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We have studied the nonlinear elasticity effects in zinc-blende and wurtzite crystallographic phases of III-N
compounds. Particularly, we have determined the pressure dependences of elastic constants in InN, GaN, and
AlN by performing ab initio calculations in the framework of plane-wave pseudopotential implementation of
the density-functional theory. The calculations have been performed employing two exchange-correlation
functionals, one within the local density approximation and the other within the generalized gradient approxi-
mation. We have found that C11, C12 in zinc-blende nitrides and C11, C12, C13, C33 in wurtzite nitrides depend
significantly on hydrostatic pressure. Much weaker dependence on pressure has been observed for C44 elastic
constant in both zinc-blende and wurtzite phases. Further, we have examined the influence of pressure depen-
dence of elastic constants on the pressure coefficient of light emission, dEE /dP, in wurtzite InGaN/GaN and
GaN/AlGaN quantum wells. We have shown that the pressure dependence of elastic constants leads to a
significant reduction of dEE /dP in nitride quantum wells. Finally, we have considered the influence of non-
linear elasticity of III-N compounds on the properties of hexagonal nitride quantum dots �QDs�. For typical
wurtzite GaN/AlN QDs, we have shown that taking into account pressure dependence of elastic constants
results in the decrease of volumetric strain in the QD region by about 7%. Simultaneously, the average z
component of the piezoelectric polarization in the QDs increases by 0.1 MV/cm compared to the case when
linear elastic theory is used. Both effects, i.e., decrease of volumetric strain as well as increase of piezoelectric
field, decrease the band-to-band transition energies in the QDs.
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I. INTRODUCTION

The electronic and optical properties of semiconductor
heterostructures depend crucially on the strain arising from
the lattice mismatch. Commonly, the strain effects in quan-
tum structures, i.e., quantum wells �QWs�, wires, or dots
�QDs�, are described within the standard elasticity theory, in
which the deformation energy is described by terms qua-
dratic in the strain tensor components and elastic constants
are independent of the strain �so-called linear theory�. Nev-
ertheless, there are circumstances where this simple approach
is not sufficient.

Nonlinear elastic properties of GaAs and InAs have re-
cently attracted significant attention. First, Frogley et al. pro-
posed that pressure dependences of elastic constants in GaAs
and InAs are required to explain anomalously the small pres-
sure coefficient of band gap �dEG /dP� in strained InGaAs
layers.1 They showed that the main contribution, responsible
for drastic reduction of dEG /dP in biaxial strained layers of
InGaAs, came from the pressure dependence of a two-
dimensional Poisson’s ratio, �2D�P�, defined for zinc-blende
structure as 2C12/C11. Second, Ellaway et al. calculated
pressure dependences of elastic constants for InAs and dis-
cussed their influence on the properties of InAs/GaAs QDs.2

They noticed that the hydrostatic strain component in the
InAs/GaAs QDs is significantly overestimated by calcula-

tions based on the linear theory of elasticity. Taking into
account the pressure dependence of elastic constants reduces
the hydrostatic strain by about 16%.2 Recently, it has also
been shown that pressure dependences of elastic constants in
GaAs and InAs are decisive to determine the pressure coef-
ficients of the light emission �dEE /dP� in InAs/GaAs
QDs.3,4

For the case of wurtzite III-N compounds, the nonlinear
elasticity effects have not been systematically studied yet. A
pioneering paper in this field was published by Kato and
Hama who calculated the pressure dependence of the elastic
stiffness tensor for wurtzite AlN.5 Later on, Vaschenko et al.
used these results to estimate the influence of the nonlinear
elasticity on dEE /dP in hexagonal AlGaN/GaN QWs.6 Re-
cently, we have investigated the pressure dependences of
elastic constants, in zinc-blende InN and GaN.7 We have
shown that one has to take the effects of nonlinear elasticity
into account in order to determine dEE /dP in cubic
InGaN/GaN QWs.7

In this work, we focus on the nonlinear elasticity effects
in group III nitrides crystallizing in wurtzite structure. Par-
ticularly, we have determined the pressure dependences of
elastic constants in wurtzite InN, GaN, and AlN by perform-
ing ab initio calculations in the framework of plane-wave
pseudo-potential implementation of the density-functional
theory.8,9 We have used two approximations to the exchange-
correlation functionals, the standard local density approxima-
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tion �LDA� and the generalized gradient approximation
�GGA�, in the present calculations. This allows us to judge
the accuracy of such calculations. The paper is organized as
follows. In Sec. II, we discuss, first, the computational pro-
cedure employed to determine the pressure dependence of
the elastic constants. Next, we present results for the wurtzite
phase of bulk nitrides, discuss the pressure dependence of
Poisson coefficients, and finally provide comparison of the
pressure dependence of elastic constants in zinc-blende and
wurtzite crystallographic phases of nitrides. We illustrate the
importance of the pressure dependence of the elastic con-
stants discussing two systems, nitride heterostructures and
quantum dots, in Secs. III and IV. The pressure coefficient of
light emission dEE /dP in wurtzite InGaN/GaN and GaN/
AlGaN QWs is discussed in Sec. III, whereas the elastic,
piezoelectric, and optical properties of wurtzite GaN/AlN
quantum dots are discussed in Sec. IV. Finally we conclude
the paper in Sec. V.

II. PRESSURE-DEPENDENT ELASTIC CONSTANTS IN
BULK NITRIDES

A. Computational procedure

The pressure dependence of the elastic constants is cus-
tomarily defined as

C���P� =
1

VP

�2Etot�VP�
������

, �1�

where Etot�VP� is the total energy per unit cell, VP is the unit
cell volume at given pressure P, which is found by solving
P=−�Etot /�V, and ��, �� are the elements of the infinitesimal
strain tensor.10 For simplicity, we use the Voigt notation here-
after. To determine C���P� �where ����= �11� , �12� , �13� ,
�33� , �44�� for wurtzite GaN, InN, and AlN, we have carried
out the total energy calculations based on a plane-wave
pseudo-potential implementation of the density-functional
theory.8 The numerical computations have been performed
with the VASP package.9

The calculations of the pressure dependence of the elastic
constants are performed in two steps. In the first step, we
calculate the total energy of the bulk wurtzite crystal as a
function of the unit cell volume. Then, using the definition of
pressure, P=−�Etot /�V, one can find the unit cell volume
corresponding to the certain value of the external pressure P.
In this step, for a given unit cell volume, the unit cell shape
�i.e., c /a ratio� and unit cell geometry �i.e., internal param-
eter u� are optimized. The obtained values of c /a and u as a
function of the hydrostatic pressure are depicted in Figs. 1�a�
and 1�b�. As can be seen from these figures, one can correlate
the magnitude of changes in c /a and u under the hydrostatic
pressure with deviations of the nitride structures from “ideal”
wurtzite. The weakest dependences of c /a and u on the hy-
drostatic pressure are obtained for GaN, which possesses the
smallest deviation of c /a from the ideal value 1.633. The
strongest dependences c /a and u on the hydrostatic pressure
are observed for AlN, which has the largest deviation of c /a
from the ideal value.

In the second step, the unit cell at certain pressure is sub-
ject to test distortions. The magnitude of the components of

the strain tensor that characterizes the test distortion ��̂��� is
much smaller in comparison to the hydrostatic strain compo-
nent corresponding to the value of applied pressure P. The
elastic energy of the deformed lattice at hydrostatic pressure
P, Eelst�P�, is defined exactly in the same way as at zero
�ambient� pressure, namely, as the contribution to the total
energy with terms quadratic in the components of the strain
tensor ��̂�,��. Of course, the elastic energy is now character-
ized by the elastic constants that are dependent on the hydro-
static pressure. To determine the pressure-dependent elastic
constants, the deformation energies Eelst�P� have been com-
puted for a series of test displacements in the range of −1%
to 1% and have been fitted by the second-order polynomials
to the expressions from the elasticity theory. The test distor-
tions applied in the present calculations are identical to those
used previously by Wright11 and are listed in Table I. When
the test distortions are applied, positions of atoms in the unit
cell have been obtained by allowing additional atomic relax-
ation and modification of the unit cell shape.

The total energy calculations have been performed using
two different approximations to the exchange-correlation
functionals, namely, the local density approximation �LDA�
with the Ceperley-Alder correlation functional as param-
etrized by Perdew and Zunger,12 and the generalized gradient
approximation �GGA� within the and Perdew-Wang func-
tional.13 In both cases the projector augmented wave pseudo-
potentials have been used.14 The semi-core Ga 3d and In 4d
states have been treated as valence electrons. Brillouin-zone

FIG. 1. �a� The axial ratio, c /a, and �b� the internal parameter, u,
of the wurtzite structure as a function of the hydrostatic pressure for
GaN, InN, and AlN. Solid lines are added to guide the eye.
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integrations have been performed using a 9�9�7 Monk-
horst-Pack k-space grid. The kinetic energy cutoff for the
plane-wave expansion of crystalline wave functions has been
chosen to be equal to 800 eV.

B. Nonlinear effects in wurtzite structure

In Figs. 2�a�–2�c�, we present the pressure dependence of
the elastic constants, C11�P�, C12�P�, C13�P�, C33�P� and
C44�P�, obtained for wurtzite GaN, InN, and AlN using both
LDA and GGA in the range of hydrostatic pressure
0–30 GPa. One can notice that the elastic constants C11, C12,
C13, C33 show considerable increase with pressure, whereas
C44 exhibits much weaker dependence on pressure. Since
dependence of the elastic constants on pressure C���P�
shows slightly sublinear character in the investigated range
of hydrostatic pressures, we describe C���P� using second-
order polynomials in P:

C���P� = C�� + C��� · P + 1
2C��� · P2.

The expansion coefficients, C��, C���, and C���, together
with the values of bulk modulus, B0, and its pressure deriva-
tive B0�, have been collected for wurtzite AlN, GaN, and InN
in Table II. For wurtzite systems, B0 and B0� can be expressed
in terms of the zero pressure elastic constants C�� and linear
coefficients C��� as follows:

B0 =
C33�C11 + C12� − 2�C13�2

C11 + C12 − 4C13 + 2C33
, �2�

B0� =
C33� �C11 + C12� + C33�C11� + C12� � − 4C13C13� − B0�C11� + C12� − 4C13� + 2C33� �

C11 + C12 − 4C13 + 2C33
. �3�

For comparison, in Table II we have also included the values
of C��, B0, and B0� that have been previously obtained in
various calculations. One can see that the values of elastic

constants C�� and bulk moduli B0 obtained in the present
calculations are rather close to the results reported in Refs.
11 and 15. The values of B0� are also in good agreement with

TABLE I. Test distortions and corresponding expressions for
elastic energies used to calculate pressure-dependent elastic con-
stants in wurtzite nitrides.

�̂��= ��xx,�yy,�zz,�zx,�zy,�yx,� Eelst�P�

�� ,� ,0 ,0 ,0 ,0� �C11�P�+C12�P���2

�� ,� ,−2� ,0 ,0 ,0� �C11�P�+C12�P�−4C13�P�+2C33�P���2

�0,0 ,� ,0 ,0 ,0� C33�P��2 /2

�0,0 ,0 ,0 ,0 ,� /2� �C11�P�−C12�P���2 /4

�0,0 ,0 ,� /2 ,� /2 ,0� C44�P��2

FIG. 2. Elastic constants of wurtzite structure as a function of
the hydrostatic pressure for GaN �a�, InN �b�, and AlN �c�. Full and
empty symbols represent values obtained using LDA-DFT and
GGA-DFT methods, respectively. Solid and dashed lines are added
to guide the eye.
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results from Ref. 16. We confirm the observation from Ref.
15 that C�� obtained by the GGA-DFT are smaller than those
calculated using the LDA-DFT. Looking at the linear terms
in parabolic approximations of C���P�, one can observe that
generally the increase of C���P� with pressure is similar for
all three bulks, GaN, AlN, and InN. Interestingly, the linear
terms in C���P� are usually higher for results obtained using
the GGA-DFT than the LDA-DFT �C13� for w-InN and
w-AlN, and C33� for w-InN are the exceptions�. However, the
differences in B0� are rather small, which suggests that, in
general, the nonlinear compressibility of the lattice is similar
for both the LDA-DFT and the GGA-DFT. Comparing the
values of C��� obtained by us for w-AlN with those pub-
lished in Ref. 5, one can observe that quantitative agreement
is reached for C11� and C13� . The most significant difference is
in C33� which according to Ref. 5 is practically negligible.
Our calculations do not confirm this finding. Moreover, we
obtain large values of C33� also for GaN and InN, which
raises a question about where the small value of C33� obtained

in Ref. 5 comes from. The quadratic terms in the parabolic
approximations of C���P� are usually rather small and nega-
tive �as a result of the small sublinear character of calculated
C���P�� and will be neglected in further discussion.

C. Comparison of wurtzite with zinc-blende

In this section we compare the nonlinear elastic properties
of zinc-blende and wurtzite GaN, AlN, and InN. We have
calculated C��,c�P�����= �11� , �12� , �44� for the zinc-blende
nitrides using essentially the identical procedure as the one
described for wurtzite structures above. Hereafter the sub-
script “c” is used to indicate the values for cubic �zinc-
blende� phase.

1. Results of ab initio calculations

For zinc-blende, we have used the following three test
distortions with strain tensor components �1,...,�6 defined
as �0,0 ,� ,0 ,0 ,0�, �� ,� ,−2� ,0 ,0 ,0�, and �0,0 ,0 ,0 ,0 ,��,

TABLE II. Second-order polynomials obtained from the fit to numerically calculated pressure-dependent
elastic constants, C���P�, for wurtzite nitrides in the pressure range of 0–30 GPa. The values of bulk
modulus, B0, and its pressure derivative, B0�, are also given. For comparison, the results of other authors are
included in the table.

LDA—present results GGA—present results LDAa,b GGAd

w-GaN

C11 366+4.88P−0.038P2 322+5.23P−0.033P2 367a

C12 139+3.69P−0.015P2 112+3.90P−0.018P2 135a

C13 98+3.75P−0.029P2 79+3.27P−0.001P2 103a 68

C33 403+6.54P−0.079P2 354+6.7P−0.059P2 405a 354

C44 97+0.49P−0.007P2 83+1.33P−0.023P2 95a

B0 200.6 170.9 202a

B0� 4.30 4.23 4.5b

w-InN

C11 229+3.66P−0.012P2 197+4.29P−0.028P2 223a

C12 120+3.51P+0.002P2 90+4.32P−0.021P2 115a

C13 95+4.11P−0.014P2 78+3.36P−0.008P2 92a 70

C33 234+4.26P−0.049P2 210+3.32P−0.018P2 224a 205

C44 49+0.15P−0.004P2 47+0.17P−0.003P2 48a

B0 145.6 121.8 141a

B0� 3.92 3.78 3.4b

w-AlN

C11 397+3.78P−0.009P2 356+4.65P−0.026P2 380+3.96P−0.05P2,c 396a

C12 143+2.78P+0.004P2 118+3.45P−0.016P2 114+6.83P−0.15P2,c 137a

C13 112+3.34P−0.016P2 97+3.02P−0.004P2 127+2.89P−0.08P2,c 108a 94

C33 372+3.65P−0.066P2 337+4.15P−0.055P2 382−0.001P+0.06P2,c 373a 377

C44 116+0.75P−0.0008P2 106+0.99P−0.005P2 109−0.96P+0.04P2,c 116a

B0 210.3 185.4 207a

B0� 3.36 3.58 3.8b

aReference 11.
bReference 16.
cReference 5.
dReference 15.
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which apparently differ from distortions used for wurtzite
phase. The pressure-dependent elastic constants C11,c�P�,
C12,c�P�, and C44,c�P� calculated for cubic, GaN, InN, and
AlN are depicted in Figs. 3�a�–3�c�. Both the LDA and GGA
results for hydrostatic pressure in the range of 0–30 GPa are
presented.17 From Fig. 3, one can notice that C11,c�P� and
C12,c�P� increase with pressure more significantly than
C44,c�P�. This weak dependence of C44,c�P� on hydrostatic
pressure is then a unique feature of wurtzite and zinc-blende
nitrides. Note that small variation of C44,c�P� with pressure P
was also reported previously for zinc-blende InAs.2

As in the case of wurtzite bulks, we have fitted the
C��,c�P� using second-order polynomials and results have
been collected in Table III, together with the values of bulk
modulus, B0,c= �C11,c+2C12,c� /3, and its pressure derivative
Bc�= �C11,c� +2C12,c� � /3. For comparison, we have also in-
cluded values of C��,c, B0,c and B0c� taken from the
literature.11,16,18 Again, our C��,c and B0,c obtained by LDA-
DFT are rather close to those reported in Ref. 11. Reasonable
agreement with previous calculations is also observed for Bc�.
Similarly to wurtzite phase, C��,c obtained by the GGA-DFT
are smaller than those calculated using the LDA-DFT,
whereas the coefficients C��,c� show opposite tendency. The
quadratic terms in C��,c�P� are small and negative, as it was
observed for wurtzite nitrides.

2. Nonlinear effects in wurtzite phase obtained from Martin’s
transformation

It is possible to obtain elastic constants of wurtzite mate-
rial from the zinc-blende ones applying the so-called Mar-
tin’s transformation.19 The specific expressions for this rela-
tion have been listed in Ref. 11. These expressions lead to an
approximate, albeit very reasonable, estimation of the elastic
constants in wurtzite structure, provided the constants for
zinc-blende phase are known.

It is interesting whether the pressure-dependent elastic
constants of the wurtzite phase might also be reasonably ap-
proximated by Martin’s transformation through the pressure-
dependent elastic constants of the cubic phase. Simple alge-
bra shows that the linear coefficients C��,M� in the wurtzite
phase, as obtained from Martin’s transformation, read

C11,M� =
1

6
�3C11,c� + 3C12,c� + 6C44,c� �

−
1

3

�C11,c − C12,c − 2C44,c��C11,c� − C12,c� − 2C44,c� �
�C11,c − C12,c + C44,c�

+
1

6

�C11,c − C12,c − 2C44,c�2�C11,c� − C12,c� + C44,c� �
�C11,c − C12,c + C44,c�2 ,

�4�

C12,M� =
1

6
�C11,c� + 5C12,c� − 2�C44,c�

+
1

3

�C11,c − C12,c − 2C44,c��C11,c� − C12,c� − 2C44,c� �
�C11,c − C12,c + C44,c�

−
1

6

�C11,c − C12,c − 2C44,c�2�C11,c� − C12,c� + C44,c� �
�C11,c − C12,c + C44,c�2 ,

�5�

C13,M� = 1
6 �2C11,c� + 4C12,c� − 4C44,c� � , �6�

C33,M� = 1
6 �2C11,c� + 4C12,c� + 8C44,c� � , �7�

FIG. 3. Elastic constants of zinc-blende structure as a function
of the hydrostatic pressure for GaN �a�, InN �b�, and AlN �c�. Full
and empty symbols represent values obtained using LDA-DFT and
GGA-DFT methods, respectively. Solid and dashed lines are added
to guide the eye.
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C44,M� =
1

6
�2C11,c� − 2C12,c� + 2C44,c� �

−
2

3

�C11,c − C12,c − 2C44,c��C11,c� − C12,c� − 2C44,c� �
�C11,c − C12,c + 4C44,c�

+
1

3

�C11,c − C12,c − 2C44,c�2�C11,c� − C12,c� + 4C44,c� �
�C11,c − C12,c + 4C44,c�2 .

�8�

These linear coefficients together with the pressure-
independent elastic constants for wurtzite materials obtained
from Martin’s transformation, Cij,M� and Cij,M, respectively,
are presented in Table IV. These values can be compared
with values directly calculated for wurtzite structure �see
Table II�. As a measure of similarity, one can use the normal-
ized root mean square �nrms� of the differences taken for
each material. The values of nrms are included in Table IV.
One can see that Martin’s transformation for Cij,M gives the

TABLE III. Second-order polynomials obtained from the fit to numerically calculated pressure dependent
elastic constants, C���P�, for zinc-blende crystallographic phase of nitrides in the range of pressures
0–30 GPa. The values of bulk modulus, B0, and its pressure derivative, B0�, are also given. For comparison,
the results of other authors are included in the table.

LDA—present results GGA—present results LDAa–c

c-GaN

C11,c 287+3.88P−0.009P2 252+4.17P−0.019P2 293a

C12,c 158+3.33P−0.001P2 131+3.50P−0.011P2 159a

C44,c 159+1.02P−0.007P2 146+1.12P−0.012P2 155a

B0 201 171.3 203.7a

B0� 3.51 3.72 3.9,b 4.6c

c-InN

C11,c 183+3.81P−0.011P2 149+4.58P−0.029P2 187a

C12,c 124+4.01P+0.013P2 94+4.37P+0.020P2 125a

C44,c 86+0.05P−0.009P2 77+0.66P−0.023P2 86a

B0 143.7 112.3 145.7a

B0� 3.94 4.44 4.4,b 4.7c

c-AlN

C11,c 301+3.38P−0.003P2 267+5.21P−0.077P2 304a

C12,c 166+3.09P−0.005P2 141+4.26P−0.061P2 160a

C44,c 190+1.01P+0.005P2 172+1.69P−0.015P2 193a

B0 211 183 208a

B0� 3.19 4.58 3.2,b 4.2c

aReference 11.
bReference 16.
cReference 18.

TABLE IV. Elastic constants and their pressure derivatives for wurtzite nitrides, at ambient pressure,
obtained using the Martin’s transformation. The normalized root mean square �nrms� of the differences
between results directly calculated and obtained using the Martin’s transformation.

C11,M C11,M� C12,M C12,M� C13,M C13,M� C33,M C33,M� C44,M C44,M� nrms�Cij� nrms�Cij� �

wzGaN

LDA 361 4.41 147 3.29 95 2.83 413 4.87 80 0.37 1.9% 10.4%

GGA 319 4.74 121 3.45 74 2.98 366 5.22 75 0.44 1.9% 9.2%

wzInN

LDA 225 3.87 120 4.05 86 3.91 258 4.01 38 −0.11 3.9% 4.6%

GGA 186 4.94 90 4.38 61 4.0 215 5.32 35 0.16 3.9% 14.2%

wzAlN

LDA 393 3.93 156 3.11 84 2.51 464 4.53 86 0.23 8.9% 9.5%

GGA 349 6.07 131 4.21 68 3.45 412 6.83 80 0.63 8.5% 19.5%
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best results for GaN �nrms 1.9%� and the worst for AlN
�nrms 8.5–8.9%�. This agrees with the previous observation
of Wright, who suggested that wurtzite GaN is most similar
to zinc-blende, AlN is least similar, and InN is in between.11

This tendency is not so clear, if one compares linear coeffi-
cients Cij,M� and Cij� . Generally, the values of nrms are higher
for the set of Cij,M� than for Cij,M. It is particularly pro-
nounced in the case of GaN. Moreover, considering the nrms
for Cij,M� , one observes significant differences in the values
obtained by the LDA-DFT and GGA-DFT. For these rea-
sons, we claim that, in contrary to the case of pressure-
independent elastic constants, Martin’s transformation is less
suitable to obtain pressure-dependent elastic constants for
wurtzite phase.

D. Pressure dependence of the Poisson coefficients

In the remainder of this section, we discuss the pressure
dependence of the two-dimensional Poisson coefficient
�2D�P�, which relates the perpendicular strain component
along the growth direction, e.g., �zz, to the lateral strain, e.g.,
�xx, resulting from the lattice constant mismatch between a
nitride film and substrate. Of course, the Poisson coefficient
is dependent on the growth direction. Here, we would like to
discuss pressure dependence of the Poisson coefficient for
the case of technologically most important growth directions,
namely, �001� for cubic and �0001� for wurtzite phases of
nitrides. Even if the direct comparison between these two
nonequivalent crystallographic directions is impossible, we
restrict the discussion to these two most important cases. For
the �001� grown zinc-blende structure, the Poisson coeffi-
cient is defined as �2D,c�P�=2C12,c�P� /C11,c�P�, whereas for
�0001� wurtzite structure it takes the form �2D�P�
=2C13�P� /C33�P�.1 In Table V, we show the values of the
zero pressure Poisson coefficients �2D�0� together with their
first pressure derivatives at ambient pressure �2D� . For �0001�
grown wurtzite structure �2D� reads

�2D� =
2�C13� C33 − C13C33� �

�C33�2 . �9�

The expression for �2D� in the case of �001� grown cubic layer
can be obtained from Eq. �9� by substituting indices �13� and
�33� with �12� and �11�, respectively. Not surprisingly, the
values of �2D�0� calculated in the present study are in good
agreement with values reported in Ref. 11. However, in this
section we would like to concentrate on �2D� . The knowledge
of �2D� is important for determination of the pressure coeffi-
cient of the band gap, dEG /dP, in strained layers. It turns out
that dEG /dP is significantly reduced by the term which is
directly proportional to the product of �2D� and biaxial strain
taken at ambient pressure.1 This is true for both zinc-blende
and wurtzite structures. Thus, one can regard �2D� as a good
measure of the sensitivity of dEG /dP to the biaxial strain in
a material. On the other hand, the value of �2D� measures the
influence of the nonlinear elasticity on dEG /dP in strained
material �in the linear second-order elastic theory �2D� =0 by
definition, see Eq. �9��. From Table V, one can see that �2D�
for �001� and �0001� strained zinc-blende and wurtzite

phases are very similar for all studied nitrides. Thus, taking
into account the nonlinear elasticity should reduce dEG /dP
in a similar way for the case of wurtzite and zinc-blende
nitride strained structure considered here. It is interesting to
note that �2D� is almost two times larger for InN than for GaN
or AlN �see Table V�. One can expect then the biaxial strain
affects dEG /dP in strained InN or InGaN layers more
strongly than in strained GaN or AlGaN structures. We will
discuss these points in the next section.

III. PRESSURE COEFFICIENTS OF THE LIGHT
EMISSION IN NITRIDE QWs

In this section, we examine how the pressure dependence
of elastic constants influences the pressure coefficient of
light emission, dEE /dP, in wurtzite InGaN/GaN and GaN/
AlGaN QWs grown along the c axis. In order to calculate
dEE /dP, one has to compute the changes of the highest hole
and the lowest electron states in the QW with hydrostatic
pressure. To reach this goal, we employed envelope function
theory in the framework of multiband k · p method.20 The k · p
Hamiltonian includes changes of the band edges caused by
strain in the system �through deformation potentials� and
takes into account the electric fields induced by the differ-
ences in piezoelectric and spontaneous polarizations between
well and barrier materials.

TABLE V. Two-dimensional Poisson coefficients and their first-
order pressure derivatives for wurtzite �wz� and zinc-blende �c�
nitrides.

LDA—present results GGA—present results LDAa

c-GaN

�2D,c�0� 1.10 1.04 1.09

�2D,c� 0.0083 0.0106

c-InN

�2D,c�0� 1.36 1.26 1.34

�2D,c� 0.0156 0.0199

c-AlN

�2D,c�0� 1.10 1.056 1.05

�2D,c� 0.0081 0.0113

wz-GaN

�2D�0� 0.49 0.45 0.51

�2D� 0.0107 0.0100

wz-InN

�2D�0� 0.81 0.74 0.82

�2D� 0.0203 0.0203

wz-AlN

�2D�0� 0.60 0.576 0.58

�2D� 0.0120 0.0108

aReference 11.
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A. Strain in wurtzite heterostructures under external
hydrostatic pressure

It is clear that the most important step in the calculation of
dEE /dP is the determination of strain tensor. Quantum well
layers that are generally already strained owing to the lattice
constants misfit at the ambient pressure are now subject to
additional external hydrostatic pressure. In this situation, the
strain tensor components are dependent on the applied hy-
drostatic pressure. To find this dependence, we use Hook’s
law,

��� = C��	��P��	�, �10�

where ��� is the stress tensor, C��	��P� denotes the
pressure-dependent fourth-order elastic stiffness tensor in the
full tensor notation, and �	� is the strain tensor. When exter-
nal hydrostatic pressure, Pout, is applied to initially biaxially
strained wurtzite QW structure, only diagonal elements of
��� and �	� are nonzero and Eq. �10� reduces to the follow-
ing matrix form �for simplicity, the Voigt notation for elastic
constants is used here�:

��xx

�yy

�zz
� = �F − Pout

F − Pout

− Pout
� = �C11�P� C12�P� C13�P�

C12�P� C11�P� C13�P�
C13�P� C13�P� C33�P�

���xx

�yy

�zz
� ,

�11�

where F denotes the biaxial stress due to the lattice misfit
between QW and barriers. From Eq. �11�, one gets �i� the
equality �xx=�yy and �ii� the possibility to express �zz and F
in terms of �xx and Pout:

�zz = −
2C13�P�
C33�P�

�xx −
Pout

C33�P�
, �12�

F = �C11�P� + C12�P� − 2
�C13�P��2

C33�P�
��xx + Pout�1 −

C13�P�
C33�P�

� .

�13�

Note that in the biaxially strained system the hydrostatic
strain component is already present even in the absence of an
external hydrostatic pressure. Therefore, the usual definition
of hydrostatic pressure, P=− 1

3Tr���,��, leads to P= Pout

− 2
3F, which is obviously different than the externally applied

pressure, Pout.
To complete the determination of the strain tensor com-

ponents, one has to specify �xx�P�. This is, however, a highly
nontrivial issue, since nitride-based epitaxial heterostructures
are usually non-pseudomorphic. They are usually attached to
a substrate through a non-pseudomorphic layer with high
density of dislocations and of unknown elastic properties.
Almost all high-pressure experiments for wurtzite nitride
QWs were performed on structures grown on sapphire
substrates,6,20,21 where the QW structures exhibit various de-
gree of relaxation. In order to provide quantitative compari-
son with experimental data and allow assessment of the non-
linear elasticity effects, one has to model this complicated
strain situation. Generally, it has been commonly accepted
that the interaction of QW structure with the substrate leads

to effective lateral lattice constant dependent on pressure
as�P�.7,20,22 For example, following Ref. 20, for the hetero-
structures grown on sapphire substrates, one can estimate
as�P� as

as�P� = a0,br„1 − P�S11,s + S12,s + S13,s�… , �14�

where a0,br is the equilibrium lattice constant of the barrier
material and Sij,s ��ij�= �11� , �12� , �13��, are the elements of
elastic compliances tensor for sapphire.23 Further, we follow
this suggestion and assume additionally that the width of the
QW is small in comparison to the widths of barriers. All this
allows us to express �xx for the well and barrier regions as

�xx,i�P� =
as�P� − a0,i

a0,i
, �15�

where i indicates the quantum well or barrier, and a0,i is the
equilibrium lattice constant of the QW or barrier material.

B. Electric field in strained quantum wells

Having strain tensor components determined, in the sec-
ond stage, we calculate the electric fields in the QW and
barriers caused by spontaneous and piezoelectric polariza-
tions. The nonvanishing z component of the total piezoelec-
tric polarization in the �0001� QW structure is given as

Ptot,i = 2e31,i�xx,i + e33,i�zz,i + Pspon,i, i = QW,BAR,

�16�

where e31,i and e33,i are the elements of piezoelectric tensor
and Pspon,i is the spontaneous polarization in the QW and the
barrier �BAR�.

Previously it has been shown that the piezoelectric con-
stants e31 and e33 for a biaxially strained GaN and AlN layers
differ from the values for the bulk.24 Earlier works also sug-
gested that this effect has to be considered in order to real-
istically describe the pressure light emission coefficient,
dEE /dP, in QWs.6 Therefore, in the present study the change
of the piezoelectric constants with biaxial strain has been
fully taken into account �we use the results of Ref. 24� when
calculating the piezoelectric polarization in strained quantum
wells and barriers according to Eq. �16�.

The values of the electric field along the growth direction
in the QW �EQW� and barrier �EBAR� that results from the
difference in the total electric polarizations in each region are
given by simple formulas25,26

EQW =
2lBAR�Ptot,BAR − Ptot,QW�
�2lBAR	QW + lQW	BAR�

, EBAR = −
lQW

2lBAR
EQW,

�17�

where lBAR, lQW, and 	BAR, 	QW are the thicknesses and the
static dielectric constants for barrier and quantum well, re-
spectively. We have assumed that the QW is surrounded on
each side by the barrier of width lBAR and that the potential
on each side of the structure is equalized. If the barrier width
is large enough in comparison to well width, this boundary
condition is equivalent to the case with neutralizing external
charges on the edges of the heterostructure.26
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In Eq. �17� the effect of screening by the residual back-
ground doping is not included.25 More general analytic ex-
pressions for EQW, which include this effect, have been pro-
posed in Refs. 6 and 27. We do not use them in our
calculations of dEE /dP, since they introduce only an addi-
tional strain-independent term to the expression for EQW �see
Eq. �17�� and are not important for the calculation of
dEE /dP.

C. InGaN/GaN and GaN/AlGaN quantum wells—Results and
discussion

Completing the setup of the k · p Hamiltonian, we are in
the position to calculate the energies of the lowest electron
and the highest hole states in the QWs. This is done by
solving the effective mass equations for electrons and heavy
holes separately. This procedure is justified, since the energy
gap of quantum well material is sufficiently large in both
considered GaN/AlGaN and InGaN/GaN QWs �with com-
position of indium below 20%�. Since we are interested only
in the maximum of the valence band energies at k	 =0, the
6�6 k · p system of differential equations for six-component
spinor of envelope functions reduces to a single equation for

the heavy-hole component.28 The shift of the band edges
caused by strain is taken into account through the suitable
deformation potentials. We assume that the deformation po-
tentials do not depend on pressure. Previously we have found
that for zinc-blende GaN and InN the hydrostatic deforma-
tion potentials are independent on P, whereas the shear de-
formation potentials show very weak pressure dependence
and practically do not influence dEG /dP in cubic
InGaN/GaN QWs. Using the relations between the deforma-
tion potentials of the zinc-blende and wurtzite structure, one
can also expect a weak dependence of the deformation po-
tentials for wurtzite nitrides on hydrostatic pressure.28

The scheme described above provides the fundamental
optical transition energies for QWs as a function of external
pressure, EE�Pout�. These energies exhibit slight nonlinearity.
To be consistent with experimental procedure,6,20,21 the value
of dEE /dP is estimated from the linear fit to the EE vs Pout.
We use the above procedure to investigate the influence of
nonlinear elasticity on dEE /dP in wurtzite In0.2Ga0.8N/GaN
and GaN/Al0.8Ga0.2N heterostructures with the QW widths
lying between 1.8 and 5 nm, for which experimental values
of dEE /dP have been reported.6,21 Table VI contains values
of parameters used in the present calculations.

TABLE VI. Parameters used in the calculations of pressure coefficients of light emission.

Parameter AlxGa�1−x�N InxGa�1−x�N

a0 �A� 3.112x+3.189�1−x�a 3.545x+3.189�1−x�a

Eg �eV� 6.28x+3.44�1−x�−0.98x�1−x�b 0.8x+3.44�1−x�−2.5x�1−x�c


1 �eV� −0.058x+0.022�1−x�b 0.041x+0.022�1−x�a,b


2=
3 �eV� −0.0068x+0.005�1−x�b −0.001x+0.005�1−x�a,b

mz
c /m0 0.33x+0.2�1−x�b 0.12x+0.2�1−x�a,b

A1 −3.95x−6.56�1−x�a −8.21x−6.56�1−x�a

A2 −0.27x−0.91�1−x�a −0.68x−0.91�1−x�a

A3 3.68x+5.65�1−x�a 7.57x+5.65�1−x�a

A4 −1.84x−2.83�1−x�a −5.23x−2.83�1−x�a

A5 −1.95x−3.13�1−x�a −5.11x−3.13�1−x�a

A6 −2.91x−4.86�1−x�a −2.91x−5.96�1−x�a

ac �eV� −4.5x−4.6�1−x�b −3.5x−4.6�1−x�a,b

D1 �eV� −2.89x−1.7�1−x�b 0.55x+1.51�1−x�d

D2 �eV� 4.89x+6.3�1−x�b 3.17x+5.21�1−x�d

D3 �eV� 8.0x+7.78�1−x�b 4.92x+5.76�1−x�d

D4 �eV� −4.x−3.89�1−x�b −1.79x+3.04�1−x�d

D5 �eV� −4.0a −4.0a

D6 �eV� −5.1a −5.1a

e31 −0.53x−0.34�1−x�e −0.41x−0.34�1−x�e

e33 1.5x+0.67�1−x�e 0.81x+0.67�1−x�e

Psp −0.091x−0.034�1−x�+0.019x�1−x�e −0.042x−0.034�1−x�+0.038x�1−x�e

e31� −3.5x−5.0�1−x�f −5.0f

e33� −15x−16�1−x�f −16f

	 8.5x+10.4�1−x�g 15.3x+10.4�1−x�g

aReference 29.
bReference 28.
cReference 30.
dReference 31.

eReference 15.
fReference 24.
gReference 32.
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In Fig. 4, we show theoretical values of dEE /dP for
wurtzite In0.2Ga0.8N/GaN QWs as a function of QW width,
obtained using linear �i.e., C���P�=C���0�� and nonlinear
elastic theory within both LDA-DFT and GGA-DFT ap-
proaches. As can be seen in Fig. 4, the differences between
LDA- and GGA-based results are rather small. Generally, the
good agreement with experimental values of dEE /dP is ob-
tained in the case of nonlinear elastic theory, whereas the
standard linear elastic theory leads to considerable quantita-
tive discrepancies.

These results can be understood taking into account that
the emission energy in a wurtzite quantum well �i.e., with
polarization induced fields� may be expressed as

EE = EG + 
Ecb + 
Evb − lQW
eEQW
 , �18�

where EG is the bulk energy gap, 
Ecb and 
Evb are con-
finement energies of electrons and holes, respectively, lQW is
the length of the QW, and 
eEQW
 is the electrostatic potential
drop across the QW. Since the confinement energies are
practically independent of the hydrostatic pressure, only the
first and the fourth terms contribute to dEE /dP. The expres-
sions for dEG /dP in the linear and nonlinear elastic theory
differ by the term �2D� ·�xx�0�, where �2D� is the pressure de-
rivative of the two-dimensional Poisson coefficient and
�xx�0� is the biaxial strain at ambient pressure.1,7 This leads
to the pronounced differences in dEE /dP �of order
5–8 meV/GPa for the In0.2Ga0.8N/GaN heterostructures�
calculated within the linear and non-linear elastic theory.

In both the linear and nonlinear elastic theory, a strong
decrease of dEE /dP with the QW width �lQW� is observed.
This effect has been attributed in the literature to the increase
of polarization-induced electric field caused by external hy-
drostatic pressure6 and is also confirmed by the present cal-

culations. It can be easily understood taking into account that
the confinement energies in Eq. �18� are practically indepen-
dent on the hydrostatic pressure. Therefore, the dependence
of the dEE /dP on quantum well widths may come only from
the fourth term in expression for EE, i.e., from the pressure
dependence of the electric field in QW.

Interestingly, the difference between dEE /dP obtained
within the linear elastic theory and the nonlinear one �here-
after, we indicated this difference as 
� decreases with the
QW width. Here, we would like to mention that, for cubic
In0.1Ga0.9N/GaN QWs, the difference in dEE /dP obtained
using linear and nonlinear elastic theory was about 

=4 meV/GPa and was independent on QW width.7 Since the
cubic heterostructures differ from the wurtzite ones by the
lack of polarization-induced electric fields, the origin of the
decrease of 
 with lQW in wurtzite heterostructures may lie in
the different values of dEQW /dPout �i.e., derivative of the
electric field in QW with respect to the external pressure� as
obtained in the linear and nonlinear elastic theory.

In Fig. 5, the dEE /dP for the wurtzite GaN/Al0.8Ga0.2N
QWs are depicted as a function of QW width. Generally, we
observe the similar qualitative behavior as in the case of
In0.2Ga0.8N/GaN QWs. However, the differences between
values of dEE /dP obtained with the nonlinear and linear
elastic theory �
� are much smaller in GaN/Al0.8Ga0.2N
QWs than in the previously discussed In0.2Ga0.8N/GaN het-
erostructures. Specifically, for 1.8 nm thick wurtzite
GaN/Al0.8Ga0.2N QWs, we have 
=2 meV/GPa, i.e., a fac-
tor of 4 smaller than in the In0.2Ga0.8N/GaN QWs. To un-
derstand this large difference between values of 
 in both
QWs, let us first notice that �xx�0� is similar for
In0.2Ga0.8N/GaN QWs �2.2%� and GaN/Al0.8Ga0.2N QWs
�2%�. Obviously �2D� is significantly higher for InN than for
GaN �see Table II�, which partially explains our results.
However, we have additionally found out that there is an-

FIG. 4. Pressure coefficients of light emission energies
�dEE /dP� for wurtzite In0.2Ga0.8N/GaN QWs as a function of
quantum well width. Stars represent the experimental values of
dEE /dP taken from Ref. 21, squares correspond to theoretical val-
ues of dEE /dP obtained using linear elastic theory, and circles cor-
respond to dEE /dP calculated using nonlinear elastic theory. Full
and empty symbols represent values of dEE /dP obtained using elas-
tic constants calculated within LDA-DFT and GGA-DFT ap-
proaches, respectively. Solid and dashed lines are added to guide
the eye.

FIG. 5. Pressure coefficients of emission energies �dEE /dP� for
wurtzite GaN/Al0.8Ga0.2N QWs as a function of QW width. Stars
represent the experimental values of dEE /dP, taken from Ref. 6.
Squares correspond to theoretical values of dEE /dP obtained using
linear elastic theory. Circles correspond to dEE /dP calculated using
nonlinear elastic theory. Full and empty symbols represent values of
dEE /dP obtained using elastic constants calculated within LDA-
DFT and GGA-DFT approaches, respectively. Solid and dashed
lines are added to guide the eye.
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other reason for small value of 
 in GaN/Al0.8Ga0.2N QWs.
The small value of 
 in this case is related to the fact that in
this structure the barriers were rather thin �5.2 nm� and
the QW was initially unstrained. This is contrary to
In0.2Ga0.8N/GaN QWs where the barriers were thick and the
QW was biaxially strained. To confirm this argument, we
have performed additional calculation of dEE /dP for the
GaN/Al0.8Ga0.2N heterostructures with thick barriers and
strained QWs. In this case, 
 has increased almost by a
factor of 2.

IV. GAN/AlN QUANTUM DOTS

As another example illustrating the role of nonlinear elas-
ticity, we study elastic, piezoelectric, and optical properties
of wurtzite GaN/AlN QDs with hexagonal pyramid shape.

In the first step, we calculate the distribution of strain in
the quantum dot using linear and nonlinear elastic theory.
Further, we calculate the distribution of the electric polariza-
tion and finally emission energies in QDs.

To obtain the strain distribution in the QD, we solve the
boundary-value problem obtained from the integration of the
equilibrium equation for stress tensor, div�����=0.33 The
stress-strain relation is described by Hook’s law, as in Eq.
�10�, with the strain tensor that contains components corre-
sponding to mismatch of lattice constants in QD and embed-
ding materials. Since the stress distribution in a QD, ��x�,
has hydrostatic component, P�x�=−Tr�����x�� /3, and the
elastic constants in the nonlinear elasticity theory are depen-
dent on pressure, the ��x� has been determined in a self-
consistent manner. In these calculations the values of
pressure-dependent elastic constants for wurtzite GaN �Table
II� have been used.

In the second step, we calculate the piezoelectric polariza-
tion vector as

Ptot,� = e��	��	 + Psp,�, �19�

where e��	 denotes third-order piezoelectric tensor. In these
calculations, we assume that the piezoelectric constants are
strain independent. The electrostatic potential is obtained
from the Poisson equation. Finally, we solve 8�8 k · p
Hamiltonian for the wurtzite structure,34 which has been
symmetrized according to the standard procedure.35

All partial-differential equations in our approach are
solved using the finite element method. Most of the param-
eters used in the model have been already listed in Table VI.
The transformation formulas for the valence band parameters
of 8�8 k · p Hamiltonian as well as the shear piezoelectric
constants have been taken from Ref. 34.

We have performed calculation for a single GaN/AlN QD
having the shape of a truncated hexagonal pyramid placed on
0.5 nm thick wetting layer. The height of the QD was 4 nm,
the base diameter was 19.5 nm, and the angle between the
base of the dot and a side wall was � /6. In Fig. 6, we present
profiles of the built-in hydrostatic pressure and volumetric
strain, �vol�x�=Tr��̂�x��, taken from the center of the QDs,
along z axis �0001�, parallel to the direction of growth. One
can see that the usage of the nonlinear elastic theory results
in significant increase of local hydrostatic pressure P inside

the QD by about 0.4 GPa. Simultaneously, the magnitude of
�vol in the QD decreases when the nonlinear elasticity is
used. In Table VII, we have listed differences between values
of pressure, 
P, volumetric strain, 
�vol, magnitude of the
average z component of the built-in electric field, 
Ez, and
fundamental interband transition energy, 
Ec−v, when the
nonlinear and linear elastic theory have been used. Usage of
nonlinear elasticity results in relative decrease of the absolute
value of �vol by 7%. Interestingly, the magnitude of Ez in-
creases by 0.1 MV/cm, compared to the results obtained us-
ing linear elastic theory. Both effects, i.e., decrease of �vol
and increase of Ez, lead to substantial lowering of Ec−v

FIG. 6. Profiles of the built-in hydrostatic pressure �a� and volu-
metric strain �b� for a GaN/AlN QD, taken from the center of the
QD along the z axis, i.e., parallel to the �0001� growth direction.
Dotted and dashed lines show profiles obtained using linear elastic
theory while dashed-dotted and solid lines correspond to results
obtained using nonlinear elastic theory.

TABLE VII. Differences between results obtained using the
nonlinear and linear elastic theory for a wurtzite GaN/AlN QD.
Columns 2–5 contain differences in the built-in hydrostatic pres-
sure, volumetric strain, average z component of the electric field,
and fundamental band-to-band transition energy.


P 
�vol 
�vol /�vol�0�


Ez

�MV/cm�

EE

�eV�

LDA-DFT 0.37 0.002 31 −7.0% −0.10 0.070

GGA-DFT 0.40 0.002 37 −6.9% −0.10 0.069
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�70 meV in the calculated structure�. These results clearly
demonstrate that the nonlinear elasticity effects play a very
important role in wurtzite hexagonal QDs and may not be
ignored in any type of quantitative description.

V. CONCLUSIONS

We have studied the nonlinear elasticity effects for the
case of InN, GaN, and AlN binary compounds. We have
found that C11, C12 in zinc-blende nitrides and C11, C12, C13,
C33 in wurtzite nitrides depend significantly on hydrostatic
pressure. Much weaker dependences on pressure have been
observed for C44 in both zinc-blende and wurtzite phases.
Comparing elastic constants for wurtzite and zinc-blende ni-
trides, we have shown that the Martin’s transformation is not
suitable for application to pressure derivatives of elastic con-
stants. The calculated values of the pressure derivative of the
two-dimensional Poisson coefficients are by almost a factor
of 2 higher for InN than for GaN or AlN. This explains why
the nonlinear elasticity effects should modify dEE /dP much
stronger in strained InN or InGaN layers than in GaN,

AlGaN, or AlN. Then, we have performed calculations of
dEE /dP in wurtzite nitride QWs, which confirmed predic-
tions based on observed trends in bulk properties. We have
determined that usage of nonlinear elastic theory results in
reduction of dEE /dP �as compared to the linear theory� about

=8–5 meV/GPa for wurtzite In0.2Ga0.8N/GaN QWs and
leads to the excellent agreement with experimental data. Fi-
nally, we have analyzed the influence of nonlinear elasticity
on elastic, piezoelectric, and optical properties of wurtzite
GaN/AlN QDs. It turns out that the nonlinear elasticity ef-
fects are crucial for quantitative description of energy spectra
in hexagonal quantum dots.
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