0

tac

dt1dt2�Îi�t1�Î j�t2�� �1�

between the number of transmitted electrons Ni, i=1,3, in
the lead “u” with spin polarization along ±a and their part-
ners Nj, j=2,4, in lead “d” with spin polarization along ±b.
Using the above definitions for x, y, X, and Y, we obtain the
normalized particle-number difference correlator

E�a,b� =
��N̂1 − N̂3��N̂2 − N̂4��

��N̂1 + N̂3��N̂2 + N̂4��
=

K12 − K14 − K32 + K34

K12 + K14 + K32 + K34
,

�2�

and evaluating the correlators for the four different combina-

tions of directions a, ā and b, b̄, we arrive at the Bell in-
equality

EBI = �E�a,b� − E�a,b̄� + E�ā,b� + E�ā,b̄�� � 2. �3�

We proceed further by separating the current correlators
in Eq. �1� into irreducible parts Cij�a ,b ; t1 , t2�
= ��Îi�t1��Î j�t2�� with �Îi�t�= Îi�t�− �Îi�t�� and products of av-
erage currents and rewrite E�a ,b� in the form

E�a,b� =
K12 − K14 − K32 + K34 + �−

K12 + K14 + K32 + K34 + �+
, �4�

where we have defined �±= ��N1
ˆ �± �N3

ˆ ����N2
ˆ �± �N4

ˆ �� with
the irreducible particle number correlator

Kij�tac� = ��N̂i�tac��N̂j�tac�� = 	
0

tac

dt1dt2Cij�a,b;t1,t2� . �5�

The average currents are related via �Î1�t��= �Î3�t��
= �Îu�t�� /2 and �Î2�t��= �Î4�t��= �Îd�t�� /2 and thus �−=0, �+

= �N̂u��N̂d�. The irreducible current-current correlator factor-
izes into a product of spin and orbital parts, Cij�a ,b ; t1 , t2�
= ��ai �b j��2Cud�t1 , t2� with a1,3= ±a and b2,4= ±b. The spin
projections involve the angle �ab between the directions a
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and b of the polarizers, �±a � ±b�=cos2��ab /2� and
�±a � �b�=sin2��ab /2�, and the Bell inequality assumes the
form


Kud�cos �ab − cos �ab̄ + cos �āb + cos �āb̄�

2Kud + �N̂u��N̂d�

 � 1, �6�

where Kud�tac�=�0
tacdt1dt2Cud�t1 , t2� is the �irreducible� num-

ber cross correlator between the upper and lower leads of the
fork. The maximal violation of the Bell inequality is attained
for the standard orientations of the detector polarizations
�ab=�āb=�āb̄=	 /4, �ab̄=3	 /4; the Bell inequality �6� then
reduces to

EBI = 
 2Kud

2Kud + �N̂u��N̂d�

 �

1
�2

. �7�

III. NUMBER CORRELATORS FOR A SINGLE
PULSE

The orbital part Cud�t1 , t2� of the current cross correlator
between the upper and lower leads can be calculated within
the standard scattering theory of noise.18–21 We assume that
the time dependent voltage drop V�t� at the splitter can be
treated adiabatically �i.e., the voltage changes slowly during
the electron scattering time�. The electrons incident from the
source lead “s” and scattered to the “up” or “down” lead then
acquire an additional time-dependent phase 
�t�
=�−�

t dt�eV�t�� /�. The scattering states �for one spin compo-
nent� describing the electrons in the upper and lower leads

̂u�x , t� and ̂d�x , t� take the form

̂u =	 d�

�hv�

��tsuei
�t−x/v��ĉ� + ruâ� + tdub̂��eikx

+ â�e
−ikx�e−i�t/q, �8�

̂d =	 d�

�hv�

��tsdei
�t−x/v��ĉ� + rdb̂� + tudâ��eikx

+ b̂�e
−ikx�e−i�t/q, �9�

where ��=�2m�; â�, b̂�, and ĉ� denote the annihilation opera-
tors for spinless electrons at energy � in leads “u”, “d”, and
“s”; the scattering amplitudes tsu�tdu� and tsd�tud� describe
particle transmission from the source �down� lead into the
upper lead and from the source �up� lead into the lower �“d”�
lead; ru, rd denote the reflection amplitudes into the leads “u”
and “d.” Such adiabatically deformed scattering states �8�
and�9� have first been used in the calculation of the spectral
noise power in an ac driven system22; the validity of this
approach has been confirmed in several experiments.23

We substitute these expressions into the current operator

Îu�d��x , t� and drop all terms small in the parameter
��−�� � /�F �we assume a linear dispersion�. The irreducible

current cross-correlator Cud�t1 , t2�= ��Îu�x , t1��Îd�y , t2�� mea-
sured at the positions x and y in the leads “u” and “d” can be

splitted into two terms, one due to equilibrium fluctuations,
Cud

eq�t1− t2�=��d� /2	�Seq���ei��t1−t2� with

Seq��� = −
2e2

h
Tudcos���+�

��

1 − e��/� , �10�

and a second term describing the excess correlations at finite
voltage

Cud
ex�t1,t2� = −

4e2

h2 TuTdsin2 
��1� − 
��2�
2

��� − �−,�� ,

�11�

with ��� ,��=	2�2 / sinh2�	�� / q � �� is the temperature of
electronic reservoirs�, �= t1− t2, �±= �x±y� /�F, �1= t1−x /�F,
and �2= t2−y /�F. The coefficients Tu= �tsu�2, Td= �tsd�2, and
Tud= �tud�2= �tdu�2 denote the transmission probabilities from
the source to the “up”, “down” leads, and from the “down”
to the “up” lead.

The equilibrium part of the current cross-correlator
Cud

eq�t1− t2� describes the correlations of the electrons in the
Fermi sea propagating ballistically from lead “u” to lead “d”
�or vice versa� with the retardation �+= �x1+x2� /�F. The cor-
responding equilibrium part of the particle-number cross cor-
relator, Kud

eq =�0
tacdt1dt2Cud

eq�t1− t2� then takes the form

Kud
eq �

e2

	2Tudln
tac

�
, � = max�/�F,�+� , �12�

where we have assumed the zero temperature limit and an
accumulation time tac��. The logarithmic divergence in tac
reduces the violation of the Bell inequality Eq. �7� at large
accumulation times and one has to suppress the equilibrium
correlations between the upper and lower leads in the setup.
This can be achieved via a reduction in the transmission
probability Tud, however, in the fork geometry of Fig. 1�a�
the probability Tud cannot be made to vanish. Alternatively,
one may chose a setup with a reflectionless four-terminal
beam splitter as sketched in Fig. 1�b� with no exchange am-
plitude between the upper and lower outgoing leads; using
such a fork geometry, the equilibrium fluctuations Kud

eq can be
made to vanish.24

Next, we concentrate on the excess part Kud
ex of the

particle-number cross-correlator �N̂u�tac�N̂d�tac��. Note that
the excess fluctuations are the same for both setups, Figs.
1�a� and 1�b�, and we can carry out all the calculations for
the fork geometry. We consider a sharp voltage pulse applied
at time t0, 0� t0� tac, with short duration �t. The total accu-
mulated phase 
�t� then exhibits a steplike time dependence
with the step height �
=
�t0+�t /2�−
�t0−�t /2�=
−2	� /�0, where we have introduced the Faraday flux �=
−c�V�t�dt and �0=hc /e is the flux quantum. The excess
part of the particle-number cross-correlator Kud then takes
the form �we consider again the zero temperature limit�

Kud
ex = −

e2

	2TuTd	
0

tac

dt1dt2
sin2�
�t1� − 
�t2��/2�

�t1 − t2�2 . �13�

For a sharp pulse with �t� t0 , tac we can identify two distinct
contributions arising from the integration domains �t1− t2 �
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��t and �t1− t2 � ��t, cf. Refs. 25 and 26; we denote them
with K� and K�. Introducing the average and relative time
coordinates t= �t1+ t2� /2 and �= t1− t2 and expanding the

phase difference 
�t1�−
�t2�=
�t+� /2�−
�t−� /2�� 
̇�t��,
the first contribution K� reads

K� = −
e2

	2TuTd	
0

tac

dt	 d�
sin2�
̇�t��/2�

�2

= −
e2

2	
TuTd	

0

tac

dt�
̇�t�� . �14�

Assuming that the phase 
�t� is a monotonic function of t

�guaranteeing a unique sign for 
̇�t�� the last equation can be
rewritten in terms of the Faraday flux �

K� = − e2TuTd

���
�0

; �15�

this contribution to the particle-number cross-correlator Kud
ex

describes the correlations arising from the n= �� � /�0 addi-
tional particles pushed through the fork by the voltage pulse
V�t�, see Eq. �18� below.

The second contribution K� to Kud
ex originates from the

time domains 0� t1�2�� t0−�t /2 and t0+�t /2� t2�1�� tac,
where �
�t1�−
�t2� � =2	� /�0, hence

K� � −
2e2

	2 TuTdsin2 	�

�0
ln

tm

�t
; �16�

here we have kept the most divergent term in the measure-
ment time tm= tac− t0, the time during which the pulse mani-
fests itself in the detector. The above expression describes
the response of the electron gas to the sudden perturbation
V�t�; the logarithmic divergence in the measurement time tm

can be interpreted25 along the lines of the orthogonality
catastrophe,27 with the isolated perturbation in space, the im-
purity, replaced by the sudden perturbation in time. The pe-
riodicity of the response in the Faraday flux � is due to the
discrete nature of electron transport as expressed through the
binomial character of the distribution function of transmitted
particles.25,26 Remarkably, the above logarithmically diver-
gent contribution to Kud

ex vanishes for voltage pulses carrying
an integer number of electrons n= �� � /�0, see Eq. �18� be-
low. This follows quite naturally from the invariance of the
scattering amplitudes tsu and tsd in Eqs. �8� and �9� under the
�adiabatic� voltage pulses carrying integer flux ±n�, tsx
→ tsxe

±2	nwith x=u ,d; transmitting an integer number of
particles at Faraday fluxes �=n�0 avoids the system
shakeup and the associated logarithmic divergence.

We proceed with the determination of the average number
of transmitted �spinless� particles

�N̂u�d��tac�� = 	
0

tac

dt�Îu�d��x,t�� .

Within the scattering matrix approach the average currents in
the upper and lower leads are given by the expression

�Îu�d��x,t�� =
e

h
Tu�d�eV�t − x/�F� =

e

2	
Tu�d�
̇�t − x/�F� .

�17�

The time integration provides the average number of trans-
mitted particles

�N̂u�d��tac�� = eTu�d�
�

�0
. �18�

With Tu+Td=1, the result �18� tells that a voltage pulse cor-
responding to n= �� � /�0 flux units pushes n spinless elec-
trons through the fork, in the forward direction from the
source lead “s” to the prongs “u” and “d” if ��0 and in the
backward direction for ��0.

IV. RESULTS

Substituting the above expressions for the particle-number
cross correlators and for the average number of transmitted
particles into Eq. �7� we arrive at the following general result
for the Bell inequality:

EBI = 
 n + �2/	2�sin2�	n�ln�tm/�t�
2n2 − n − �2/	2�sin2�	n�ln�tm/�t�


 . �19�

A. Pulse with integer flux

For a voltage pulse with integer n the above expression
simplifies dramatically as all logarithmic terms vanish, leav-
ing us with the Bell inequality

EBI = 
 1

2n − 1

 �

1
�2

, �20�

which we find maximally violated for n=1 and never vio-
lated for larger integers n�1 — any additional particle ac-
cumulated in the detector spoils the violation of the Bell
inequality. Furthermore, this violation is independent of the
transparencies Tu, Td and hence universal; moreover, the Bell
inequality �20� does not depend on the particular form or
duration of the applied voltage pulse but involves only the
number of electrons n carried by the voltage pulse.

A voltage pulse with n=1 pushes two electrons with op-
posite spin polarization toward the beam splitter. Such a pair
appears in a singlet state8 and can be described by the wave
function in

12=
s
1
s

2�sg
12 with the spin-singlet state �sg

12

= ��↑
1�↓

2−�↓
1�↑

2� /�2; 
s is the orbital part of the wave function
describing a particle in the source lead “s” and the upper
indices 1 and 2 denote the particle number. This local
spin-singlet pair is scattered at the splitter and the wave func-
tion in

12 transforms to scat
12 = tsu

2 
u
1
u

2�sg
12+ tsd

2 
d
1
d

2�sg
12

+ tsutsd�
u
1
d

2+
d
1
u

2��sg
12, where the last term describes two

particles in a singlet state shared between the upper and
lower leads of the fork. The Bell inequality test is only sen-
sitive to pairs of particles propagating in different arms, im-
plying a projection of the scattered wave function scat

12 onto
the spin-entangled component. Thus the origin of the en-
tanglement is found in the post-selection during the cross-
correlation measurement effectuated in the Bell inequality
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test.6,9 From an experimental point of view it may be difficult
to produce voltage pulses driving exactly one �spinless� par-
ticle n=1. However, as follows from the full expression Eq.
�19�, for a sufficiently small deviation ��n � = �n−1 � �1 the
logarithmic terms are small in the parameter ��n�2 and thus
can be neglected, provided the measurement time tm satisfies
the condition ��n�2 ln�tm/�t��1.

B. Weak pumping regime

The weak pumping regime with n�1, corresponding to
small voltage pulses carrying less than one electron per spin
channel, deserves special attention. Inspection of Eq. �19�
shows that the Bell inequality can be formally violated in
this regime. We believe that this violation of the Bell in-
equality has no physical meaning. Below, we will show that
for noninteger n many-particle effects generate backflow of
particles in our setup. We argue that this backflow leads to an
inconsistency in the derivation of the Bell inequality itself, as
the assumption 0� �x /X � , �x̄ /X � , �y /Y � , �ȳ /Y � �1 may no
longer hold true for n�1.

In order to understand this weak pumping regime better,
we analyze the sign of the full current cross-correlator

Cud�t1 , t2�= �Îu�t1�Îd�t2�� �for one spin component�; expressing
this quantity through the phase 
�t� we find the form

Cud�t1,t2� =
e2

�2	�2TuTd

� �
̇�t1�
̇�t2� − 4
sin2��
�t1� − 
�t2�/2�

�t1 − t2�2 � . �21�

We consider again the case of a narrow voltage pulse applied
at t= t0 and assume a specific shape 
�t�=2n arctan��t
− t0� /�t�. Choosing times t1� t0� t2 before and after the ap-
plication of the pulse at t0, we find that the currents in the
leads “u” and “d” predominantly flow in opposite directions:
For a sharp pulse with �t1,2− t0 � ��t we can assume that

�t1�−
�t2�=2	n and thus the correlator Cud�t1 , t2� takes the
form

Cud�t1,t2� =
e2

	2��t�2TuTd

� � n2

�1 + z1
2��1 + z2

2�
−

sin2 	n

�z1 − z2�2� , �22�

where we have introduced z1,2= �t1,2− t0� /�t. For �z1,2 � �1
the second �negative� term �1/ ��z1 � +z2�2 describing the ir-
reducible correlations dominates over the first �positive� term
�1/ �z1

2z2
2� and hence the full current cross correlator is nega-

tive. This negative sign tells us that, despite application of a
positive voltage pulse with n�0, the currents at times t1
� t0� t2 in leads “u” and “d” flow in opposite directions on
average. Note that this unusual behavior is a specific feature
of time dependent voltage pulses and does not appear for a
constant dc voltage with 
�t�=eVt /� — in this case the cur-
rent cross correlator is always positive.

As a consequence, the time-integrated full particle-
number cross correlator �per one spin component� may turn

out negative as well and it does so for voltage pulses carry-
ing less then one electron per spin channel n�1,

Kud
ex = e2TuTd�n2 − n −

2

	2 sin2�	n�ln
tm

�t
� . �23�

Hence, in the weak pumping regime the particles in the out-
going leads “u” and “d” are preferentially transmitted in op-
posite directions. Note that both �negative� terms in the cor-
relator, the one �−n� from short time differences as well as
the contribution ��−sin2�n	�ln�tm/�t�� related to the “or-
thogonality catastrophe” dominate over the �positive� prod-
uct term �n2�, with the second one becoming increasingly
important at large measuring times. Furthermore, this second
term also drives the particle-number cross-correlator nega-
tive at large noninteger n�1 and long measuring times,
again signaling the presence of particle backflow in the
device.

The derivation of the Bell inequality relies on the assump-
tion that the quantities �x /X�, �y /Y�, etc. are bounded by
unity. For our setup this implies that the particle number
ratios of the type �x /X � = ��N1−N3� / �N1+N3�� are bounded by
unity, which is only guaranteed for particle numbers with
equal sign, N1N3�0; hence, particles detected in the pair of
spin filters with polarization ±a in the upper arm have to be
transmitted in the same direction. Next, we note that particles
with opposite spin propagate independently and hence our
finding that particles preferentially propagate in opposite di-
rections of the outgoing leads “u” and “d” for n�1 also
implies that the particle numbers N1 and N3 can be of oppo-
site sign, hence the condition x�1 is not necessarily satisfied
for n�1. On the contrary, for n=1 the full particle-number
cross correlator �for one spin component� vanishes, Kud=0:
in the simplest interpretation we may conclude that the single
transmitted particle is propagating either through the upper
or the lower lead, thus either Nu=0 and Nd=1 or vice versa
and the quantity �x /X� is properly bounded. The above argu-
ments cannot exclude the relevance of additional many-
particle effects, i.e., the appearance of additional particle-
hole excitations in the system contributing to the particle
count in the various detectors. A formal proof of the unidi-
rectional propagation of particles confirming the applicabil-
ity of the Bell inequality for the present nonstationary situa-
tion relies on the calculation of the full counting statistics of
particles measured in the detectors 1 and 3, etc.; such a cal-
culation has not been done yet.

C. Many integer-flux pulses

Above, we have concentrated on the situation where only
a single voltage pulse has been applied. Let us consider an-
other situation where a sequence of voltage pulses driving an
integer number of electrons is applied to the source lead “s.”
In contrast to the previous analysis, we study the total trans-

mitted charge from t=−� to t=�, N̂i���=�−�
� dtÎi�t�; the ex-

cess part of the irreducible particle-number cross correlator
takes the form �we remind that the equilibrium part can be
quenched in going to the four-terminal beam splitter of
Fig. 1�b��
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Kud
ex = −

e2

	2TuTd	
−�

�

dt1dt2
sin2�
�t1� − 
�t2��/2�

�t1 − t2�2 . �24�

In our further analysis, we closely follow the technique de-
veloped in Ref. 28. The double integral in the above expres-
sion is logarithmically divergent at large times t1 , t2, produc-
ing the logarithmic dependence on the measurement time tm
noted above for the finite accumulation time. However, for
pulses with an integer number of electrons, this problematic
term disappears; in this case we are allowed to regularize the
integral in Eq. �24� with the help of

1

�t1 − t2�2 →
1

2
� 1

�t1 − t2 + i��2 +
1

�t1 − t2 − i��2� �25�

and �→0 a small cutoff. Expressing the factor sin2�. . .� in
Eq. �24� in terms of exponential functions, we arrive at the
form

Kud
ex =

e2TuTd

�2	�2 	 dt1dt2� ei
�t1�−i
�t2�

�t1 − t2 + i��2+
ei
�t1�−i
�t2�

�t1 − t2 − i��2� .

�26�

In order to proceed further, we split the exponential into two
terms ei
�t�= f+�t�+ f−�t� with f+�t� and f−�t� two bounded
analytic functions in the upper and lower complex-t plain.
Substitution into the above expression and using Cauchy’s
formula for the derivative

ḟ±�t� = ±
i

2	
	 dt�

f±�t��
�t − t� ± i��2 ,

allows us to write the particle-number correlator in the form

Kud
ex = −

e2

2	i
TuTd	 dt� ḟ+�t�f+

*�t� − ḟ−�t�f−
*�t�� . �27�

In Eq. �27� we have made use of the analytical properties of
f±�t�; in particular, with the complex conjugate functions
f+

*�t� and f−
*�t� bounded and analytic in the lower and upper

half-planes, respectively, we easily find that �dt ḟ+�t�f−
*�t�

=�dt ḟ−�t�f+
*�t�=0. In addition, we can also express the aver-

age number of transmitted particles in terms of the functions
f±�t� introduced above

�N̂u�d�� =
e

	
Tu�d� 	 dt
̇�t� =

e

	i
Tu�d� 	 dte−i
�t� d

dt
ei
�t�

=
e

	i
Tu�d� 	 dt� ḟ+�t�f+

*�t� + ḟ−�t�f−
*�t�� . �28�

Rewriting Eqs. �27� and �28� in terms of the real numbers n±

n± = ±
1

2	i
	 dt ḟ±�t�f±

*�t� , �29�

we obtain the particle-number cross correlator and the aver-
age number of transmitted particles in the form

Kud
ex = − e2TuTd�n+ + n−� , �30�

�Nu�d�� = 2eTu�d��n+ − n−� . �31�

Substituting these expressions into the Bell inequality Eq.
�7�, we arrive at the result

EBI = 
 n+ + n−

2�n+ − n−�2 − �n+ + n−�

 �

1
�2

. �32�

The physical meaning of the numbers n± is easily identified
for the specific form of Lorentzian voltage pulses

V�t� = �
i

ni
2 � �i/e

1 + �t − ti�2�i
2 , �33�

where the index i denotes the number of the pulse in the
sequence, ti is the moment of its appearance, �i

−1 is the pulse
width, and ni the number of spinless electrons carried by the
ith pulse with the sign of ni defining the sign of the applied
voltage. Such a sequence of pulses produces the phase

ei
�t� = �
i
� t − ti − i/�i

t − ti + i/�i
�ni

, �34�

from which the decomposition into the terms f±�t� can be
found. The further analysis is straightforward for unidirec-
tional pulse sequences with all ni�0, in which case
exp�i
�t��= f+�t� and n+=�ini, n−=0, or all ni�0 when
exp�i
�t��= f−�t� and n+=0, n−=−�ini. It then turns out26,28

that all results for the irreducible particle-number cross-
correlator �30�, the average currents �31�, and the Bell in-
equality �32� do neither depend on the separation ti+1− ti be-
tween the pulses nor on their widths �i

−1. Furthermore, the
result �32� for the Bell inequality agrees with the previous
expression �20� where a single pulse is carrying n=n+ �or n−�
electrons in one go and we confirm our finding that the vio-
lation of the Bell inequality is restricted to pulses containing
only one pair of electrons with opposite spin. Also, we note
that for the case of well-separated pulses we can restrict the
accumulation time over the duration of the individual pulses,
in which case the Bell inequality is violated for all pulses
with �ni � =1.

Another remark concerns the case of an alternating volt-
age signal with no net charge transport and hence zero accu-
mulated particle numbers �Nu�d��=0. Equation �31� then tells
us that n+=n− and the Bell inequality �32� is formally vio-
lated. However, we argue that this violation is again unphysi-
cal and due to the same improper normalization of the basic
quantities �x /X�, �y /Y�, etc. as encountered previously for the
case of small Faraday flux n�1: Concentrating on the ex-
pression x /X= �N1−N3� / �N1+N3�, we note that two pulses
with opposite signs allow for processes where the charge
driven through the two spin detectors satisfies N1N3�0 and
hence �x /X � �1, in contradiction to the requirements of the
Lemma. Note that the manner of violating the Bell inequality
is quite different for the physical cases involving pulses with
a single particle �see the discussion of single integer-flux
pulses in Sec. IV A with n=1, or the discussion of many
integer-flux pulses in Sec. IV C with n+=1, n−=0, and n+
=0, n−=1� and for the unphysical situation of an alternating
signal with n+=n− discussed above: In the first case the small
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denominator results from a cancellation between the product
term 2n and the negative number correlator −1, hence EBI
= �1/ �2−1� � =1, while in the second case, the product term
vanishes and there is no compensation, although the final
result is the same, EBI= �1/−1 � =1. The same apparent viola-
tion appears at large noninteger values of n�1 and long
measuring times, where the term �sin2�	n�ln�tm/�t� be-
comes dominant, cf. Eq. �19�.

V. CONCLUSION

The application of voltage pulses to a mesoscopic fork
allows generation of spin-entangled pairs of electrons
through post-selection; the presence of these entangled pairs
can be observed in a Bell inequality measurement based on
particle-number cross correlators. A number of items have to
be observed in producing these entangled objects: �i� Equi-
librium fluctuations competing with the pulse signal have to
be eliminated. This can be achieved with the help of a four-
channel beam splitter as sketched in Fig. 1�b� where the
channel mixing is tuned such that the transmission Tud be-
tween the upper and lower channel is blocked. �ii� Pulses
V�t� with integer Faraday flux �=−c�dtV�t�=n�0 injecting
an integer number of particles shall be used. Otherwise, the
“fractional injection” of a particle induces a long-time per-
turbation in the system producing a logarithmically divergent
contribution to the excess number correlator. The flux �
= �n+�n��0, n= an integer, associated with the voltage pulse
has to be precise within the limit ��n�2�1/ ln�tm /�t�, with tm

the measurement time of the pulse and �t the pulse width.
�iii� The Bell inequality is violated for pulses injecting a
single pair of electrons with opposite spin, i.e., pulses with
one Faraday flux and hence n=1. The maximal violation of
the inequality points to the full entanglement of the pair—the
question, “What type of pulses produce only partially en-
tangled states?” �as quantified in terms of concurrence or
negativity of the partially transposed density matrix29� has
not been addressed here. �iv� Although weak pumping with
pulses carrying less than one Faraday flux, i.e., n�1, for-
mally violate the Bell inequality �note the proviso �ii�, how-
ever�, we associate this spurious violation with an improper
normalization of the particle-number ratios �Ni−Nj� / �Ni

+Nj� entering the Bell inequality. �v� The same argument
also applies to the case of pumping with an alternating
signal—we find the Bell inequality always violated when the
average injected current vanishes �i.e., when the number of
carriers transmitted in the forward and backward directions
are equal�. Again, the origin of this spurious violation is
located in the improper normalization of the particle-number
ratios �Ni−Nj� / �Ni+Nj� for this situation.

The above points suggest the following physical interpre-
tation: An integer-flux pulse with Faraday flux n�0 extracts
exactly n electron pairs from the reservoir that then are tested
in the Bell measurement setup. For n=1 we find the Bell
inequality maximally violated, implying that the electrons
within the pair are maximally entangled and not entangled
with the remaining electrons in the Fermi sea. On the other

hand, the application of a fractional-flux pulse with noninte-
ger n produces a superposition of states with a different num-
ber of excess electron pairs in the fork. The electrons in-
jected into the fork then remain entangled with those in the
Fermi sea and their analysis in the Bell measurement setup
makes no sense.

In our analysis of the spurious violations of Bell inequali-
ties for weak pumping and for alternating drives we have
identified the presence of reverse particle flow as the prob-
lematic element. In the weak pumping limit this conclusion
has been conjectured from the appearance of negative values
in the current cross correlator, implying negative values of
the particle-number correlator for n�1. Although we believe
that these are strong arguments supporting our interpretation,
we are not aware of a formal analysis of the backflow ap-
pearing in systems of this type. The question to be addressed
then is: “Given a bias signal driving particles through the
device in the forward direction, what are the circumstances
and what is the probability of finding particles moving in the
opposite direction �backflow�?” A related problem has been
addressed by Levitov30 �see also Ref. 31�, who has derived
the full counting statistics for the charge transport across a
quantum point contact in the weak ac pumping regime and
has identified parameters producing a strictly unidirectional
flow. The corresponding analysis for our system remains to
be done.

A similar scheme for producing spin-entangled pairs of
electrons has been discussed in Ref. 8, where a constant volt-
age V has been applied to the source lead “s.” In this case,
the source reservoir injects a regular sequence of spin-singlet
pairs of electrons separated by the voltage time �V=h /eV;
the Bell inequality then is violated at short times only. The
main difference of the present proposal is the generation of
well-separated spin-entangled electron pairs in response to
distinguished voltage pulses, thus avoiding the short time
correlation measurement at time scales of order �V.

Our mesoscopic fork device produces entangled pairs of
electrons with a probability of 50%, i.e., half of the single-
flux pulses will produce a useful pair with one spin propa-
gating in the upper and the other in the lower channel. The
competing events with both particles moving in one channel
produce no useful outcome. This is similar to the finding of
Beenakker et al.13, who derive a concurrence corresponding
to the production of one entangled pair per two pumping
cycles. In how far this represents an upper limit in the per-
formance of this type of device or what type of entanglement
generators are able to reach �at least ideally� 100% efficiency
is an interesting problem.
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