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Discrete stress relaxations were found to be the source of low-temperature plastic flow in amorphous silicon
�a-Si� as modeled by atomistic simulation using the Stillinger-Weber potential. These relaxations are triggered
when a local yielding criterion is satisfied in a small cluster of atoms. The atomic rearrangements accompa-
nying discrete stress relaxations are describable as autocatalytic avalanches of unit shearing events. Every such
unit event centers on a clearly identifiable change in bond length between the two split peaks of the second
nearest-neighbor shell in the radial distribution function of bulk a-Si in steady-state flow.

DOI: 10.1103/PhysRevB.72.245206 PACS number�s�: 61.43.Dq, 61.43.Fs, 62.20.Fe, 81.05.Gc

I. INTRODUCTION

In a previous atomistic simulation study of plastic flow in
amorphous silicon �a-Si�,1,2 it was demonstrated that indi-
vidual atomic environments could be unambiguously classi-
fied as either solidlike or liquidlike. The mass fraction � of
liquidlike atomic environments was found to act as a plastic-
ity carrier, i.e., a-Si systems with larger values of � are more
amenable to plastic flow. Thus, � plays a role in a-Si similar
to that of free volume in metallic glasses,3 both with respect
to plastic flow as well as aging.4,5 In addition to its connec-
tion to average mechanical response, however, the liquidlike-
solidlike distinction indicates the possibility of finding re-
peatable inelastic atomic-level structure changes associated
with the transformation of liquidlike atomic environments to
solidlike ones and vice versa. In other words, it suggests the
existence of a specific mechanism of plastic flow in a-Si.

It might not be, at first, intuitively clear that amorphous
solids can exhibit any repeatable mechanism of plasticity.
Nevertheless, early investigations of inelastic transformation
in model two-dimensional metallic glasses using the bubble-
raft method6 as well as atomistic simulations with pair
potentials3 found that plasticity in these materials initiates at
sites of high free volume and proceeds in a series of local-
ized structure transformations involving clusters of about 10
atoms. This finding invalidated the Eyring hypothesis7 for
flow in glassy solids. It also proved that no form of “gener-
alized dislocations” mediate plasticity in such materials.8

More importantly, however, the studies of plasticity in model
metallic glasses suggested the possibility of the existence of
distinct mechanisms of inelastic structure transformation in
amorphous materials.

Building upon this realization, Bulatov and Argon4 con-
structed a simplified model of metallic glasses that presup-
posed a single plastic deformation mechanism that could be
activated by both thermal motion and mechanical stresses.
This assumption was meant to combine the observations that
plastic deformation in glassy metals is local and occurs pref-
erentially at certain sites. Through a series of simulations,
Bulatov showed that if interactions between inelastically
transforming regions and the surrounding elastically deform-

ing matrix material are taken into account, a single deforma-
tion mechanism is able to reproduce all of the high- and
low-temperature behaviors observed in metallic glasses. The
model of Bulatov and Argon uses several material param-
eters to characterize the form of thermal and mechanical ac-
tivation behavior of unit plastic events, but makes no refer-
ence to their origin. In particular, these parameters could be
extracted from atomistic simulations of plasticity in materials
governed by any interaction law, provided that unit plastic
deformation events indeed exist in these materials. The gen-
eral conclusions of the Bulatov-Argon model would there-
fore be expected to apply to disordered covalently bonded
materials as much as to metallic glasses.

Investigations of a-Si in the context of phenomena other
than plastic flow under external loading have given rise to
hopes of isolating individual mechanisms of structure trans-
formation responsible for those phenomena. For example,
Bernstein et al. conducted atomistic simulations to search for
mechanisms of solid-phase epitaxial growth �SPEG� of crys-
talline silicon �c-Si� from a-Si.9 Meanwhile, Valiquette and
Mousseau characterized thermal excitation-induced structure
transitions in relaxed a-Si configurations.10 The study pre-
sented here is an investigation of the atomic mechanisms of
plasticity in a-Si.

II. METHODS

The research presented here made use of the same model
for Si as the one adopted by the authors in the study that
motivated the current work.1,2 Namely, the Stillinger-Weber
�SW� potential11 was chosen from among other commonly
used empirical models12–14 because of its simple design, the
extent to which its behavior has been previously explored,
and its lack of stark, unphysical deviations from the behavior
of real Si.15–19 All simulations were carried out under peri-
odic boundary conditions on configurations consisting of
4096 atoms, i.e., 8�8�8 cubic unit cells of the diamond
cubic crystalline configuration.

Amorphous Si systems of varying densities were created
by melting crystalline Si �c-Si� and quenching it at different
rates, as previously described.1,2 Four representative a-Si
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systems of differing densities were then deformed by exter-
nally applying small increments of volume conserving plane
strain20 to the simulation cell and equilibrating the system
after the application of each strain increment. These exter-
nally applied strain increments consisted of an extension in-
crement d�x in the x direction and the same amount of con-
traction increment d�y in the y direction �since the constant
volume requirement in this loading mode requires
d�y =−d�x / �1+d�x�, the amount of contraction increment ap-
plied in the y direction was actually very slightly less than
extension in the x direction�. The system length in the z
direction was held fixed. In the work that motivated this
study,1,2 relaxation of externally strained structures was ac-
complished using molecular dynamics �MD� simulation at a
constant temperature of T=300 K. Because the thermal mo-
tion of atoms in MD simulations obscures the intimate de-
tails of individual atomic-level structure transformations,
however, the mechanisms of plasticity in a-Si are most con-
veniently studied using the effectively zero-temperature re-
laxation technique of potential-energy minimization
�PEM�.21

PEM relaxations were performed using the Polak-Ribiere
conjugate gradient method22 with restarts.23 Conjugate gradi-
ent minimization was terminated when the total force on
each atom decreased below 10−8 times the characteristic
force of the SW potential �1.66�10−9 N�. Trust region
Newton-Raphson minimization steps23 were subsequently
applied until the total force on each atom decreased below
10−14 times the characteristic force of the SW potential,
yielding very finely equilibrated atomic structures. Whenever
the energy minimum of the atomic system was too ill-
conditioned for either the conjugate gradient or Newton-
Raphson techniques to work—as is sometimes the case near
the mechanical threshold of plastic relaxations �Sec. VII�—a
line minimization was carried out using the robust algorithm
due to Brent24 �available online at Netlib25� along the direc-
tion of the lowest stiffness nontranslational eigenmode of the
system Hessian matrix. To accurately resolve all mechanical
instabilities arising during a mechanical deformation simula-
tion using PEM relaxation, volume-conserving plane-strain
increments with d�x=3.2�10−5 were applied.

The PEM methods described above as well as some of the
structural analysis methods to be described later make use of
the matrix of second derivatives of the system potential with
respect to atomic positions �i.e., the stiffness or Hessian ma-
trix�. This matrix can be calculated directly from the form of
the SW potential and stored in sparse vector form.26 Solu-
tions of linear systems involving the Hessian matrix were
found using the SYMMLQ iterative scheme27 �available online
at Netlib25�. Selected eigenvalues and eigenvectors of the
Hessian matrix were determined as needed using the ARPACK

implementation of the Implicitly Restarted Arnoldi Method
�IRAM�,28 available online at Netlib.25

The method of finding the mass fraction � of liquidlike
atomic environments for any a-Si system was described in
Refs. 1 and 2. The full system stress tensor � was calculated
directly from the form of the SW potential as described in
Ref. 2. It is useful to decompose the components �ab of the
system stress into i=1. . . ,N contributions ��ab�i associated
with atomic sites subject to the constraint

�ab =
1

N
�
i=1

N

��ab�i. �1�

The quantities ��ab�i are called the atomic-site stress tensor
elements, following Maeda and Takeuchi.29 Because a-Si is
an isotropic material, the results of mechanical deformation
simulations are conveniently stated in terms of the pressure p
and deviatoric �̄ components of the stress tensor �.20 These
components are defined as

p��� = − 1
3 tr��� �2a�

�̄��� = �� − 1
3 tr���I� , �2b�

where tr stands for the tensor trace and I for the identity
tensor. Deviatoric stress accounts for all shearing stresses
and excludes all dilatational stress components. Both pres-
sure and deviatoric stress can be computed for the system-
wide stress tensor as well as for all atomic-site stress tensors.
Although system-wide p and �ab are averages over the vol-
ume of corresponding atomic-site quantities, however, the
system-wide deviatoric stress is not the average over the vol-
ume of atomic-site deviatoric stresses. Rather, it is the devia-
toric component of the volume average atomic-site stress
tensors. Deviatoric strain �̄ is computed from the strain ten-
sor � analogously to deviatoric stress.

Previous studies9,10 of mechanisms of structure transfor-
mations in a-Si for phenomena other than plastic flow reveal
the importance of developing appropriate methods of “pat-
tern recognition” to extract recurring features from large sets
of events. Certain such methods tailored to the needs of stud-
ies of stress-induced inelastic deformation have made their
appearance in work on dry foams30 and silica glass.31 Several
pattern recognition approaches have been developed specifi-
cally for the work presented here and will be described as
they arise in the following sections.

III. COMPARISON OF PLASTIC DEFORMATION BY MD
AND PEM

It was claimed in Sec. II that the method of PEM is pref-
erable to finite-temperature MD simulation as a means of
studying the mechanisms of inelastic relaxation in a-Si. The
constant volume deformation behavior found previously by
MD simulation1,2 was therefore compared to effectively
zero-temperature constant volume deformation behavior as
simulated by PEM. The four series of configurations gener-
ated by constant volume deformation using MD were used as
points of reference for the PEM simulations carried out af-
terward: every configuration in each series was brought to its
closest equilibrium configuration by setting all of its atomic
velocities to zero �effectively removing all thermal motion�
and bringing the system potential energy to its nearest local
minimum by relaxing it with respect to the atomic positions.
A particular configuration was then chosen from each of the
four series as a starting point for deformation using PEM
simulation. In order to decrease the computation costs in the
relatively uninteresting regime of “elasticlike” deformation
�amorphous solids have no true elastic limit, but show iso-
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lated inelastic relaxations separated by regions of reversible
deformation behavior even at low stress levels3,32�, these ini-
tial structures were chosen from among highly strained con-
figurations in each of the four series generated by MD simu-
lation.

Figure 1 compares the mechanical behavior of a-Si when
deformed plastically at constant volume by MD at T
=300 K and by PEM. The changes in pressure �Fig. 1�b�� as
well as the variations of liquidlike mass fraction �1,2 �Fig.
1�c�� exhibit closely similar trends for the two simulation
methods, suggesting that the same mechanisms are respon-
sible for plasticity in both cases. Finite temperature deforma-
tion using MD, however, exhibits a markedly decreased level
of flow stress �Fig. 1�a�� when compared to the PEM
case.33,34 This effect has been attributed before to tempera-
ture dependence of the elastic moduli and thermal activation
of the atomic rearrangements that lead to plasticity,33 but has
not been found to alter the mechanism of stress relaxation
itself.

IV. DISCRETE STRESS RELAXATIONS AS THE SOURCE
OF PLASTIC FLOW IN a-Si

Closer inspection of a section of a typical stress-strain
curve obtained using PEM �presented in Fig. 2� reveals that
it is composed of regions of smooth, reversible variation of
stress separated by sudden isolated, discrete, and irreversible
stress relaxations, each occurring at a well-defined mechani-
cal threshold stress �Figs. 2�a� and 2�b��. As in the case of
glassy polymers32 and metallic glasses,35,36 such irreversible
stress relaxations are the source of inelastic behavior in a-Si.
The ensemble average of large numbers of these events is
responsible for the apparently smooth overall plastic defor-
mation behavior of large samples of a given material. Figure
2�c� shows that the largest changes in liquidlike mass frac-
tion � coincide with the largest stress relaxations. Neverthe-
less, some fluctuations in � do occur in regions of reversible
stress variation, indicating that although changes in the na-
ture of atomic environments are induced primarily by inelas-
tic stress relaxations, they can also result from some elastic
flexing of bond angles.

A total of 4201 discrete stress relaxations were observed
in the course of the four series of PEM deformation simula-
tions summarized in Fig. 1. This set of stress relaxations
forms the basis for the analyses presented in this and subse-
quent sections. These analyses always yielded the same re-
sults regardless of whether the stress relaxations in the four
deformation runs were analyzed separately or together. The
reason for this lack of differentiation among the four simu-
lation runs will be addressed in Sec. VII.

The intensity of each relaxation can be described by find-
ing its stress increment tensor, defined as

�� = � f − �i, �3�

where �i denotes the system stress tensor at onset and � f at
completion of the relaxation. The pressure and deviatoric
components of �� associated with the 4201 observed events
can be computed as described in Sec. II. The pressure
components of the stress relaxation increment tensors

FIG. 1. These figures show the variations of �a� the deviatoric
stress �̄���, �b� pressure p���, and �c� mass fraction of liquidlike
atomic environments � as functions of total externally applied de-
viatoric strain �̄��� for four a-Si systems of differing densities un-
dergoing large-strain plastic flow under constant volume. Variations
in p��� and � show similar trends for both PEM simulations �large
markers� and MD at T=300 K �Refs. 1 and 2� �small markers�
while �̄��� is elevated in the PEM case. The data series in �a� all
begin at the origin, but have been offset in increments of 1.5 GPa
for clarity.
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were distributed symmetrically about zero. The normal-
ized distribution of their absolute values can be des-
cribed as a power law with the approximate form
0.0141��p����� /37.76 GPa��−1.28±0.05�. The normalized distri-
bution of deviatoric stress-relaxation increments can be de-
scribed as a power law with the approximate form
0.0162��̄���� /37.76 GPa��−1.29±0.04�. Here 37.76 GPa is the
approximate decohesion stress for SW Si obtained by dimen-
sional analysis from the characteristic energy and length of
the SW potential.11

The intensity of internal structure change accompanying
every stress relaxation can be additionally characterized by
the number of atomic environments whose character changed
during the relaxation from liquidlike to solidlike or vice
versa. This quantity will be called �. Although the pressure
increments p���� and � show no recognizable correlation,
the deviatoric stress increments �̄���� and � are directly
correlated as shown in Fig. 3. This finding indicates that, in
amorphous Si, every unit of stress relaxation is accompanied
by a characteristic increment of internal structure change.
Furthermore, since the number of environment changes only
correlates to the deviatoric stress increment and not the pres-
sure increment, it can be concluded that internal structure
changes in a-Si during discrete stress relaxations are shear-
induced.

No correlation was found between the mechanical thresh-
old stress �i at onset of relaxations and p����, �̄����, or �.
The intimate details of structure changes that accompany dis-
crete stress relaxations, however, are a means of studying the
mechanisms of plastic flow in a-Si, whereas the conditions at

the mechanical thresholds preceding these relaxations can
elucidate the local yielding criteria at onset of atomic rear-
rangements. These mechanisms and onset conditions are ana-
lyzed in detail in the following sections.

V. IDENTIFICATION OF REGIONS TRANSFORMING
INELASTICALLY DURING STRESS RELAXATIONS

Every discrete stress relaxation event in PEM deformation
simulations is accompanied by an internal structure rear-
rangement accomplished through the relative displacements
of atoms. Some of these relative position changes are large
and indicate a local inelastic transformation of atomic struc-
ture. Others are small and can be considered elastic. Conse-
quently, the overall behavior of an a-Si system undergoing
stress relaxation can be viewed as the composite response of
an inelastically transforming inclusion and an elastically de-
forming matrix that surrounds the inclusion, much like in the
case of martensitic shear transformations. To identify the part
of an a-Si system that undergoes an inelastic atomic structure
transformation during a stress relaxation means simply to
distinguish between the part whose deformation can be de-
scribed as approximately elastic and the part whose deforma-
tion cannot be described in that way. The elastically deform-
ing part of the system is identified as matrix material and is
expected to be primarily outside the transforming cluster.
The complement to the elastically deforming part is called
the inelastically transforming inclusion. This description of
the composite response of a system to a localized inelastic
structure transformation is the same as the basic setting of
Eshelby’s inclusion problem.37

Previous studies have observed that structure rearrange-
ments accompanying stress relaxations are clustered into
well-localized regions and can involve relatively few6,38,39 or
many32,36 participating atoms, depending on the bonding and
size of the system under consideration as well as the loading
conditions. Many of these studies identified the regions un-
dergoing structure transformations by making use of strain

FIG. 2. Variations of �a� deviatoric stress �̄���, �b� pressure
p���, and �c� mass fraction of liquidlike atomic environments � as
functions of total externally applied deviatoric strain �̄��� over a
typical section of a PEM plastic deformation simulation are shown
above. The stress-strain plots are composed of regions of smooth
reversible deformation �denoted by dots� punctuated by discrete ir-
reversible stress relaxations �vertical lines�, each occurring at a
well-defined threshold stress. The largest changes in � coincide
with the largest stress relaxations. Nevertheless, some fluctuations
in � do occur in regions of reversible stress variation. Data for this
figure were obtained by enlarging the plots shown in Figs. 1�a�–1�c�
for the a-Si system with � /�0=1.0694 in the range of total devia-
toric strain presented above.

FIG. 3. The number � of atomic environments whose character
changes during a stress relaxation �from liquidlike to solidlike or
vice versa� is directly correlated to its deviatoric component �̄����.
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measures appropriately generalized to individual atomic
environments40–42 to locate centers of high-intensity non-
affine atomic displacements. Because strain measures by
themselves do not differentiate between plastic strains occur-
ring in a transforming inclusion and compatibility-induced
elastic strains in the surrounding matrix, however, this ap-
proach ignores the physical basis for making the matrix-
inclusion distinction. As a result, strain measure techniques
can identify elastically deforming material in the proximity
of an inelastically transformaing inclusion as part of that in-
clusion simply because the elastic strains there are large.
This study uses a method that makes no recourse to strain
measures for recognizing inelastically transforming
inclusions.

Intuitively, a material is understood to behave elastically
if increments in its state of deformation produce increments
of the corresponding forces in linear �or nearly linear� pro-
portion to the deformation increments themselves. In a con-
tinuum setting, this intuition can be stated as the linear de-
pendence of stresses on strain increments

� f = �i + C���� . �4�

Here � f and �i are the final and initial stress states, �� is a
strain increment tensor, and C is the tensor of linear elastic
constants. In an atomistic setting, however, all degrees of
freedom are discrete, making the determination of physically
meaningful atomic-site strain increments and elastic con-
stants inconvenient. It is far more expedient to restate the
intuitive relation in Eq. �4� using quantities that are more
natural in the discrete atomic setting. Consider two
configurations—initial and final—of an atomic system under
periodic boundary conditions. If the atomic positions in these
configurations differ, but the shapes of their simulation cells
are identical, then Eq. �4� can be restated as

f f = fi + �− H� · ��d� . �5�

In expression �5� the force vectors f f and fi take the place of
final and initial stress states, relative displacements �d play
the role of the strain increment tensor, and the negative of the
Hessian matrix H �i.e., the matrix of second derivatives of
the system potential with respect to atomic positions� plays
the role of the elastic constants. More generally, if in addition
to having different atomic positions, the two atomic configu-
rations also have simulation cells whose shapes differ by a
strain increment tensor ��, then Eq. �5� can be restated as

f f = fi + �− H� · ��d� +
�fi

��ab
· ��ab. �6�

The quantities �fi /��ab are the direct variations of forces on
atoms fi with variations in the strain components �ab. These
force variations are calculable analytically as derivatives of
the total system potential, much like the components of H.
The quantities ��ab are the components of the strain incre-
ment tensor ��. Summation over repeated indices is implied.
For a system in three dimensions consisting of N atoms, the
force, displacement, and force variation vectors
�f f , fi ,�d ,�fi /��ab� in Eq. �6� have 3N components while the
Hessian matrix H has 3N�3N components.

If a system undergoes a deformation that is not purely
linear elastic, then the total forces on individual atoms in its
final configuration can be decomposed into a linear elastic
contribution, calculable by Eq. �6�, and some excess force
increment �f

f f
total = f f

elastic + �f . �7�

Identifying f f
elastic with f f in expression �6�, the force devia-

tion �f can be expressed as

�f = f f
total − f f

elastic = �f f
total − fi� + H · ��d� −

�fi

��ab
· ��ab.

�8�

The final forces on atoms in a discrete system that has un-
dergone purely linear elastic deformation would be exactly
predicted by Eq. �6�. By construction the force deviation �f
computed for such a case using expression �8� would there-
fore be zero. It would be nonzero for a system that under-
went deformation that was not purely linear elastic.

Thus far, the force deviation �f for a deforming system
was considered as a complete 3N-component vector. If the
components of the force deviation vector are considered
separately, however, they can be used to distinguish between
a linear elastically deforming matrix and inelastically trans-
forming inclusion. If the environment of an atom undergoes
an essentially linear elastic deformation, the three compo-
nents �x, y, and z� of the force deviation �f corresponding to
that atom will be nearly zero. Meanwhile, if the atomic en-
vironment in question deforms in a way that departs strongly
from linear elasticity, these force deviation components will
be large. For the environment of any atom k, therefore, a
measure of deviation from linear elastic deformation can be
defined as

	k =
���f�k,x

2 + ��f�k,y
2 + ��f�k,z

2

��f�
, �9�

where ��f�k,x is the x component on atom k of the complete
force deviation vector �f and

��f� = ��a=1

3N
��f�a

2

is simply the norm of �f. Once calculated, the atomic mea-
sures of deviation from linear elasticity 	k are sorted in de-
scending order. In this study, sorting was performed using
the SLATEC implementation of DPSORT43 �available on
Netlib25�. Then the number n of atoms in an inelastically
transforming inclusion is defined by

��
j=1

n

	k�j�
2 
 0.95, �10�

where k�j� denotes the atom k corresponding to the jth posi-
tion in the sorted queue of deviation measures 	k.

In other words, the procedure above identifies the envi-
ronments of atoms with 	k�0 as undergoing linear elastic
deformation and therefore considers them part of the elasti-
cally deforming matrix. The inelastically transforming inclu-
sion is the complement of the elastically deforming matrix. It
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is composed of the smallest number of atoms necessary to
account for at least 95% of the norm of the force deviation
vector �f. The fact that n is indeed the smallest number of
atoms necessary to do so is assured by counting the atoms
with the largest contribution to the norm of the force devia-
tion first in the summation in Eq. �10�. The specific atoms
forming the inclusion are simply the first n atoms from the
sorted queue k�j�. The atoms comprising the elastically de-
forming matrix are then the remaining �N−n� atoms in the
queue. It should be emphasized that the distinction between
matrix and inclusion based on the above analysis is inher-
ently approximate. In particular, the cutoff in Eq. �10� can be
chosen larger or smaller, yielding more or less conservative
estimates of the extent of inelastically transforming inclu-
sions, respectively. It has been found, however, that the con-
clusions from the analyses to be presented below are unaf-
fected by varying this cutoff between 0.90 and 0.99,
indicating that they are robust with respect to the chosen
level of approximation.

The method described above was used to identify and
analyze the inelastically transforming inclusions associated
with the 4201 discrete stress-relaxation events observed in
the course of PEM deformation simulations �Sec. III�. The
atomic arrangements at the mechanical thresholds �just be-
fore relaxation� and at completion of the ensuing stress re-
laxations served as initial and final system configurations,
respectively. Both configurations are by construction in equi-
librium, so fi= f f

total=0 in Eq. �8�. Furthermore, the shapes of
their simulation cells differ by �� equal to one externally
applied volume-conserving system strain increment, as de-
scribed in Sec. II. Figure 4 shows visualizations of two rep-
resentative transforming inclusions found by the matrix-
inclusion analysis. One of them �Fig. 4�a�� is composed of 12
atoms grouped into one cluster. The other one �Fig. 4�b�� is
larger at 154 atoms and appears to consist primarily of two
separate atomic clusters �and a handful of isolated atoms�.
The atomic clusters observed in both inclusions are well lo-
calized, as can be concluded by observing that they are con-
fined to relatively compact regions within the simulation cell.

VI. INELASTIC TRANSFORMATIONS AS
AUTOCATALYTIC AVALANCHES OF UNIT SHEARING

EVENTS

The sizes of the 4201 inelastically transforming inclu-
sions, defined as the number n of atoms composing each one,

were distributed according to a power law of approximate
form 7.64�n�−1.96±0.09� and ranged between 3 and just over
600 atoms. Meanwhile, Fig. 3 shows that the number � of
atomic environment changes during stress relaxations
reaches a maximum of almost 700. This observation prompts
an investigation of whether all transitions of atomic environ-
ments between the solidlike and liquidlike types occur as a
result of inelastic rearrangement or if some of them are
caused by flexing of bond angles in the elastically deforming
matrix, as suggested in Sec. III. The exact proportion of
atomic environment transitions taking place elastically and
inelastically can be found by plotting the number �inc of such
transitions taking place within the nearest-neighbor shells of
atoms comprising inelastically transforming inclusions
against the total number � occurring during stress relax-
ations, as shown in Fig. 5. From the slope of the trend, it can
be discerned that about 40% of such transitions occur due to
inelastic transformation and the rest due to elastic flexing.
This conclusion is not materially affected by varying the cut-
off chosen in Eq. �10� for finding the atoms comprising in-
elastically transforming inclusions. Figure 6 visualizes the
location of atomic environments that undergo a change in
their type and are not in the nearest-neighbor shells of atoms
comprising the inelastically transforming inclusion for the
two inclusions shown in Fig. 4.

More importantly, however, the sizes of transforming in-
clusions n exhibited a similar correlation to the pressure and
deviatoric components of the stress-relaxation tensor p����
and �̄����, as did the number � of atomic environment
changes during the stress relaxations �Fig. 3�. Specifically,
p���� and n show no recognizable correlation. Meanwhile,
Fig. 7 demonstrates that �̄���� and n are roughly linearly
related, suggesting there exists for amorphous Si a character-
istic increment of stress relaxation per unit volume, i.e., a
“unit” inelastic deformation event. Furthermore, since inclu-

FIG. 4. Visualizations of two typical inelastically transforming
inclusions: one consisting of 12 atoms in a single cluster �a�, the
other of 154 atoms grouped mainly into two separate clusters �b�.

FIG. 5. The numbers �inc of atomic environment transitions
�from liquidlike to solidlike and vice versa� that take place within
the nearest-neighbor shells of atoms comprising inelastically trans-
forming inclusions are plotted against the total numbers � occurring
during stress relaxations. It can be concluded that about 40% of
such transitions occur due to inelastic transformation and the rest
due to elastic flexing.
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sion sizes only correlate to the deviatoric component of
stress increments and not the pressure component, such a
unit event can be characterized as a shear transformation
with an uncorrelated dilatational component.

This conclusion is further reinforced by examination of
the evolution of the transforming inclusions during the pro-
cess of structure relaxation �carried out by potential energy
minimization, as described in Sec. II�. This process begins
just beyond mechanical threshold of a given stress relax-
ation, proceeds in an unconstrained manner through a series
of nonequilibrium states, and ends with the eventual system-
wide equilibration of the atomic configuration in a local
potential-energy minimum. Because it does not take account
of inertial effects, this method of examining stress relax-
ations only yields information concerning the chronological
ordering of events leading to the growth of transforming in-
clusions and not the relative time scales on which these
events occur. Such examination is carried out for the two
representative transforming inclusions visualized in Figs. 4
and 6. The progress of the relaxation procedure is gauged by
finding the norm of the vector of atomic displacements �d
from the reference configuration at the beginning of the re-

laxation to the current configuration at any given stage of the
relaxation. The increasing size of the inelastically transform-
ing inclusion is monitored at every step of the relaxation
process using the matrix-inclusion analysis described in Sec.
V with the system configuration at the mechanical threshold
as a reference state. Quantities such as potential energy, sys-
tem pressure, and deviatoric stress, as well as total number �
of atomic environment transitions are also monitored.

Figure 8�a� shows that the inelastic transformation of the
small inclusion visualized in Figs. 4�a� and 6�a� proceeds in
a single spurt associated with a sudden decrease in system
potential energy and deviatoric stress as well as an increase
in inclusion size and the total number of atomic environ-
ments that underwent structure transitions. Figure 8�b� dem-
onstrates that similar intermittent spurts occur during the in-
elastic transformation of the larger inclusion. In both cases,
the system deviatoric stress is progressively relaxed as the
extent of elastically transformed material increases, confirm-
ing the hypothesis of a characteristic increment of shear
stress relaxation per unit volume of transformed material.

FIG. 6. Visualizations of atomic environment transitions for the
two typical inelastically transforming inclusions exhibited in Fig. 4.
The dark atoms are those that constitute the inelastically transform-
ing inclusions themselves. The light atoms denote environments
that changed their type �from liquidlike to solidlike or vice versa�,
but are not part of the nearest-neighbor shells of the atoms that
constitute the inclusions.

FIG. 7. The deviatoric component �̄���� is roughly linearly
related to the inclusion size n.

FIG. 8. The variations of system potential-energy increment per
atom ��V /N�, system pressure p���, and deviatoric stress �̄���,
number of atomic environment changes �, as well as size n of the
inelastically transforming inclusion as functions of the norm of the
atomic displacement vector ��d� for �a� the small relaxation visual-
ized in Figs. 4�a� and �b� the large relaxation visualized in Fig. 4�b�.
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Furthermore, visualizations �in Fig. 9� of the aggregation of
inelastically transformed regions in the case of the larger of
the two inclusions indicate that successive transformation
generally occurs in the vicinity of previously transformed
material. This observation suggests that inelastic relaxation
in a-Si is an autocatalytic avalanche of unit shear relaxations
that continues as long as a local yielding criterion is satisfied.
Since inelastic relaxation can change the local distribution of
stresses and cause elastically induced changes in the type of
atomic environments throughout the neighboring matrix ma-
terial, inelastic transformations can also initiate in atomic
clusters that are close to but disconnected from the body of
the cluster that originally underwent inelastic transformation.
The details of the local yielding phenomenon responsible for
the local onset of inelastic transformation are investigated
next.

VII. TRIGGERING INCLUSIONS AS A MEANS OF
STUDYING LOCALIZED YIELDING IN a-Si

One way to investigate the character of the local yielding
condition proposed in Sec. VI is to recognize that each of the

autocatalytic avalanches of unit events that account for the
observed stress relaxations must have been initiated or “trig-
gered” when such a condition was satisfied. It should there-
fore be possible to find the characteristics of local yielding
by investigating the onset of discrete relaxations. In agree-
ment with previous findings in model metallic glasses,39,44

the onset of each discrete relaxation was accompanied by the
vanishing of the stiffness of one of the normal modes of the
complete Hessian matrix for the a-Si system, as illustrated in
Fig. 10 �the method of finding these stiffnesses was de-
scribed in Sec. II�. This “soft-mode” phenomenon is charac-
teristic of steady-state bifurcations of equilibrium paths45,46

and plays an important role in the study of ferroelectric and
antiferroelectric phase transitions47 as well as martensitic
transformations.48 Figure 11 shows that the decrease of suc-
cessive normal-mode stiffnesses below zero and their even-
tual increase back toward positive values also accompanies
the progress of inelastic transformations themselves. The
consecutive vanishing of these normal-mode stiffnesses cor-
responds to the repetitive onset of local yielding during the
autocatalytic avalanches of unit events in the a-Si systems
after the initial triggering of a stress relaxation. These suc-
cessive onset phenomena could also serve as a basis for the
study of local yielding in a-Si, but it is easier to only con-
sider the initial triggering of stress relaxations instead.

The nature of the steady-state bifurcations accompanying
triggering of stress relaxations can be ascertained by evalu-
ating two derivatives of the potential energy of the complete
a-Si system at the mechanical threshold stress. The first is V1�,
the mixed derivative of the potential energy with respect to
displacements along the normal mode of vanishing stiffness
or “critical eigenmode” ��CE�, indicated by subscript 1� and
externally applied strain increment value �Sec. II, indicated
by prime�. The second is V111, the third derivative of the
system potential energy with respect to displacements along
the CE. In particular, if both V1� and V111 are nonzero, the
bifurcation is of the saddle-node type and describes the van-

FIG. 9. Visualizations of the evolution of the inelastically trans-
forming inclusion shown in Fig. 4�b� and analyzed in Fig. 8�b�. The
norms of the atomic displacement vector ��d� in each frame are �a�
0.049 nm, �b� 0.103 nm, �c� 0.392 nm, �d� 0.593 nm, �e� 0.629 nm,
and �f� 0.705 nm.

FIG. 10. The onset of every discrete stress relaxation is accom-
panied by the vanishing of the stiffness of one of the normal modes
of the complete Hessian matrix for the a-Si system. Data for this
figure were obtained from PEM deformation of the a-Si system with
� /�0=1.0694 in the range of total deviatoric stress presented above.
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ishing of a stable equilibrium path as it merges with an un-
stable equilibrium path. The sudden and irreversible relax-
ation of stress in a system that has been strained
infinitesimally beyond its mechanical threshold is a direct
consequence of the finite atomic displacements necessary for
the system to attain some distant stable equilibrium configu-
ration following the vanishing of the original stable equilib-
rium path at the point of bifurcation. This type of behavior is
often called “snapping” in the study of elastic stability.49

All 4201 stress relaxations observed in the PEM deforma-
tion simulations described in Secs. II–IV satisfied the condi-
tions V1��0 and V111�0 at their onset, confirming that they
were all triggered by a process describable as a saddle-node
bifurcation. This result is to be expected since saddle-node
bifurcations typically occur in systems lacking in any intrin-
sic symmetry or equilibrium configurations.45,46 Unlike crys-
tal lattices, whose intrinsic symmetries induce bifurcations
more complex than those of the saddle-node type,50 a-Si—
much like other atomically disordered solids—does not have
any structural symmetry properties. Interestingly, this lack of

intrinsic ordering has a simplifying effect on the analysis of
the onset of stress relaxations in a-Si insofar as it explains
the exclusive occurrence of saddle-node bifurcations during
deformation.

In Sec. V, it was shown that knowledge of the finite
atomic displacements accompanying stress relaxations can
be used to distinguish between elastically deforming matrix
material and an inelastically transforming inclusion in the
case of each relaxation. A similar analysis can be carried out
at the mechanical threshold preceding a stress relaxation to
find a “triggering inclusion” where local yielding of strained
material initiates. Unlike the transformation process associ-
ated with stress relaxations, however, triggering is described
not by finite displacements of atoms but rather by the infini-
tesimal variations in their positions included in the CE. The
framework for distinguishing between matrix and inclusion
material described in Sec. V can still be applied if the total
forces in the “final” configuration �Eq. �7�� are expressed as
a Taylor expansion around the initial configuration:

f f
total = fi + �− H� · d + 1

2 �− t� + ¯ . �11�

Here d is the 3N-component vector of displacement incre-
ments and H the Hessian �matrix of second derivates of the
system potential energy with respect to these displacements�,
as before. t is the quadratic contribution to the expansion in
Eq. �11�. It is a vector quantity that depends on the third
derivatives of the system potential energy with respect to
displacement as

tk =
�3V

�xa�xb�xk
dadb. �12�

where tk is the kth component of the vector t and da is the ath
component of the displacement increment vector d. There is
no contribution in Eq. �11� from terms of the type �fi /��ab
�unlike in Eq. �6�� because triggering is assumed to occur at
a fixed shape of the simulation cell. Summation over re-
peated indices is implied in both Eqs. �11� and �12�.

Applying the definition in Eq. �8� to the description of
force variations during triggering in Eq. �11� gives

�f � − 1
2 t �13�

if the expansion for forces in Eq. �11� is truncated after the
quadratic term.

In the case of the CE, which describes the kinematics of
triggering, the vector of infinitesimal displacement incre-
ments can be written

d = sê , �14�

where ê is the unit CE vector and s is a scalar displacement
parameter. Equations �13� and �14� therefore give

��f�k � − s2 �3V

�xa�xb�xk
eaeb = − s2V11k, �15�

where −V11k are the components of the vector of second
derivatives of forces on individual atoms with respect to dis-
placements along the CE �denoted by subscript 1, as before�.
Knowing the shape of the CE, V11k can be determined ana-
lytically from the form of the empirical potential governing

FIG. 11. The decrease of successive normal-mode stiffnesses
below zero and their eventual increase back toward positive values
accompanies the progress of inelastic transformations. Here, �a� and
�b� correspond to the small and large relaxations, respectively, ana-
lyzed in Fig. 8 and visualized in Fig. 4.

AUTOCATALYTIC AVALANCHES OF UNIT INELASTIC… PHYSICAL REVIEW B 72, 245206 �2005�

245206-9



the system. Alternatively, they can also be found by evaluat-
ing numerically the second derivatives of forces on atoms
along the CE. The latter method was used in this study.

The force deviations in Eq. �15� describe the departure
from the predictions of linear elasticity in the case of the
infinitesimal displacements associated with triggering. They
can be used in conjunction with Eqs. �9� and �10� to define a
triggering cluster for the onset of every stress-relaxation
event. These clusters are always localized in the vicinity of
atomic sites that undergo the largest relative displacements,
as quantified by the components of the unit CE vector ê. The
degree of localization exhibited by V11k, however, is always
significantly greater than that exhibited by ê because the lat-
ter, in addition to containing information about the atomic
cluster undergoing localized yielding, also characterizes the
compatibility-induced elastic flexing of the surrounding ma-
trix material.

In light of the above development, a clear distinction must
be made between these triggering clusters and the inelasti-
cally transforming inclusions defined in Sec. V. The latter
characterizes a finite and irreversible atomic rearrangement,
whereas the former merely probes nonlinear departures from
linear elastic behavior under infinitesimal displacement, in
particular their spatial localization. These departures, how-
ever, carry a specific meaning in the case of triggering of
stress relaxations. At the mechanical threshold, the compo-
nent of the return force against displacements along the CE
that is linear in those displacements vanishes and the system
can undergo a finite atomic rearrangement given even an
infinitesimal increment in loading. The largest of the devia-
tions from linear elasticity Vi11 in this situation specify the
fastest growing force components that initiate this finite
atomic rearrangement. The atomic sites with the highest
measure of deviation from linear elasticity 	k �Eq. �9�� indi-
cate the location where it nucleates.

Figure 12 shows the triggering clusters found by the
above analysis at the mechanical thresholds associated with
the transforming inclusions visualized in Figs. 4 and 6. The
triggering clusters are compact and well localized. They con-
sist of 7 and 4 atoms, whereas the corresponding transform-
ing inclusions contain 12 and 154 constituent atoms, respec-
tively. By investigating the onset of the 4201 stress
relaxations found in this study, it was determined that trig-
gering cluster sizes are distributed exponentially with an av-
erage of 7.0±5.2 atoms per inclusion. Furthermore, the sizes
of these clusters are not correlated to the components of the

ensuing stress-relaxation increments or the sizes of the asso-
ciated transforming inclusions, suggesting that all irrevers-
ible stress relaxations, regardless of their magnitude, are trig-
gered in the same way on average.

To determine the local yielding criterion leading to the
onset of stress relaxations, the total stress tensor characteriz-
ing the environment of each triggering cluster is found. This
determination is accomplished by summing up the individual
atomic stress tensors �Sec. II� of all atoms in the triggering
cluster along with their nearest neighbors. The pressure and
deviatoric components of this stress tensor p���� and �̄����
are obtained. The mass fraction � of liquidlike material in
the clusters is also calculated. In about 8.7% of all cases, it is
found that the triggering cluster consists of two or three dis-
tinct atomic subclusters. In such situations, both the stress
state and � are determined separately for each subcluster.

Figure 13 plots average values of the cluster deviatoric
stress as a function of the cluster pressure and �. A clear
quadratic dependence of the deviatoric stress on both quan-
tities confirms the existence of a well-defined microyield sur-
face. As expected,1,2 �Fig. 13�a�� confirms that an increasing
� results in a declining yield stress. It also shows, however,
that for high-enough � this trend reverses and an increasing
yield stress is observed. The minimum yield stress occurs at
about �=0.6. Figure 13�b� shows that the dependence of
yield stress on pressure is relatively less pronounced than the
dependence on �. Minimum yield stresses are achieved at
about zero pressure.

The presence of the well-defined local yielding criterion
shown in Fig. 13 explains why the analyses presented in this
study always give the same results regardless of whether the
stress relaxations in each deformation run are considered
separately or as one set of 4201 events �as claimed in Sec.
IV�. In short, since the properties that govern the relaxations
are the local properties that enter into the local yielding cri-
terion, the overall system pressure, deviatoric stress, and liq-
uidlike mass fractions are irrelevant.

According to the analysis in Sec. VI, inelastic transforma-
tions in a-Si proceed as autocatalytic avalanches of unit in-
elastic shearing events as long as the local yielding criterion
presented in Fig. 13 is satisfied at some location in the sys-
tem. The nature of the unit events comprising these ava-
lanches is clarified in Sec. VIII.

VIII. RECURRING ATOMIC BONDING CHANGES IN
TRIGGERING CLUSTERS

It was argued in Secs. VI and VII that there exists a unit
inelastic structure transformation characteristic of a-Si that is
responsible for stress relaxations as well as their initial trig-
gering. Simple inspection of the structure of triggering clus-
ters �Fig. 12� and subsequent inelastically transforming in-
clusions �Fig. 4�, however, revealed no such readily
identifiable atomic rearrangement. Information concerning
recurring structural and kinematical features at onset of stress
relaxations can nevertheless be obtained by evaluating com-
bined distribution functions over all 4201 triggering clusters.

Bond lengths characteristic of triggering clusters were
found by compiling a histogram of all the collected inter-

FIG. 12. The triggering clusters found at onset of the stress
relaxations associated with the transforming inclusions visualized in
Fig. 4. Cluster �a� consists of seven atoms while �b� consists of four.
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atomic distances present in each triggering cluster. To facili-
tate comparison to the bonding characteristics of bulk a-Si,
this histogram was scaled in the same way as a radial distri-
bution function �RDF� of bulk material is usually scaled.51

Such a structure analysis process yields an “ensemble aver-
age RDF,” plotted in Fig. 14, for material comprising trig-
gering clusters. Since the triggering clusters are compact, it
is not surprising that they contain few atom pairs separated
by distances larger than the second nearest-neighbor distance
in bulk a-Si, as reflected by the vanishing of the ensemble-
averaged RDF at large distances. Their compactness also ex-
plains the common occurrence of nearest-neighbor bonds.
Within the second nearest-neighbor shell, however, the
ensemble-averaged RDF reveals a striking deviation in the
bonding environments of triggering clusters from those of
bulk a-Si. Specifically, the split second nearest-neighbor
peak of bulk a-Si is suppressed, while the bond length cor-
responding to the trough between its two parts is highly over-

represented. This bond length is within the cutoff distance
for direct atomic interaction in the SW potential �1.8 in re-
duced units, i.e., 0.377 nm �Ref. 11��.

In addition to the structural information contained in the
atomic arrangement of each triggering cluster, characteristics
of the kinematics of onset of stress relaxations can be found
by investigating the shape of the normal mode whose stiff-
ness vanishes �i.e., of the “soft mode” or CE�. The relative
atomic displacements contained in the CE at the onset of
each stress relaxation can be used to find the relative changes
in interatomic distances in each triggering cluster according
to the formula

ṙij =
rij,x

rij
�sej,x − sei,x� +

rij,y

rij
�sej,y − s · ei,y� +

rij,z

rij
�sej,z − sei,z� .

�16�

where ej,x is the x component of the displacement of atom j
from the complete unit CE vector ê, rij,x is the x component
of the position vector of atom j with respect to atom i, and ṙij
is the change of distance between the two atoms for displace-
ments along the CE. Each CE is defined to within the arbi-
trary multiplicative constant s, as in Sec. VII �Eq. �14��. For
convenience, this constant is chosen in each case so that the
greatest absolute value of change in interatomic distance in
the triggering cluster is unity, i.e., �ṙij�max=1. After all rela-
tive changes of interatomic distances in each of the 4201
triggering clusters have been computed, the average of their
absolute values is found as a function of the interatomic dis-
tance itself. An analog of the ensemble-averaged RDF is
thereby obtained except that, instead of characterizing the
average density of triggering cluster material at a given in-
teratomic separation, it specifies the average absolute value

FIG. 13. Average dependence of the local deviatoric stress �̄���
of triggering clusters on �a� the liquidlike mass fraction � of those
clusters and �b� their pressure p���. Small dots denote the envelope
of ±1 standard deviation. Both of the dependencies exhibited are
described well by a quadratic fit.

FIG. 14. A radial distribution function �RDF� compiled from
interatomic distances among atoms comprising triggering clusters
�thick line� is compared to a typical RDF for bulk a-Si in a state of
steady flow �thin line�. The two parts of the split second nearest-
neighbor peak observed in bulk a-Si are missing from the triggering
cluster RDF while bond lengths corresponding to the trough be-
tween them are overrepresented.
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of the relative change in interatomic distance as a function of
interatomic separation.

The function described above is presented in Fig. 15. It
shows that the nearest-neighbor bond lengths in triggering
clusters undergo the least relative length change at the onset
of stress relaxations, i.e., they are the stiffest bonds. Mean-
while, the bond lengths corresponding to the trough of the
split second nearest-neighbor peak in bulk a-Si undergo the
most pronounced length changes at the onset of stress relax-
ations: they dominate the kinematics of triggering of internal
structural transformations. To underscore their role in trig-
gering local yielding, these bond lengths shall be given the
suggestive name of instability-producing bonds �IPBs�.
There is a third bond length that undergoes relatively large
length changes at the onset of stress relaxations. It is the
length located between the first and second nearest-neighbor
shells of bulk a-Si, as Fig. 15 shows. This bond, however, is
not commonly present in the triggering clusters �Fig. 14� and
thus is not accorded a role similar to that of the IPBs.

If IPBs are the fundamental structural components of the
unit shearing events responsible for triggering plasticity in
a-Si, then they must interact with their immediate atomic
environments to produce shear strains. In particular, IPB
length changes should induce rearrangements in the nearest-
neighbor shells of the atoms at the IPB endpoints. These
rearrangements must not involve significant displacements of
nearest-neighbor atoms out of their shells since, according to
Fig. 15, nearest-neighbor bond lengths do not change appre-
ciably during the onset of stress relaxations. The rearrange-
ments should therefore amount to the reshuffling of atoms
within the nearest-neighbor shells themselves. For every
nearest neighbor of atoms at IPB endpoints, such reshuffling
can be described by changes in the two angles pictured in
Fig. 16: one an axial rotation ��� and the other a lateral

flexing ���.
To characterize the nearest-neighbor distribution as a

function of lateral flexing angle �, all such angles for all
atoms in the 4201 triggering inclusions that are in the
nearest-neighbor shells of IPB endpoint atoms were found. A
histogram of these lateral flexing angles is presented in Fig.
17�a�. Furthermore, the relative changes of lateral angles �̇ at
onset of stress relaxations can be determined directly from
the shape of the CE, much as relative bond length changes
can be found from the CE using Eq. �16�. For ease of com-

parison to the relative length change of the underlying IPB, �̇
for each atom was multiplied by its �relatively unchanging�
distance to the IPB endpoint upon which it neighbors and
then was divided by the relative length change of the under-
lying IPB �to avoid dividing by numbers close to zero, only
IPBs with absolute values of relative length changes above
0.7 were considered�. The quantities thus determined charac-
terize lateral incremental atomic displacements tangent to
their nearest-neighbor shells per unit length change of the
underlying IPB. Plotting the averages of these relative tan-
gential displacements against the lateral flexing angles at
which they occur yields Fig. 17�b�. Note the similarity in the
analysis described above to the one carried out before on
triggering cluster interatomic distances and their relative
changes. Indeed, Fig. 17�b� is to Fig. 17�a� what Fig. 15 is to
Fig. 14.

Figure 17�a� demonstrates that high concentrations of IPB
endpoint nearest-neighbor atoms occur at lateral angles of
about 47° and 65°. Of these two angles, the one at 47° ex-
hibits the largest relative changes at onset of stress relax-
ations, as indicated in Fig. 17�b�. Figure 17�b� also shows
that changes in lateral angles are generally negatively corre-
lated to the change in length of the underlying IPBs, i.e., �
increases when the underlying IPB length decreases and vice
versa. It would be tempting to think that the nearest-neighbor
atoms of IPB endpoints at lateral angles around 47° and 65°
occur in some characteristic numbers or mutual configura-
tions. No clear evidence, however, of such regularities was
found. The results of the above analysis must be interpreted
as characterizing the structure and kinematics of IPB end-
point nearest-neighbor shells on average with the under-

FIG. 15. The radial distribution of average relative bond-length
changes in triggering clusters at onset of stress relaxations �thick
solid line� is compared to a typical RDF for bulk a-Si in a state of
steady flow �thin line�. The thick dashed lines represent the enve-
lope of ±1 standard deviation. Bond lengths corresponding to the
trough between two parts of the split second nearest-neighbor peak
in a-Si undergo the largest relative length changes at onset of stress
relaxations.

FIG. 16. Since nearest-neighbor bond lengths do not undergo
significant length changes at onset of stress relaxations, the rear-
rangement of atoms in the nearest-neighbor shells of IPB end-
points can be described by changes in the axial angle � and lateral
angle �.
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standing that the environments of specific individual IPBs
may vary. It is not inconceivable that if a more sophisticated
“pattern recognition” scheme than the one described were
applied, a finite catalog of typical atomic configurations sur-
rounding IPB endpoints could be compiled. The compilation
of such a catalog, however, was not attempted in this study.

A similar analysis to the one presented above was carried
out for changes in the axial angles of rotation �, but no
readily recognizable characteristic kinematical behavior of
the nearest neighbors of IPB endpoint atoms was found. Dis-
tributions of nearest-neighbor bond angles in the triggering
clusters as well as of their relative changes were also inves-
tigated, but did not yield any unambiguous insights. Within
the limits of the structure analysis schemes used in this study,
therefore, it can be concluded that the IPBs and the associ-
ated regularities in the nearest-neighbor shells of their end-
point atoms are the only atomic arrangements characteristic
of a-Si material comprising triggering clusters and leading to
onset of local yielding. The number of IPBs per triggering
cluster appears to be proportional to the number of atoms
comprising the cluster, with an average of about 12 IPBs per
cluster.

IX. RECURRING ATOMIC BONDING CHANGES IN
INELASTICALLY TRANSFORMING INCLUSIONS

To confirm that unit plastic events in a-Si consist of shear
transformations involving IPBs and the nearest-neighbor
shells of their endpoints, an analysis analogous to the one
presented above was carried out on the transforming inclu-
sions associated with the stress relaxations �Sec. V� that fol-
low each triggering event. Although the kinematics of trig-
gering clusters is described by the relative incremental
atomic displacements in the CE, during the ensuing stress

relaxations each atom displaces by some finite amount with
respect to all other atoms. Therefore, instead of evaluating
the relative change in interatomic distances as before, the
distance between each pair of atoms in each transforming
inclusion at the onset was compared to the finitely different
distance between the same pair after the stress relaxation had
proceeded to completion. Thus, two interatomic distances are
obtained for every pair of atoms in each inelastically trans-
forming inclusion: one at the onset of the stress relaxation
and one corresponding to the fully equilibrated final configu-
ration. This calculation was performed in transforming inclu-
sions for all 4201 stress relaxations observed in this study.
All of the initial interatomic separations ri collected in this
way can be plotted against the corresponding final separa-
tions rf, yielding a plot of points scattered in the plane.
Points lying close to the diagonal in such a plot denote in-
teratomic distances that do not change appreciably during a
stress relaxation. Those lying below the diagonal correspond
to distances that decrease, whereas those lying above the
diagonal correspond to those that increase. For ease of visu-
alization, a distribution density of these points can be com-
piled and isocontours of this distribution plotted.

Figure 18 shows the result of the analysis described
above. Most interatomic distances do not undergo changes
that commonly recur, as indicated by the fact that the isoc-
ontours are mostly centered on the diagonal. There is only
one exceptional interatomic distance with nearby isolated
off-diagonal isocontours: the distance corresponding to an
IPB length �	0.346-nm, Figs. 14 and 15�. These isocontours
indicate well-defined transitions of bond lengths from just
below the IPB length to just above it, and vice versa. These
transitions therefore correspond to bond-length migration be-
tween the two portions of the split second nearest-neighbor

FIG. 17. The distribution of lateral bond angles � for IPBs in
triggering inclusions shows concentrations of atoms at 47° and 65°
�a�. The corresponding average lateral displacements �see Sec. VIII
for definition� are negatively correlated to the length change of the
underlying IPB and are greatest for atoms at lateral angles of about
47° �b�. The dashed lines in �b� represent the envelope of ±1 stan-
dard deviation.

FIG. 18. �Color online� Plotting isocontours of distributions of
initial vs final interatomic distances for atoms comprising trans-
forming inclusions of material that deforms inelastically during
stress relaxations reveals recurring bond-length changes. Most iso-
contours center on the diagonal, indicating bond lengths that do not
change on average. The clearest departure from this trend occurs in
the region shown by the intersecting dashed lines and indicates
bond-length transitions across the IPB length �	0.346 nm�.
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peak in the RDF of bulk a-Si �Fig. 14� during discrete stress
relaxations.

In addition to the behavior close to the IPB length, Fig. 18
indicates some activity in the nearest-neighbor shell. It is
immediately clear, however, that this activity is mostly con-
fined to the nearest-neighbor shell itself, i.e., that during a
stress relaxation nearest-neighbor bonds are not commonly
broken or formed in the inelastically transforming inclusion.
This analysis does not imply that isolated bond breaking or
reforming events do not take place, but rather that they are
not characteristically recurring on average and therefore do
not play a role of any prominence compared to that of tran-
sitions across the IPB length.

Changes in lateral angles of nearest neighbors of endpoint
atoms �Fig. 16� of bond lengths that undergo a transition
across the IPB length �Fig. 18� can be studied analogously to
interatomic distance changes. For every atom in the nearest-
neighbor shell of an endpoint of a bond length that crosses
the IPB length, the initial and final values of the lateral angle
�i and � f are computed. Isocontours of the distribution den-
sity of initial versus final lateral angle values are plotted in
Fig. 19. It is evident that the only lateral angles that undergo
transitions that recur on average are the same ones that ex-
hibit the largest changes at the onset of stress relaxations
�Fig. 17�b��, namely, 	47°. Finally, Fig. 20 plots the incre-
ments in lateral angles against the increments in the under-
lying bond-length changes across the IPB length, showing
that changes in lateral angles and the underlying bond
lengths are negatively correlated, just as they are at onset of
stress relaxations �Fig. 17�b��.

This analysis of recurring structure changes in transform-
ing inclusions confirms that bond-length transitions in the
second nearest-neighbor shell across the IPB length and the

associated distortions in their immediate atomic environ-
ments are the dominant features of the fundamental unit plas-
tic events responsible for irreversible stress relaxations ob-
served in this study. Figure 21 shows visualizations of two
typical atomic configurations associated with these recurring
unit events in the transforming inclusions. The number of
such events in every stress relaxation was found to be lin-
early proportional to the size of the associated inelastically
transforming inclusion with on average seven events for ev-
ery ten inclusion atoms.

X. DISCUSSION AND CONNECTION WITH
EXPERIMENTAL FINDINGS

A study of the mechanisms of stress relaxation in a-Si was
presented by Witvrouw and Spaepen in their investigation of
viscoelasticity in a-Si.52 Viscoelasticity and large-strain plas-
ticity in a-Si may not at first glance appear to be related, but
the results presented in the present study indicate the connec-
tion: regardless of the extent of inelastic stress relaxation, the
underlying structure transformation is describable as an au-
tocatalytic avalanche of unit events. Viscoelasticity therefore
involves only small spatially isolated avalanches of such
events triggered at low externally applied stresses. Mean-
while, fully developed plasticity involves large avalanches,
triggered at the steady state flow stress, that repeatedly per-
colate through the entire system in close proximity to each
other. The characteristics of the local yielding phenomenon
that leads to the onset of relaxation, however, were found to
be unrelated to the extent of the relaxation or the stress at
which it was triggered. As was indicated in Sec. VIII, every
triggering cluster contained on average 12 IPBs: bond
lengths characteristic of the transition state of the structural
components undergoing unit plastic transformations. Mean-

FIG. 19. �Color online� Plotting isocontours of distributions of
initial vs final values of lateral angles � �Fig. 16� for atoms in the
nearest-neighbor shells of endpoints of bonds that transition across
the IPB length �Fig. 18� reveals recurring lateral-angle changes in
the inelastically transforming inclusions. Most isocontours center
on the diagonal, indicating angles that do not change on average.
The clearest departure from this trend occurs in the region shown
by the intersecting dashed lines and indicates lateral-angle transi-
tions across the lateral angle of 	47°.

FIG. 20. �Color online� Plotting isocontours of distributions of
lateral-angle changes �� f −�i� against changes in length �rf −ri� of
the underlying bond �all of which undergo a transition across the
IPB length, as indicated in Fig. 18� shows that the two are nega-
tively correlated. This result agrees with the findings for kinematics
of IPB environments in triggering inclusions at onset of stress re-
laxations �Fig. 17�b��.
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while, Witvrouw and Spaepen concluded based on their
study that activation of every viscoelastic relaxation requires
the presence of more than one structural component, such as
a bonding environment.

More information on the mechanisms of viscoelastic re-
laxation was obtained by Liu et al. in internal friction
studies.53 They found that the internal friction of a-Si could
be reduced by hydrogenating the material by an atomic frac-
tion of hydrogen of up to 1%, i.e., well in excess of the
0.07% hydrogen atomic fraction needed to passivate dan-
gling bonds. Despite uncertainties concerning distribution of
hydrogen in the sample,54 this finding suggests that the
atomic configurations responsible for local relaxations in
a-Si may have enough common structural features to possess
the chemical specificity to preferentially bond hydrogen. Un-
fortunately, no simulation studies have addressed the ques-
tion of the effect of hydrogenation of a-Si on its susceptibil-
ity to undergo inelastic stress relaxations.

It is clear that neither of the experiments discussed above
provides a definitive description of the geometry of the bond-
ing environments responsible for inelastic relaxation in a-Si.
Because, at present, individual atomic environments in amor-
phous materials cannot be directly imaged in the laboratory,
however, no single experimental finding will likely suffice.
Computer modeling will therefore continue to play a key role

in interpreting the experimental results, particularly by pro-
viding the basis for constructing models of homogenized be-
havior that take into account relevant details of the atomic
configuration of amorphous materials as well as the dynam-
ics of structural relaxations in them. Examples of such
models—initially intended for metallic glasses—are the ones
provided by Bulatov and Argon2 as well as Falk et al.55

In the case of a-Si, analysis of the onset of stress relax-
ations and of the subsequent relaxation processes has shown
that the transition state of a grouping of atoms undergoing a
unit plastic event is geometrically characterized by the IPB
length. Developing a complete theory of structure transitions
for these groupings of atoms along the lines of that used to
model the kinetics of plasticity in crystals,56 however, re-
quires a description of the properties of these groupings of
atoms in their unloaded, stress-free state, both before and
after a transition has taken place. Attempts at such a descrip-
tion, however, have not yielded satisfactory results so far. An
alternate theoretical approach might focus on trying to un-
derstand the power-law distributions found in Secs. IV and
VI in terms of possible connections to self-organized
criticality.57 Such an approach, however, was not pursued in
this study.

Finally, although a-Si has special chemically specific fea-
tures and is a pure substance, it shares many physical behav-
iors with other directionally bonded materials such as SiO2
and other unmodified inorganic glasses.58 The mechanistic
features of its plastic relaxations are therefore likely to be
present in other directionally bonded pure materials. Indeed,
the bond-length transitions across the IPB length described
in this study bear a striking resemblance to the two-state
mechanism of viscoelastic relaxation59 proposed previously
by Stranka for SiO2 based on ultrasonic attenuation
measurements.60

XI. CONCLUSION

The mechanisms of low-temperature plasticity in SW a-Si
were investigated by external straining followed by relax-
ation using potential-energy minimization �PEM�. Localized
internal atomic rearrangements were found to accompany ir-
reversible relaxations of the system stress. The number of
atoms participating in these rearrangements was proportional
to the deviatoric component of the corresponding increments
of stress relaxation, suggesting that these rearrangements can
be described as autocatalytic avalanches of unit shearing
events. Investigation of a-Si at the mechanical thresholds for
onset of stress relaxations demonstrated the existence of a
local yielding criterion that must be satisfied for any given
atomic cluster to start undergoing a structure transformation.
Further analysis revealed that unit plastic shearing events in
a-Si are characterized by the presence of instability-
producing bonds �IPBs� whose length corresponds to the
trough of the split second nearest-neighbor peak in the radial
distribution function �RDF� for bulk SW a-Si. Inelastic re-
laxations consisting of many unit events involve transitions
of bond length between these two portions of the split second
nearest-neighbor peak.

FIG. 21. Atomic configuration changes associated with nearest
neighborhoods of bonds that undergo a transition across the IPB
length are shown. Dark atoms correspond to endpoints of bonds that
undergo this transition, whereas the light ones are their nearest
neighbors. In �a�, the bond undergoing the transition elongates be-
yond the IPB length, whereas in �b� it contracts below the IPB
length. The atom that neighbors on both endpoints of the transition-
ing bond length in configuration �a� exhibits a lateral angle that
crosses the threshold of 47° discussed in Fig. 19. There is no such
atom in configuration �b�, although lateral angles of the other
nearest-neighbor atoms show a negative correlation to the underly-
ing bond-length change, as demonstrated in Fig. 20.
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