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We develop path-integral Monte Carlo simulations for a parabolic two-dimensional �2D� quantum dot
containing N interacting electrons in the presence of Dresselhaus and/or Rashba spin-orbit couplings. Our
method solves in a natural way the spin contamination problem and allows for numerically exact finite-
temperature results at weak spin-orbit coupling. For N�10 electrons, we present data for the addition energy,
the particle density, and the total spin S in the Wigner molecule regime of strong Coulomb interactions. We
identify magic numbers at N=3 and N=7 via a peak in the addition energy. These magic numbers differ both
from weak interaction and classical predictions, and are stable with respect to �weak� spin-orbit couplings.

DOI: 10.1103/PhysRevB.72.245301 PACS number�s�: 73.21.La, 71.70.Ej, 73.20.Qt

I. INTRODUCTION

Interacting few-body quantum systems have attracted a
lot of attention over the past decades. In that respect, quan-
tum dots �QDs� continue to be of fundamental interest to
several fields, e.g., spintronics, nanoelectronics, and quantum
computing. QDs are small solid-state devices, typically con-
taining a few up to several hundred electrons confined in all
space directions.1,2 They can be fabricated and studied using
different approaches and materials,3–7 and control over both
the charge and the spin degree of freedom of the confined
electrons has been reported in experiments. Here, we address
QDs as realized in two-dimensional �2D� semiconductor de-
vices, e.g., in ultraclean 2D electron gases. We consider the
case of parabolically confined individual QDs, which is quite
appropriate in most practical cases.1 QDs offer the possibility
to tune Coulomb correlations among electrons via external
gates.

Spin properties of quantum dots have recently entered the
focus of research,8–12 in particular as they are central both to
quantum computation13 and to spintronics.14 Here spin-orbit
�SO� terms have to be taken into account, coupling the spin
dynamics to the orbital motion. In general, SO coupling is a
relativistic effect, and appears to second order in the fine
structure constant. In most materials of interest, two main
mechanisms may be distinguished, namely Rashba15 and
Dresselhaus16 SO couplings. The Rashba SO coupling
strength �R is due to the surface inversion asymmetry present
in the confinement to a 2D electron gas, and therefore can be
tuned by external gates.8 The Dresselhaus coupling �D is
generally not tunable but can be important if the host crystal
has no bulk inversion symmetry, e.g., in zinc blende semi-
conductors. For simplicity, we only consider the linear
Dresselhaus term and neglect various additional spin-orbit
contributions �see Ref. 17 for an extended discussion�. These
contributions can in principle be taken into account within
our approach. Furthermore, we focus on the case of vanish-
ing magnetic field.

In this work, we investigate the behavior of a closed para-
bolic few-electron QD in the presence of spin-orbit cou-
plings, containing up to N=9 interacting electrons. While the

numerically exact method employed here allows us to study
arbitrary interactions in principle, it is probably most useful
in the regime of intermediate-to-strong Coulomb interac-
tions, where a “Wigner molecule”18–24 is formed. In terms of
the standard electron gas parameter rs, the studied interac-
tions are around rs�5 to 10. Then a clear tendency towards
Wigner crystallization can be observed, but different spatial
“shells” are not yet locked relative to each other as happens
for very large rs.

20 In fact, while for rs→�, a completely
classical situation is encountered,25,26 quantum effects still
play a major role for the “incipient” Wigner molecule of
interest here. In such a case, many standard calculational
tools, e.g., exact diagonalization,27 the Hartree-Fock approxi-
mation, the fixed-node28 or variational29 Monte Carlo ap-
proach, or density functional theory can meet various diffi-
culties �like artificial symmetry breakings� or require explicit
justification, see Ref. 1 for a review. In that situation, finite-
temperature path-integral Monte Carlo �PIMC� simulations
represent an attractive alternative scheme. The case of no
spin-orbit coupling has been studied using PIMC in Refs. 18,
20, 21, and 23.

Before describing our PIMC scheme and the ensuing re-
sults, let us first discuss previous theoretical approaches to
the physics of QDs in the presence of SO couplings. To study
their effect on single-particle energies, one may set up per-
turbation theory for small SO couplings. Due to the linear
dependence on momentum in Eq. �2� below, perturbation
theory starts at second order and gives a quadratic decrease
of single-particle energies with increasing Rashba coupling
�R �or Dresselhaus coupling �D�.30 Single-particle energy
level crossings induced by the SO coupling have been dis-
cussed in Refs. 17, 31, and 32 as a function of an applied
magnetic field. Here, we are mainly concerned with many-
body effects due to the Coulomb interaction. For two elec-
trons, exact diagonalization studies have been carried out for
rather strong Rashba couplings and weak interactions, as ap-
propriate for InSb dots.33,34 Energy spectra were examined, a
jump in the magnetization of the dot as a function of mag-
netic field was found,33 and a favoring of exchange over
direct interactions as a consequence of SO interactions was
discussed.34 Governale35 has employed spin-density func-
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tional theory for N�16. He found that a very strong SO
coupling leads to new peaks and/or the suppression of
Hund’s rule peaks otherwise present in the addition energy
spectrum. An additional in-plane magnetic field was argued
to imply paramagnetic behavior. Finally, in Ref. 36, several
approximate schemes have been employed to study SO ef-
fects in weakly interacting QDs with N�11 to 13 electrons.
Here we provide results for N�10 electrons with strong
Coulomb interactions and SO couplings, where exact diago-
nalization techniques may not apply anymore. One should
also note that for rs�5 to 10, spin effects are very important
but necessitate an essentially exact treatment. For a recent
comparison of QMC data to density functional theory in that
respect, see Ref. 37.

In the absence of spin-orbit couplings, PIMC simulations
for QDs suffer from two well-known problems, namely the
fermionic sign problem and the spin contamination
problem.18 �The first problem can be relieved to some extent
by the multilevel blocking algorithm.19 Here we restrict our-
selves to a simpler “brute-force” approach.� The spin con-
tamination problem arises for �R=�D=0 because both the
total QD spin S and its z component Sz are good quantum
numbers. Now Sz is in practice fixed during the simulation
since there are no spin flip terms in the Hamiltonian. At finite
temperature, one then arrives at the undesirable situation
where states with different S but the same Sz contribute to the
simulation. This considerably complicates data analysis and
represents a well-known problem affecting other schemes
also, e.g., Hartree-Fock calculations. In the presence of spin-
orbit coupling, however, neither S nor Sz are good quantum
numbers and the full space of all �Sz ,S� becomes accessible.
With increasing SO couplings, we find that the sign problem
worsens exponentially, restricting the applicability of our ap-
proach to weak SO couplings. Since in applications, SO ef-
fects are usually weak, however, this restriction is not too
severe.

In order to eliminate the spin contamination problem in
the limit of zero SO coupling, we may study a few finite but
small values for the SO couplings, and then extrapolate
�R/D→0. This allows to reliably compute, for instance, the
addition spectrum of the dot, where we find peaks �corre-
sponding to stability islands of these Wigner molecules� for
N=3 and N=7 electrons. Furthermore, we compute the de-
pendence of the spin state, �S2�=S�S+1�, as a function of
particle number N, where S is the total spin operator.

The structure of the paper is as follows. After introducing
the model in Sec. II we derive the short-time propagator for
interacting fermions in a parabolic QD subject to either
Rashba or Dresselhaus SO coupling �or both of them at the
same time�, and discuss the numerical scheme in some detail.
Numerical results are presented in Sec. III, and we conclude
in Sec. IV. Throughout the paper, we put �=1.

II. MODEL AND METHOD

We study the N-electron Hamiltonian describing a closed
parabolic dot in a 2D electron gas,

H = �
i=1

N 	 pi
2

2m* +
m*�0

2

2
ri

2
 + �
i�j

e2/�

�ri − r j�
+ �

i=1

N

HSO
�i� , �1�

where m* is the effective electron mass and �0 is the oscil-
lator frequency. With i=1, . . . ,N, the vectors pi ,ri denote the
2D momenta and space coordinates of all N electrons. The
Coulomb potential among the electrons contains screening
effects of the host material via the dielectric constant, �.
Measuring energies �lengths� in units of �0 �l0=1/�m*�0�, a
dimensionless Coulomb interaction parameter is given by �
=e2 / ��l0�0�. For common host materials, l0 is in the range of
few up to hundreds of nm. The confinement energy ��0 is
then typically between 0.1 up to a few meV, which allows
directly to determine the strength of the Coulomb interaction
�. Typical � currently realized experimentally are between
0.5 and 5, the latter value4 being already quite close to the
regime studied in our paper. For �	1, Coulomb repulsion
starts to dominate over the kinetic energy, and electrons spa-
tially arrange on shells. This Wigner molecule regime18 is
studied in this work.

Let us then address the SO couplings considered here.
Typically, two different SO couplings are of paramount im-
portance in semiconductor heterostructures, namely the �lin-
ear� Dresselhaus and the Rashba SO coupling. We allow for
both types and consider the spin-orbit Hamiltonian �of the ith
particle�

HSO = �R�px

y − py


x� + �D�px

x − py


y� = p · A · 
� , �2�

where the standard Pauli matrices 
� = �
x ,
y� act in spin
space and

A = 	 �D �R

− �R − �D

 .

Note that both types of SO coupling can be transformed into
each other by a unitary transformation. Hence the spectra for
�D=0��R�0� and �R=0��D�0� coincide �for zero mag-
netic field�, see also Sec. III below.

Remarkably, even on the single-particle level, there is no
closed solution to the Schrödinger equation in a parabolic
potential subject to SO coupling of any kind. We mention in
passing that for a cylindrical box, the single-particle problem
has been solved analytically in Ref. 30. PIMC simulations
provide a powerful tool to extract numerically exact results
for this few-body interacting quantum system. One starts by
discretizing imaginary time �0� t��=1/kBT� into suffi-
ciently short time intervals �=� / P, where P is the �integer�
Trotter number. For t=�, an approximate but accurate short-
time propagator can be constructed via the Trotter-Suzuki
decomposition. To that end, we split H into the noninteract-
ing part H0 �including the SO couplings� and the remaining
interaction part ���. Assuming that the spin dynamics is
slow on the timescale �, some algebra along the lines of Ref.
38 then gives the short-time single-particle propagator under
H0 in the form
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�r2,
2�e−�H0�r1,
1� =
e�E0

2l0
2 sinh��0��

� e−S0�r2,r1�

��
2�e−im*�r2−r1�·A
� �
1� , �3�

where E0=m*��R
2 +�D

2 �. The electron is described by its po-
sition r and the z component 
 /2 of the spin. Furthermore,
S0 denotes the standard 2D oscillator action

S0�r2,r1� =
�r1

2 + r2
2�cosh��0�� − 2r1 · r2

2l0
2 sinh��0��

.

Note that in the absence of SO couplings, the exact propa-
gator of the harmonic oscillator is reproduced. For small
coupling constants �D,R and sufficiently short �, Eq. �3� rep-
resents a very accurate short-time approximation to the
single-particle propagator. The spin part in the propagator �3�
can be written as

�
2�e−im*�r2−r1�·A
� �
1� = cos�a��
1,
2
− i

sin�a�
a

��ax + i
1ay��
1,−
2
,

where a= �ax ,ay�=m*AT�r2−r1� and a= �a�. Using Eq. �3�,
the many-body propagator follows in the form of N�N
Slater determinants. Let us then denote the coordinate and
the spin 
 of the ith electron on time slice n �where 1�n
� P� as rin and 
in, respectively. With respect to the time
direction, we have periodic boundary conditions. Including
Coulomb interactions, we then obtain the many-particle par-
tition function for given discretization �=� / P in the form

Z = �
�
jn=±�

� �
n,j

dr jn	�
n=1

P

det�M�n��

� exp	− �

n,i�j

��

�ri,n − r j,n�
 , �4�

where the N�N matrix M�n� has the matrix elements

Mij
�n� = �ri,n+1,
i,n+1�e−�H0�r j,n,
 j,n� .

The last term in Eq. �4� represents the Coulomb interaction
between all N electrons confined to the QD. If there is no SO
coupling, det M�n� factorizes into a spin-up and a spin-down
part, Sz is a constant of motion, and the spin contamination
problem arises. We mention in passing that the weight in the
discretized path integral �4� is complex-valued, and one
therefore may expect that observables have an imaginary
part. However, all statistical averages for physical observ-
ables must have zero imaginary part, and this indeed we find
within the standard stochastic error bars. The discretized ca-
nonical many-particle partition function �4� then allows us to
access equilibrium observables of interest. For concreteness,
we have chosen a rather low but finite temperature, kBT /�0
=0.1. Furthermore, unless stated otherwise, simulations were
carried out for �D=0 and interaction strength �=10, which
puts us into the Wigner molecule regime. Note that by sim-
ply replacing �R→�D, results for �R=0 follow.

The main limitation for this type of PIMC simulation
comes from the fermionic sign problem. The sign problem

generally arises when different paths that contribute to aver-
ages carry different signs, or even complex-valued phases, as
encountered in the case of nonzero SO couplings. The result-
ing sign cancellation when sampling fermion paths then
manifests itself as a very small signal-to-noise ratio. For in-
stance, as a consequence of exchange, these phases appear
when forming Slater determinants. Here, in the presence of
SO couplings, the sign problem occurs even for a single
particle. Unfortunately, as a function of SO couplings, we
find an exponential decay of the sign, see Fig. 1. This can be
rationalized already on the single-particle level, since the
propagator acquires a complex phase factor in the presence
of SO couplings. The propagator then resembles a real-time
propagator for a single particle, with time corresponding to
the SO coupling. For this problem, the exponential severity
of the sign problem is well established. In effect, the param-
eter regime where reliable simulations are possible is limited
to small-to-intermediate SO couplings. We note in passing
that the Rashba SO coupling �R= �0.4−1.1��10−11 eV m re-
ported for the InGaAs dots of Ref. 8 are about one order of
magnitude larger than our largest value. However, the SO
coupling in InGaAs is also unusally strong, and our values
should apply more directly to GaAs dots. Simultaneously, the
sign problem becomes more severe when increasing N or
lowering temperature. For the chosen parameters, the sign
problem only allows us to study QDs containing N�10 elec-
trons. The average sign is ���	0.001 in all cases reported
below.

We then compute several observables. First, the energy of
the N-electron dot can be obtained from

EN = −
� ln Z���

��
, �5�

where the derivative can be explicitly carried out using Eq.
�4�. Knowledge of the EN determines the addition energy

��N� = EN+1 − 2EN + EN−1. �6�

A peak in the addition energy ��N� indicates enhanced sta-
bility of the N-electron dot �“magic number”�.1 Note that
experimentally observed addition energies are determined by
free energy differences, while we compute the energy. How-
ever, for the low-temperature regime studied here, entropic

FIG. 1. Average sign ��� as a function of �R �semilogarithmic
scale�, for N=3,�D=0, and ��0=0.25. The dotted curve is a guide
to the eye only. Vertical bars denote standard Monte Carlo error
bars �one standard deviation�.
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contributions are smaller by about one order of magnitude,
and therefore our values for ��N� are of relevance to actual
experiments. Another quantity of interest is the total spin S,
which we extract from the definition

�S2� = S�S + 1� , �7�

where brackets denote the statistical average using Eq. �4�,
and S is the total spin operator. Finally, spatial ordering can
be monitored via the electronic particle density,

n�r� = �
i=1

N

���r − ri�� , �8�

which is normalized to �drn�r�=N. The related charge den-
sities can also be accessed experimentally, e.g., via capaci-
tance spectroscopy or scanning tunneling microscopy
techniques.4

As we work with finite discretization �, Trotter approxi-
mation errors have to be taken into account.39 As shown in
Ref. 40, for small �, such errors vanish quadratically for all
observables, allowing for simple and efficient extrapolation
schemes that completely eliminate this finite-� error. The �2

scaling regime is reached for ��0�0.35 when computing the
energy. Furthermore, particle or spin densities are found to
reach the �2 scaling regime already at higher �. Results
shown here have been carefully extrapolated down to �=0
with a linear regression fit, using results from several simu-
lations obtained at 1 /6���0�1/3. Hence no discretization
errors are present, see also Ref. 21, and error bars denote just
the standard stochastic Monte Carlo errors.

Spin flip moves are an essential ingredient of the algo-
rithm. Within the PIMC we allow for spin flips as well as for
position moves. Single-particle moves were found sufficient
to ensure ergodicity. The average trial step size for position
moves was adjusted to give acceptance rates of the order of
30%. On the other hand, typical spin-flip acceptance rates
were much lower �several percent� and strongly dependent
on �R/D. The possibility to change Sz arises from the SO
coupling and can be used to circumvent the spin contamina-
tion problem even for the case of no SO coupling, namely by
extrapolating finite-�R results �where spins can be flipped
and no spin contamination problem is present� down to �R
→0. Such a scheme yields the energy EN as well as the
expectation value �S2� for the total spin of the many-body
system at finite temperature. Typically, after �103 equilibra-
tion passes, 1.5�107 MC samples were accumulated for
each parameter set. Our code runs at a speed of up to two
weeks �for N=9, P=60� for a given parameter set per 1.5
�107 samples on a standard 2 GHz Xeon processor. We
have checked our PIMC energies for N=2 against finite-
temperature exact diagonalization results, including both in-
teractions and spin-orbit couplings. We found excellent
agreement, validating our approach.

III. RESULTS

To verify that for �=10, we indeed have a Wigner
molecule,18 let us start with the radially integrated particle
density �8� shown in Fig. 2. The cylindrical symmetry of the

QD implies that n�r� only depends on the modulus r=r. The
plot indicates that the sixth electron enters the center of the
dot, whereas the remaining five electrons arrange on an outer
ring in order to minimize the Coulomb repulsion. More elec-
trons are then added to the outermost shell. Finally, for N
=9, a second electron enters the center. This spatial shell
filling sequence �as opposed to orbital shell filling� is typical
of the Wigner molecule, which forms the finite-size counter-
part of a Wigner crystal. In fact, precisely this spatial filling
sequence has been reported from a purely classical analysis
�in particular, disregarding spin effects�.25,26 At higher tem-
peratures, the Wigner molecule melts via thermal fluctua-
tions, while for lower �, it is eventually destroyed by quan-
tum fluctuations. Generally, we find that particle densities are
practically independent of the SO coupling strengths �R or
�D, at least for �R/Dl0�0.05.

Although we consider rather small SO couplings, the
many-body energy EN can be clearly seen to decrease as a
function of �R �here, �D=0�. This trend has been observed in
other studies as well.34 In Fig. 3, we show this effect for N
=3 and N=4 electrons.

For �Rl0�0.07, the SO coupling does not significantly
influence addition energies for N�5, see Fig. 4. However,
there is a slight increase in the addition energy ��6�, while
the peak for N=7 is reduced for �R=0.04 �dotted curve�. In
particular, ��7�=3.00�1� for �R→0, while ��7�=2.95�2� at
�R=0.04. Remarkably, the magic numbers N=3 and N=7
encountered in the Wigner molecule regime are different

FIG. 2. �Color online� Charge density for N=4 to N=9 electrons
at �Rl0=0.02 and �D=0, �=10 and kBT /�0=0.1.

FIG. 3. Energy EN in units of �0 for �a� three and �b� four
electrons in the QD as a function of �R �here �D=0�. With increas-
ing �R, the sign problem becomes more severe, and thus the MC
error bars tend to increase.
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from the ones for weak interactions �where a standard Fermi
liquid phase is present�. This is indicated in the inset of Fig.
4 for �=1 and �R=0.04. The magic numbers for �=1 can be
rationalized in terms of the subsequent filling of energy lev-
els �orbitals� of a 2D harmonic oscillator. This predicts a
peak for N=2, where the lowest level is filled, and another
peak at N=4 reflecting Hund’s rule behavior, see also Ref.
35. For strong Coulomb repulsion, the peak for N=2 is com-
pletely absent, while N=3 now corresponds to a magic num-
ber. A very distinct peak in the addition energy is observed
for N=7. To the best of our knowledge, this peak is not
expected for weak interactions. The picture of filling up spa-
tial shells in the Wigner solid phase �discussed above� may
suggest that the filled spatial shell configurations N=5 and
N=8 represent magic numbers. However, under a classical
reasoning, the addition energy should have no pronounced
peaks but exhibits a rather smooth and monotonic decay in
��N�.25,26 Moreover, the classical prediction for ��N�26

yields values one order of magnitude smaller than the ��N�
found here. This indicates that for �=10, despite the clear
onset of spatial ordering, quantum effects are still very im-
portant and cause the magic numbers N=3 and N=7. Nota-
bly, for these N, the dot is seen to be partially spin-polarized.
The magic numbers for N=3 and N=7 can thus be rational-
ized in terms of a Hund-rule type behavior specific to the
incipient Wigner crystallized regime �see the discussion be-
low and Fig. 6�. Our findings are therefore characteristic for
the quantum character of the Wigner molecule. A purely clas-
sical “Wigner solid” analysis25,26 is expected to apply only
for extremely large �. Our numerical PIMC results for EN
�and the spin� as a function of N and the Rashba coupling �R
are summarized in Table I. These data were all obtained for
�=10 and kBT /�0=0.1

Next we consider the dependence of the energy on the
two types of spin couplings. Let us take N=4 electrons,
again at �=10, and fix ��R+�D�l0=0.05. We then study E4 as
a function of �= ��R−�D� / ��R+�D�, where −1���1 tunes
the relative strength of Rashba versus Dresselhaus coupling.
The result is depicted in Fig. 5, showing a symmetric curve
�E4���=E�0,0�−E��R,�D�. The symmetric shape can be ex-
plained by the unitary spin rotation which transforms the

Rashba into the Dresselhaus term and vice versa. With in-
creasing ���, the relative weights of the Dresselhaus and
Rashba couplings increase, leading to increasing energy
gains �E4 over the system without SO couplings.

Finally, we observe that spin plays a major role for �
=10. Our data for S as defined in Eq. �7� show a drastic
influence of temperature. For such a strongly interacting sys-
tem, energies for different S are typically close by, and a
thermal average can then result in different S as compared to
ground-state results. For instance, for N=2, we find a mix-
ture of the singlet ground state S=0 and the excited triplet
state S=2, as PIMC gives S�S+1�=1.14�1� at kBT /�0=0.1.
Due to the strong Coulomb interaction, there is a clear trend
towards partial spin polarization as a function of �, indicated
in Fig. 6, see also Table I. Moreover, the thermal average for
�S2� obtained from PIMC simulations at �=10 increases
monotonically with N, while the ground-state spin18 has
rather different values and shows a nonmonotonic depen-

TABLE I. PIMC data for EN and S�S+1�= �S2� and as a function
of �R for �D=0, �=10, and kBT /�0=0.1. The �R=0 data are taken
from extrapolations. Bracketed numbers denote error estimates.

N �Rl0 E /�0 S�S+1�

1 0 0.9988�1� 0.75�0�
1 0.04 0.9986�6� 0.75�0�
2 0 7.464�2� 1.14�1�
2 0.04 7.459�3� 1.11�2�
3 0 17.610�1� 2.424�13�
3 0.04 17.603�2� 2.426�16�
4 0 31.454�1� 2.657�4�
4 0.04 31.448�6� 2.654�31�
5 0 48.717�1� 3.312�26�
5 0.04 48.712�14� 3.339�71�
6 0 68.959�1� 4.280�13�
6 0.04 68.917�30� 4.27�12�
7 0 91.929 4.96�18�
7 0.04 91.906�30� 4.89�11�
8 0 117.889 5.307�89�
8 0.04 117.83�6� 5.37�35�
9 0 146.501�1� 5.67�19�
9 0.04 146.36�22� 5.95�68�

FIG. 4. �Color online� Addition energy ��N� in units of �0 for
�=10. Circles denote PIMC data extrapolated to �R=0. Note that
N=3 represents a peak, since ��3�=3.696�9�, whereas ��2�
=3.685 and ��4�=3.419�10�. The dotted curve connects the corre-
sponding PIMC results for �R=0.04. Inset: Same for �=1 and small
N. The dashed curve is a guide to the eye only.

FIG. 5. Energy difference �E4=E�0,0�−E��R,�D� for N=4 and
several �. The dotted line is a guide to the eye only.
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dence on N. It is worth mentioning that the peaks in the
addition energy for N=3 and N=7 correspond to enhanced
values of S as well. Stability of the N electron dot is thus
connected to a tendency towards spin polarization, reminis-
cent of Hund’s rule behavior.

For �=4, corresponding to weaker but still sizeable inter-
actions, the dependence of the ground-state spin18 is given in
the inset. The shown nonmonotonic dependence on N reflects
the standard Hund’s rule physics. Comparing the �=4 and
�=10 results, we observe that interactions tend to further
spin-polarize the dot. The huge thermal effects observed in
the expectation value �S2� also indicate that unless experi-
ments are carried out at extremely low temperatures, spin
blockade phenomena41 relying on total spin selection rules
will be thermally washed out. Finally, we note that for the
SO couplings studied here, spin expectation values were not
significantly affected.

IV. CONCLUSION

We have investigated the behavior of up to nine electrons
in a quantum dot. We took into account strong Coulomb
correlations between the electrons, and also incorporated
spin-orbit couplings. Our results were obtained from path-
integral quantum Monte Carlo simulations. An exponential
decrease of the fermionic sign is found with increasing SO
couplings. This sign problem appears even for a single elec-
tron. Nevertheless, simulations are possible for weak SO
couplings, where their inclusion can also be used to elimi-
nate the spin contamination problem.

We observe peaks in the addition energy spectrum for N
=3 and N=7, which are likely to correspond to the stability
of partially spin-polarized configurations induced by Cou-
lomb interactions. These peaks are neither expected in the
weak-interaction regime nor in the classical �deep� Wigner
solid, where spin effects are negligible. We hope that this
prediction can soon be tested experimentally. Our results
were obtained in the regime of weak spin-orbit couplings,
since otherwise numerical instabilities associated with the
sign problem occur. Given this restriction however, PIMC
offers a powerful tool to analyze the effects of spin-orbit
couplings in strongly interacting quantum dots. We find no
dramatic effects, but observable downward shifts in the
many-body energy that scale quadratically in the spin-orbit
couplings. Spin-orbit couplings also affect addition energies.
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