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Based on the ab initio density functional theory we study the influence of many-body effects on the
quasiparticle �QP� band structures and optical absorption spectra of highly ionic crystals. Quasiparticle shifts
and electron-hole interaction are studied within the GW approximation. In addition to the electronic screening
the effect of the lattice polarizability is discussed in detail. Substantial effects are observed for QP bands of
AlN and NaCl that have large polaron constants of 1–2. The effect of electronic and lattice polarization on the
optical spectra is discussed in terms of dynamical screening and vertex corrections. The results are critically
discussed in the light of experimental data available. We find that measured peak positions can be reproduced
without lattice polarizability in the screening of the electron-hole interaction and a reduced lattice contribution
to the QP shifts.

DOI: 10.1103/PhysRevB.72.245114 PACS number�s�: 71.20.�b, 71.15.Qe

I. INTRODUCTION

Single-particle and two-particle electronic excitations are
accompanied by the rearrangement of the remaining elec-
trons in a solid. This effect is known as screening of excited
electrons �above the Fermi level� and excited holes �missing
electrons below the Fermi level�. The calculation of such
electronic excitations has made substantial progress in the
last decades, in particular using the framework of the many-
body perturbation theory �MPBT�.1 In the case of clusters
and molecular structures also the density-functional response
theory is applied.2 The most common assumption in the
MBPT is the GW approximation �GWA� of Hedin3,4 which
describes the response of the electrons by a dynamically
screened Coulomb potential W. In this approximation the
self-energy operator � of an excited particle is given as a
product of the potential W and the Green’s function G. The
poles of the G function correspond to the energies of the
dressed particles, the quasiparticles. Electron-hole pair exci-
tations are described by a special two-particle Green’s func-
tion, the so-called �irreducible� polarization function P. It
obeys a Bethe-Salpeter equation �BSE�.5,6 Apart from an
electron-hole exchange �local-field effect� term proportional
to the bare Coulomb potential v, its kernel is dominated by
the variational derivative �� /�G and hence by the screened
potential W in random-phase approximation �RPA� which is
already used in GWA and describes the attractive interaction
of quasielectrons and quasiholes.7

The quasiparticle �QP� band structures of semiconductors
and insulators are now well described by means of ab initio
methods based on the density-functional theory8 �DFT�
within the local-density approximation �LDA� for exchange
and correlation �XC�.9 For DFT-LDA bands with a correct
energetical order the QP effects can be included by means
first-order perturbation theory with respect to the difference
of the XC self-energy and the XC potential already used in
the Kohn-Sham equation of the DFT. Its numerical
implementation10,11 usually yields single-particle excitation
energies in good agreement �with an accuracy of about
0.1 eV� with angle-resolved photoemission/inverse photo-
emission experiments.12–14 Solutions of the BSE in an ab

initio framework also appeared in the literature in the past
few years. Optical spectra can now be calculated including
excitonic effects for semiconductors and insulators,15–17 solid
surfaces,18,19 and even molecules.17,20,21 These effects can
also be included in nonlinear optical properties.22 All these
calculations are based on computations of the dielectric ma-
trix within the independent-particle approximation or a
model dielectric function for the electronic system. The same
calculational scheme has been also applied to wide-gap in-
sulators, such as LiF and MgO,23,24 and wide gap semicon-
ductors, e.g., AlN.25 These materials possess a remarkable
ionic contribution to the total chemical bonding. The bond
ionicity on an ab initio scale is given by the charge asymme-
try coefficient g with values g=0.794 �AlN� and g=0.958
�NaCl�.26

Polar materials are characterized by longitudinal-optical
�LO� phonons whose excitation induces large macroscopic
electric fields in the crystal.27 These fields strongly couple to
the excited electrons and holes and modify their motion.
Therefore, the question arises whether or not the lattice po-
larizability contributes to the dressing of the quasiparticles
and the screening of the electron-hole attraction. Ionic crys-
tals with big dynamical ion charges should show strong lat-
tice polaron effects modifying the electronic states near the
band edges.28 Such systems have small static dielectric con-
stants �0 and �� and relatively large longitudinal optical pho-
non frequencies �LO. Because the static lattice polarizability
��0−��� is of the same order of magnitude as the static elec-
tronic dielectric polarizability ���−1� at high frequencies
���LO, large polaron constants �p= �1/��−1/�0�
	�
 /2maB

2�LO�1/2 �aB-Bohr radius� result,28 for instance �p

�1.2 or �2.0 for binary systems such as AlN and NaCl,
respectively. They yield non-negligible polaron shifts
��p
�LO of about 0.1–0.4 eV if perturbation theory can be
applied to electron or hole states. However, it is not clear �i�
how the lattice polarization really influences the quasiparticle
bands and �ii� whether or not the lattice polarization plays a
role on the time scale of the formation of a Coulomb-
correlated electron-hole pair. There are several open ques-
tions concerning the theoretical description of excitations in
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systems with high lattice polarizability. For instance, the
peak positions in the optical absorption of wurtzite AlN with
respect to experimental findings25 are underestimated, and
the position of the bound electron-hole-pair peak in the op-
tical absorption and the exciton binding in NaCl29 are not
clear.

In this work, we study the quasiparticle band structures
and optical spectra of NaCl and AlN. The calculations are
based on the screening reaction of the strongly inhomoge-
neous electron gases. In addition, we show how the lattice
polarizability ���0−��� modifies the results for the single-
particle excitation energies and the dielectric function in the
framework of the GWA. We proceed in three steps: �i� We
use the density functional theory in local density approxima-
tion to obtain the structurally relaxed ground state configu-
rations of the ionic crystals, wurtzite �w-� and zinc-blende
�zb-�AlN and rocksalt �rs-�NaCl, and the Kohn-Sham �KS�
eigenvalues and eigenfunctions that enter the computation of
the single- and two-particle Green’s functions. �ii� The elec-
tronic quasiparticle spectrum is obtained within the GW ap-
proximation to the exchange-correlation self-energy with a
dielectric tensor modified by the lattice polarization, and �iii�
the Bethe-Salpeter equation is solved for coupled electron-
hole pair excitations, thereby accounting for the screened
electron-hole attraction and the unscreened electron-hole ex-
change. The paper is organized as follows. In Sec. II, we
briefly summarize the basic theory formulation. In Sec. III,
we present the quasiparticle band structure results with and
without lattice polarization. In Sec. IV, our results for the
optical absorption and electron-energy loss spectra are given.
We discuss where lattice polarization may play a role. Fi-
nally, a short summary is given in Sec. V.

II. BASIC THEORETICAL FORMULATION

A. Ground state

Most of the ground-state properties of the crystals under
consideration here have been obtained within density-
functional theory8 and local density approximation9 as
implemented in the VASP code.30 The Perdew-Zunger
interpolation31 has been used for the XC energy in LDA. The
interaction of the valence electrons with the nuclei is mod-
eled by means of pseudopotentials �PPs� in accordance with
the projector-augmented wave �PAW� method32 which are
rather similar to the ultrasoft pseudopotentials.33 For AlN we
have used softer and harder PPs. To achieve convergence
cutoff energies of 17 or 26 Ry have been checked. In the
case of NaCl this value has been tested to be 18 Ry. In
addition, we present results for NaCl that have been obtained
with a massively parallelized multigrid implementation of
the DFT-LDA.34 In this case first-principles normconserving
PPs have been generated within the Hamann scheme.35 Non-
linear core corrections,36 which are particularly important for
sodium, have also been taken into account.

The structural parameters calculated for w-AlN are listed
in Table I. They are in reasonable agreement with experi-
mental data37 and results of other calculations �see, e.g., Ref.
38�. The underestimated theoretical a-lattice constant is a
consequence of the overbinding effect of the LDA for the

given exchange-correlation energy. This effect with an
almost 1% reduction of the theoretical lattice constant
with respect to the experimental one is also observed for
zb-AlN with a0=4.323 Å �compared to a0=4.38 Å from
experiment39�. For rs-NaCl we derived a theoretical cubic
lattice constant of a0=5.435 Å from the minimization of the
total energy. It is again smaller than the experimental lattice
constant of a0=5.64 Å40 but the deviations are larger than
that in the AlN case. Nevertheless we calculated the elec-
tronic and optical properties at the theoretical lattice con-
stants. For NaCl we have repeated the calculations done with
the real-space code34 by using VASP.30 However, we did not
found significant differences. Especially the Kohn-Sham ei-
genvalues agreed well.

B. Quasiparticle bands

In order to account for the excitations aspect we replace
the local XC potential VXC�x� in the Kohn-Sham equation of
the ground state by a nonlocal and energy-dependent self-
energy operator ��x ,x� ;�� and obtain the quasiparticle
equation.10–14 For the XC self-energy we apply the GW
approximation,3,4

��x,x�;�� =
i


2�
� d�e−i�0+

G�x,x�;� − 
��W�x,x�;�� .

�1�

In practical evaluations, the one-particle Green’s function G
is described approximately in terms of the results of the
DFT-LDA band structure calculation. The new QP bands
�n

QP�k� are obtained from the Kohn-Sham eigenvalues �n�k�
shifted by diagonal matrix elements of the difference be-
tween the self-energy and the XC potential calculated with
Kohn-Sham eigenfunctions 
nk�x� by10,41

�n
QP�k� = �n�k� +

1

1 + �nk
��nk

COH + �nk
SEX + �nk

dyn��n�k�� − Vnk
XC	 ,

�2�

where the self-energy operator � has been divided into two
static contributions, the Coulomb hole �COH� part and the
screened exchange �SEX� part,4 as well as a dynamic �dyn�
contribution. Thereby, �nk is the linear coefficient in the Tay-
lor expansion of �dyn around the KS eigenvalue �n�k�.

The major bottleneck in the GW calculations is the com-
putation of the screened interaction W and the inverse dielec-

TABLE I. Structural parameters of w-AlN. They are the lateral
lattice constant a �in Å�, the ratio c /a of the two lattice constants,
and the internal-cell parameter u. The values calculated with soft
and hard pseudopotentials are compared with results of a previous
calculation �Ref. 38� and experimental data �Ref. 37.�

Parameter Soft PP Hard PP
Previous
�Ref. 38�

Experiment
�Ref. 37�

a 3.07 3.08 3.08 3.11

c /a 1.607 1.604 1.607 1.601

u 0.3815 0.3817 0.3824 0.3821
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tric function �−1, respectively. An extreme acceleration can
be achieved by using a model dielectric function for the re-
sponse of the inhomogeneous electron gas in the presence of
excited electrons and/or holes. Several functional forms have
been suggested.42,43 For systems with not too large gaps an
accuracy of the band energies with respect to the valence-
band maximum �VBM� of the order of 0.1 eV has been
achieved.44,45 We use the version suggested by Bechstedt et
al.41 It allows for analytic solutions for the dynamic contri-
bution and the COH term. For instance, the static Coulomb
hole contribution to the self-energy takes the form of a local
potential. For cubic systems it holds

�COH�x,x�� = −
qTF�x�

2

1 −

1

��
�1 +

qTF�x�
kF�x�

	
 3��

�� − 1
�−1/2

��x − x�� , �3�

where the Fermi �kF� and Thomas-Fermi �qTF� wave vectors,
respectively, are computed at the local electron density n�x�.
Local-field effects on the screening in the SEX contribution
are approximated by using state-averaged electron densities.
All occurring matrix elements are performed with Kohn-
Sham eigenfunctions independent of the used multigrid
representation45 or the PAW representation.46

A more extended description of the details of the applica-
tion of a model dielectric function and the approximate treat-
ment of the local-field and dynamical screening effects has
been published in Refs. 41, 43, and 46. The most important
numerical advantage is that the sum over intermediate states
in �dyn can be analytically carried out. No explicit depen-
dence on the number of conduction bands occurs in the com-
putation of this self-energy operator. The results for Si,
GaAs, AlAs, and ZnSe show agreement with the full GW
calculations to within 0.2 eV for all the states considered.
Successful applications were also made to wide-gap semi-
conductors such as GaN,47 SiC,48 and BN.49 Similar to the
standard GW treatment of the quasiparticle band structure,
also the scheme based on a model dielectric function ne-
glects self-consistency effects and vertex corrections.13,14

C. Pair excitations and optical spectra

Excitation energies obtained within the quasiparticle for-
malism describe one-particle excitations, such as those in-
volved in direct or inverse photoemission experiments. For
the description of the optical properties, however, one needs
to go beyond the single-particle level. We study the diagonal
elements of the macroscopic dielectric function � j j���. They
are related to the polarization function P of the electronic
system. Using a representation in Kohn-Sham eigenfunctions
one has in the limit of vanishing photon wave vectors7,50

� j j��� = 1 −
8�e2
2

V



c,v,k



c�,v�,k�

�Mcv
j �k�Mc�v�

j* �k��

	P�cvk,c�v�k�;�� + c.c. and � ↔ − �	 �4�

with matrix elements of the velocity operator v

Mcv
j �k� =

�ck�v j�vk�
�c�k� − �v�k�

�5�

and V the normalization volume. In �4� the sums run over
pairs of electrons in empty conduction band states �ck� and
holes in occupied valence band states �vk�, which are virtu-
ally or physically excited by photons of energy 
�.

The polarization function P obeys a BSE. However, one
has to introduce additional approximations to derive a closed
equation for the polarization function P�cvk ,c�v�k� ;�� that
depends only on one frequency. The contribution to the ker-
nel of the screened potential with respect to the single-
particle Green’s function has to be neglected.51 Moreover,
the screening of the Coulomb attraction of electron and hole
is assumed to be static.7 Neglecting the coupling of resonant
and antiresonant electron-hole pairs as well as the non-
particle-conserving contributions to the electron-hole
interaction,15 the polarization function obeys a BSE of the
standard form



c�,v�,k�

�H�cvk,c�v�k�� − 
�� + i���cc��vv��kk�	

	P�c�v�k�,c�v�k�;��

= − �cc��vv��kk� �6�

with the effective electron-hole pair Hamiltonian
H�cvk ,c�v�k�� and a small damping � of the pair excita-
tions. The Hamiltonian of pairs of excited electrons and
holes, more precisely, of quasielectrons and quasiholes, is
given by5,6,15,50

H�cvk,c�v�k�� = ��c
QP�k� − �v

QP�k���cc��vv��kk�

+ W�cvk,c�v�k�� + v̄�cvk,c�v�k�� �7�

with the matrix elements

W�cvk,c�v�k�� = −� d3x� d3x�
ck
* �x�
c�k��x�

	W�x,x��
vk�x��
v�k�
* �x�� �8�

and

v̄�cvk,c�v�k�� = 2� d3x� d3x�
ck
* �x�
vk�x�v̄�x − x��

	
c�k��x��
v�k�
* �x�� �9�

of the �statically� screened Coulomb interaction W�x ,x�� and
a bare Coulomb interaction v̄�x−x��. Only the short-range
part of the latter is taken into account in agreement with the
physical character of expression �9� as electron-hole
exchange.6 The matrix elements �5�, �8�, and �9� are again
computed using the real-space representation45,50 or within
the PAW picture.32,52 Usually the static screening in �8� is
sufficient for reasonable spectral properties on the two-
particle level.53

The eigenvalues and eigenvectors of the two-particle
Hamiltonian �7� can be used to calculate directly the
frequency-dependent dielectric function �4�. Thereby we ap-
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ply a typical broadening �=0.15 or 0.20 eV of the electron-
hole pairs. The rank of the Hamiltonian matrix �7� is gov-
erned by the number of valence �v� and conduction �c� bands
and the number of k points in the Brillouin zone �BZ�. In the
case of the cubic crystals with an fcc Bravais lattice, we
typically take four valence and four conduction bands into
account. The BZ is sampled by 4000 random k points. They
are generated by means of a random number generator. Spe-
cial points such as of the Monkhorst-Pack type54 may give
rise to a faster convergence in the calculations of the inter-
band density of states. However, random k points distributed
over the entire BZ give rise to a faster convergence after
inclusion of the strong electron-hole interaction. This has
been recently demonstrated for silicon.55 The resulting num-
ber of 48000 pair states is nearly conserved in the wurtzite
case by doubling the number of bands but reducing the num-
ber of points in the BZ. Such an approach requires the di-
agonalization of large-rank matrices. In order to bypass the
diagonalization of the Hamiltonian �7�, we have developed a
numerically more efficient initial-state method19,50 to calcu-
late the optical polarizability, which is essentially the product
of the transition matrix elements �5� and the polarization
function �6�. This quantity obeys an evolution equation
driven by the Hamiltonian �7�. In the case of w-AlN we
double the number of bands but restrict the BZ sampling to
1000 random k points. For NaCl the bands are more flat
comparing with AlN. For that reason we slightly reduce the
BZ sampling to 300 random k points when using a conven-
tional unit cell with 8 atoms.

D. Lattice polarizability

Usually the screened interaction W in Secs. II B and II C
only contains the response of the inhomogeneous electron
gas. For strongly ionic systems with large lattice polarizabil-
ities the question arises how the motion of the nuclei will
effect the energies and strengths of electronic single-particle
and pair excitations. An answer may be given by taking the
electron-phonon interaction into account. There are many pa-
pers that have been addressed to this problem �see Ref. 28
and references therein�. On the other hand, the GW approxi-
mation suggests a simple way to study the influence of the
lattice motion, in particular the motion of charged ions, by
modifying the screening of the coupled electron-lattice sys-
tem. The effect of the lattice polarizability may be described
by a modified frequency-dependent dielectric matrix of the
crystal

��q + G,q + G�;�� = �GG� + 4��el�q + G,q + G�;��

+ 4��lat�q + G,q + G�;�� �10�

with

�el�q + G,q + G;0�

=
1

4�

1

1

�� − 1
+ �q + G�2/qTF

2 + �q + G�4/�4

3
kF

2qTF
2 � .

The most important electronic contribution �el to the polar-

izability of the crystal is taken in a form described
elsewhere.41,46,50 In the strongly ionic crystals under consid-
eration, in addition, there exists a contribution �lat of the
polarizable lattice. In the long-wave-length limit �G=G�
=0,q→0� it is given as27,56

�lat�q → 0,q → 0;�� =
1

4�



�=x,y,z
q̂�

2������� − ���� ,

������ = ����1 +
�LO

2 ��� − �TO
2 ���

�TO
2 ��� − �� + i0+�2� �11�

with q̂=q / �q�, the zone-center optical frequencies �LO���
and �TO���, and �0�=����0� or ���=�������LO����. In
the case of the uniaxial wurtzite crystals with four atoms in
the unit cell, expression �11� is generalized to a direction-
dependent quantity because of the two independent tensor
components �xx���=�yy��� and �zz���. In this case the pho-
non frequencies have to be replaced by those of E1�A1� sym-
metry for the xx=yy�zz� component.

The quantities ��� in expression �11� represent the static
electronic dielectric constants of the semiconductor or insu-
lator under consideration. The total static dielectric constants
�0� of the polar crystal are enlarged by the static lattice po-
larizability. In a hexagonal or cubic crystal the dielectric con-
stants obey the Lyddane-Sachs-Teller relation �0� /���

= ��LO��� /�TO����.2,27,56 The tensor character of the dielec-
tric constants in the wurtzite case has been neglected in the
many-body calculations. In the literature there is a body of
varying dielectric constants. In the many-body calculations
we use reliable values ��=4.4 and �0=9.14 for both w- and
zb-AlN.38,57 For rs-NaCl these values are ��=2.35 and �0
=5.45.58 In the case of AlN the used values are close to such
derived from RPA or density-functional perturbation theory
calculations.38,57

E. Inclusion of lattice polarizability

The replacement of the dielectric matrix by expression
�10� has a great advantage. The response of both electron gas
and ionic lattice can be described simultaneously for any
electronic excitation, electron, hole, and electron-hole pair.
In the limit of small wave vectors and frequencies, �el�q
+G ,q+G� ;��= �1/4�����−1��GG�, the imaginary part of
the inverse matrix reads as ���0�

Im �−1�q + G,q + G�;�� =
�

2

�LO
2 − �TO

2

�LO��

���LO − ���GG�

=
�

2
� 1

��

−
1

�0
��LO���LO − ���GG�.

�12�

The prefactor in �12�, ��1/��−1/�0�, dominates the
Fröhlich coupling constant of the interaction between elec-
trons and longitudinal optical phonons �Ref. 28 and refer-
ences therein�. The expression �12� immediately yields the
self-energy of an electron or hole polaron using the spectral
representation of the self-energy �1�.28 The discussed small
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wave-vector and frequency limit is also relevant for weakly
bonded electron-hole pairs, the Wannier-Mott excitons.28 Be-
cause of their characteristic large radii the electron-hole ex-
change contributions �9� are negligible. The small binding
energies allow that the lattice can completely follow the ex-
citon formation, and the attractive Coulomb interaction �8�
has to be screened by the static dielectric constant �0 which
includes the static lattice polarizability besides the electronic
effect.59–61

For negligible static lattice polarization ��0−���→0 also
the dynamic lattice polarizability �11� vanishes. Then both
the quasiparticle effects in �2� as well as the electron-hole
attraction �8� are dominated by the pure electronic screening.
Corrections due to the vibrating lattice may be derived in a
straightforward manner. For small lattice polarizabilities one
obtains the result of Hedin and Lundqvist4 for the influence
of the vibrating lattice on the screened potential W. In a
formal description the polarizability in �10� can be replaced
according to 4��=vP by the bare Coulomb potential v and
the polarization function P of the system. Taking electronic
and lattice polarization into account according to �10�, one
finds formally for the screened interaction

W = v�1 − v�Pel + Plat��−1. �13�

A Taylor expansion yields in first order to

W = Wel + WelPlatWel �14�

with Wel=v�1−vPel�−1. Expression �14� has been used by
Hedin and Lundqvist4 to derive analytic formulas for the
influence of phonons on the electron self-energy.

The application of the dielectric tensor �10� to describe
the screening in the XC self-energy and in the BSE requires
a careful discussion of the contributing characteristic wave
vectors and frequencies and, consequently, then allows us
appropriate approximations. The limit of complete neglect of
lattice polarizability is the original approximation I. The full
lattice polarization �11� acts only substantially in the long-
wavelength limit. This is more or less automatically adjusted
by formula �10�. For wave vectors �q+G��qTF the elec-
tronic screening dominates. For that reason, we will use the
static limit of �10� as one possible approach labeled by ap-
proximation II. Practically only the static lattice polarizabil-

ity ��0−��� is added to the �electronic� dielectric function
�10� in the statically screened quantities �COH �2�, �SEX �2�,
and W �8�. The inclusion in the quasiparticle calculations is
obvious. The dynamics in the self-energy is still dominated
by the electronic response, since the QP shifts in �2� with
respect to the KS eigenvales are large compared to the pho-
non frequencies. We will also introduce an approximation III
where the lattice polarizability is only partially taken in the
computation of the self-energy. In the explicit calculations
we replace the dielectric constant by the average of the two
values �� and �0.

The dynamics of screening influences very much the at-
tractive electron-hole interaction. With the inclusion of the
frequency dependence of the dielectric matrix in W �8� no
closed BSE �6� can be derived for the two-particle polariza-
tion function depending only on one frequency.7,53,59,60 For
that reason we simulate effects of dynamical screening by
studying the static screening for the two limiting cases. The
strength of the screening, in particular in the BSE �6�, de-
pends sensitively on the strength of the Coulomb effects, in
particular the exciton binding energy itself. In the case of the
Wannier-Mott excitons the binding energies EB are usually
so small that EB�
�LO holds. Dynamical screening does not
play a role. The complete static lattice polarizability ���0

−��� contributes to the screening of the electron-hole
attraction.59–61 The screening is mainly characterized by the
static dielectric constant �0. In the opposite limit, EB
�
�LO, the lattice cannot follow the formation of bound
electron-hole pairs and the Coulomb attraction is only
screened by the redistribution of electrons. The electronic
bands of NaCl are rather flat and the dielectric constant �� is
small. One expects that the conditions for the second ap-
proximation are clearly fulfilled. AlN seems to represent an
intermediate case. For that reason we investigate both situa-
tions, neglect of lattice polarizability in �8�, i.e., use of ��,
and inclusion of lattice polarizability, i.e., use of �0 or an
averaged value in the model dielectric function described in
Refs. 41 and 43.

III. QUASIPARTICLE BAND STRUCTURES

The lattice effect on the quasiparticle excitations is illus-
trated in Fig. 1. It shows the QP band structures of w-AlN

FIG. 1. Quasiparticle bands �solid lines� with-
out �a� and with �b� the effect of the lattice polar-
ization in comparison with Kohn-Sham bands
�dashed lines� for w-AlN. The valence-band
maximum is used as energy zero. Soft pseudopo-
tentials have been used.
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using averaged dielectric constants ��=4.4 and �0=9.14 with
and without lattice polarization in comparison to the KS
bands. The positive �negative� QP shifts of the conduction
�valence� bands are somewhat reduced in the presence of the
lattice polarization. This observation is in agreement with the
fact that lattice polaron effects shrink the gaps and transition
energies.28 The effect of the lattice polarizability scales with
the QP effects themselves. Therefore, it mainly occurs in the
sp-conduction bands and in the deep N2s valence bands.
However, the reduction of the quasiparticle shifts by the lat-
tice polarizability is stronger in the case of the empty states.

Explicit numbers are given in Table II for w-AlN and in
Table III for zb-AlN. They show an opening of the gaps and
transition energies by pure electronic QP shifts of
2.1–2.5 eV. The full inclusion of the lattice polarizability
reduces these QP shifts. The lattice-polaron effect shrinks the
quasiparticle fundamental gaps by about 0.6–0.9 eV. The
comparison with direct gaps �w-AlN� and indirect gaps �zb
-AlN� derived from measurements remains somewhat inclu-
sive. Moreover, the experimental gap values show a consid-
erable dependence on temperature.66 In both the wurtzite and
zinc-blende cases the QP gaps with and without lattice po-
larizability frame the experimental values. However, one has
to take into consideration that gaps have generally been de-
rived from optical measurements63–65 �see also body of data
in Ref. 67�. Even in the case that excitonic effects have been
separated, the extracted data may be influenced by vertex
corrections of the gap due to the electron-phonon interaction.
According to Mahan28 the polaron shrinkage of the optical
pair energies is governed by the difference �ge−gh�2 of the
coupling constants for electrons �ge� and holes �gh�. In our
GW quasiparticle calculations we take only the effect on
electrons ��ge

2� and holes ��gh
2� into account. The vertex

corrections �−2gegh do not occur. Consequently, the QP

gaps calculated with the full inclusion of the lattice polariz-
ability should be smaller than the gaps extracted from optical
data. Because of the partial cancellation of the electron and
hole effects due to �ge−gh�2, one should expect QP gaps in
between the values of Tables II and III computed with and
without lattice polarizability.

There is another problem in the calculations. Our pure
electronic QP openings are larger than the values obtained in
a previous calculation62 by 0.2 eV. One reason for this dis-
crepancy may be due to the use of a larger dielectric constant
��=4.84.62 More substantial are, however, the discrepancies
in the DFT-LDA gaps of w-AlN. We find 4.67 eV instead of
3.9 eV.62 This cannot only be explained by the use of differ-
ent lattice constants, theoretical one �here� and experimental
one in Ref. 62. To solve the discrepancy we repeated the
DFT-LDA calculations with harder pseudopotentials but
found only a small reduction of the gap value to 4.53 eV �see
also Fig. 2�b��. The majority of the previously calculated
DFT-LDA gaps �Ref. 38; see also collection in Ref. 68� are
close to our value. Within the generalized gradient approxi-
mation �GGA� of the XC potential in the KS equation, a gap
of 4.74 eV has been computed. Our test calculations within
the GGA framework69 gave almost the same DFT band struc-
tures �see Fig. 2�a��. Only the s-like conduction band minima
are shifted towards smaller energies by about 0.1 eV. The
indirect Kohn-Sham gap for zb-AlN is 3.33 eV �Table III�.
This value is also close to that of other DFT-LDA calcula-
tions of 3.1 eV.70

The effect of the lattice polarizability on other details of
the band structure is much weaker. Interestingly the lattice
polaron effect tends to narrow also the band widths of the
valence bands �see Table II�. Unfortunately the currently
available measurements of the density of states70 �DOS� do
not give values for the valence-bands widths with a sufficient
precision. Nevertheless, they indicate two interesting facts:

TABLE II. Gaps Eg and valence-band widths Ew of w-AlN with and without lattice polarization. Soft
pseudopotentials have been used. All values in eV.

Present calc. Previous calc. �Ref. 62� Expt.

Energy KS QP �without� QP �with� KS QP �without� �Ref. 63� �Ref. 64�

Eg ��−�� 4.67 6.80 5.95 3.9 5.8 6.11 6.25

Eg ��−K� 5.00 7.28 6.51 4.8 6.7

Ew �upper� 6.18 6.33 6.17 7.4 8.0

Ew �total� 15.15 17.00 16.57 16.3 18.2

TABLE III. Fundamental gaps Eg �in eV� for zb-AlN with and without lattice polarizability. Soft pseudo-
potentials have been used.

Present calc. Previous calc. �Ref. 62� Expt.

Gap KS QP �without� QP �with� KS QP �without� �Ref. 65�

�→� 4.61 6.72 5.86 4.2 6.0

�→X 3.33 5.45 4.74 3.2 4.9 5.34

�→K 5.20 7.67 6.78

�→L 7.66 10.15 9.25 7.3 9.3
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�i� The DOS of zb-AlN and w-AlN roughly agree in the
valence-band region and �ii� the peak maximum in the DOS
of the lowest valence bands is shifted to lower energies with
respect to the DOS derived from the DFT-LDA. This value is
in rough agreement with the QP shift �at least for the use of
�0� as demonstrated in Fig. 1 and the increase of the valence-
band width in Table II. There is also a small influence of the
QP effects on the crystal-field splitting. Its absolute value is
reduced from −205 meV �KS� to −190 meV �QP, without�
and −182 meV �QP, with lattice polarizability�. The recom-
mended experimental value amounts to −169 meV.67

Quasiparticle energies for rs-NaCl are listed in Table IV
and plotted in Fig. 3. The band structures also show the
positions of energy peaks measured for critical points in the
BZ by means of angle- and energy-resolved distributions of
photoelectrons from the �100� face of NaCl single crystals.
The fundamental QP gaps given in Table IV are 8.63 eV����
and 7.17 eV��0�. Again they frame the experimental value of
8.5 eV derived from ultraviolet photoemission data72 or oth-
ers of about 8.5 eV73 or 8.0 eV74 and seem to suggest only a
small contribution of the lattice relaxation �however, see dis-
cussion in Sec. IV�. For that reason, results for the average
3.9 of the two dielectric constants �0 and �� and, hence, only
50% of the lattice polarizability are also given in Table IV.
The gap opening by pure electronic screening of 3.51 eV is
strongly reduced by 1.48 eV due to the inclusion of the full
lattice polarizability in the static parts of the self-energy �2�.

The reason is mainly related to the variation of the SEX
term. The variation of the COH terms only contributes with
about 25% to the lattice-polaron gap shrinkage. We mention
that a QP gap opening due to pure electronic polarization
effects of about 3.7 eV has been already predicted many
years ago by Carlsson75 and Harrison.76

The comparison with experimental band positions71 in
Fig. 3 leads to a similar conclusion as the discussion of the
fundamental gaps in Table IV. The quasiparticle bands ob-
tained for the pure electronic screening �Fig. 3�a�� are closer
to the points measured with respect to the VBM or the
conduction-band minimum �CBM�. This holds particularly
for the bands X5c, X4�c, X3c, X1c, X5�v, and X4�v at the X point.
The band state �25c� is too high in energy whereas the band
�12c is too low. However, the agreement with the QP bands
including partially lattice polarizability �Fig. 3�b�� is much
worse. Altogether, comparing with the PES data of Stein-
mann and Himpsel71 it seems that the QP band structure with
pure electronic screening better describes the experimental
findings. The reason may be related to the used initial-state
technique to determine the valence-band states with respect
to the VBM and the final-state technique to determine the
conduction-band states with respect to the CBM. Another
reason may be related to the fact that different bands are
involved in the underlying emission processes. According to
the vertex corrections of the polaron effect discussed already
for AlN here also a cancellation should occur. The cancella-
tion effects may be supported by the fact that both the high-
est valence band and the lowest conduction band are mainly
derived from chlorine states.77 This fact is somewhat in con-
trast to the anion character of the lowest conduction band in
the case of the other alkali halides.76,78

IV. OPTICAL SPECTRA: EXCITONIC EFFECTS

As a first example the frequency-dependent dielectric
function of zb-AlN is shown in Fig. 4 using a broadening
parameter �=0.2 eV and 4000 random k points in the BZ.
Left panels �Fig. 4�a�� show the real and imaginary parts of
the dielectric function within the independent QP approach.
That means, the Coulomb effects �W and �v̄ in the pair
Hamiltonian �7� have been disregared. QP results are pre-
sented for pure electronic screening and screening including

FIG. 2. Comparison of the Kohn-Sham bands
�a� in LDA �solid lines� and GGA �dashed lines�
or �b� using soft �solid lines� and hard �dashed
lines� pseudopotentials for zb-AlN.

TABLE IV. Quasiparticle shifts of the VBM and the CBM as
well as level positions of rs-NaCl with inclusion of the lattice po-
larizability in different approximations. All values in eV. The VBM
in KS eigenvalues is used as energy zero.

Inclusion of
lattice polarizability Level

KS
eigenvalue QP shift

QP
eigenvalue

without CBM 5.14 1.95 7.09

VBM 0 −1.55 −1.55

with partial CBM 5.14 0.92 6.06

VBM 0 −1.56 −1.56

with CBM 5.14 0.73 5.87

VBM 0 −1.30 −1.30
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the lattice polarizability. The right panels �Fig. 4�b�� give the
same spectra with the inclusion of excitonic effects. The cal-
culated curves are compared with measured spectra.79 The
QP spectra demonstrate that the most important effect of the
inclusion of the lattice polarizability is an almost rigid red-
shift of about 0.8 eV. The lineshape is less influenced. On
the other hand, the Coulomb correlations, screened electron-
hole attraction and electron-hole exchange in �7�, yield a
drastic redistribution of the absorption spectrum �more
strictly: imaginary part of the dielectric function�. Spectral
density is redistributed from the high-energy region closer to
the region following the absorption onset in agreement with
previous observations for other crystals.50 This tendency is
combined with an overall redshift of the absorption due to
the Coulomb effects. However, no bound excitons are ob-
served below the absorption onset within our numerical ac-
curacy. Their reproduction may require denser k-point
meshes. The redshift amounts to about 1.2 eV for the pure
electronic screening and is reduced to 0.6 eV after inclusion
of the lattice polarization. As a consequence of the different
action of the lattice polarizability on the QP shifts and the
Coulomb attraction, the optical spectra resulting for two dif-
ferent screenings, with and without lattice polarization, ex-
hibit wide similarities. The spectrum with the larger screen-

ing is only less redshifted with respect to that computed for
the pure electronic screening effect.

The question, which of the two computed spectra better
fits to the measured one, is difficult to answer. The low-
energy side of the absorption and the peak structure in the
real part fit better to the neglect of the lattice polarizability.
The reason may be the partial cancellation of the polaron
effects due to vertex corrections �see discussion in Sec. III�
and the dynamics of the screening in the electron-hole attrac-
tion. The spectral redshifts due to the excitonic effects are
with 0.6 or 1.2 eV much larger than the optical phonon en-
ergies. As a consequence the spectrum computed with the
pure electronic screening may be closer to the measured one.
Conclusions within the Wannier-Mott exciton picture con-
cerning the correct inclusion of dynamical screening are also
very difficult. Using the band and dielectric parameters from
Ref. 80 one finds different exciton binding energies of about
0.09 eV��0� or 0.29 eV���� in dependence of the dielectric
constant. These values surround the optical phonon energy of
0.10 eV. This fact and the comparison of the theoretical and
experimental spectra in Fig. 4�b� indicate that further studies
are needed with an improved k-point sampling �on the theo-
retical side� and improved sample quality �on the experimen-
tal side�.

FIG. 3. Quasiparticle bands without �a� and with �b� the effect of the lattice polarization for rs-NaCl. The valence-band maximum is used
as energy zero. The filled circles indicate measured band positions �Ref. 71�.

FIG. 4. Frequency-dependent macroscopic di-
electric function of zb-AlN within the
independent-quasiparticle approximation �a� and
for Coulomb-correlated electron-hole pairs �b�.
The QP and excitonic effects have been calcu-
lated using pure-electronic screening �solid lines�
or under inclusion of the lattice polarizability
�dashed lines�. The theoretical spectra are com-
pared with experimental ones �dotted lines� �Ref.
79�.
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The optical absorption spectra for ordinary and extraordi-
nary light polarization are presented in Fig. 5 for w-AlN.
This figure again demonstrates the huge excitonic effects in
the AlN case. The spectra calculated within the framework of
independent quasiparticles are completely redistributed from
higher to lower photon energies. Thereby, the lineshape
changes remarkably. The imaginary part of the ordinary di-
electric function shows not only qualitative but also quanti-
tative agreement with the measured spectrum. The positions
of the two main peaks at 7.8 and 9.0 eV �computed spec-
trum� are in excellent agreement with the results of spectro-
scopic ellipsometry measurement.79,81 Only the steep onset
of the absorption is less pronounced in the calculated spec-
trum because of the use of random k points. They do not
give rise to converged contributions from the lowest optical
transitions from the �-point region to the joint density of
states. The peak intensities are somewhat below the experi-
mental values. However, in fact in a previous measurement25

smaller intensities have been obtained. Because of the repro-
duction of the peak positions we have only used pure elec-
tronic screening in the spectra computation for Fig. 5. The
partial inclusion of the lattice polarizability, at least in the
determination of the QP band structure, would give a redshift
of the theoretical absorption spectra in disagreement with the
experimental findings.

The influence of the many-body effects according to �2�
and �7� on the optical absorption of rs-NaCl is illustrated in
Fig. 6. It presents spectra which account for both excitonic
and quasiparticle effects or only for quasiparticle effects. For
comparison the imaginary part of the dielectric function for
independent Kohn-Sham particles is also shown. Only elec-
tronic screening effects have been taken into account. The
spectra have been computed using the real-space approach.34

A conventional simple cubic �sc� unit cell with 8 atoms has
been used. The smaller sc BZ has been sampled with a re-
duced number of 300 random k points. Comparing the DFT-
LDA and the QP spectra an overall characteristic blueshift of
about 3.7 eV is visible. However, the lineshape remains al-
most conserved. The high-energy peaks are seemingly be

related to optical transitions between band states in Fig. 3.
However, the inclusion of the screened electron-hole attrac-
tion and the electron-hole exchange gives rise to a complete
redistribution of the optical spectrum. A strong bound exci-
ton peak occurs at the absorption edge while the spectrum
for higher photon energies is remarkably reduced. Such ten-
dencies have been also observed for another alkali halide,
LiF.24 However, in the case of NaCl it is difficult to derive an
exciton binding energy directly from the comparison of the
QP spectra with and without excitonic effects. The bound
exciton peak whose broadening is dominated by the value
�=0.2 eV sits practically at the fundamental QP gap value.
The reason is that not only the lowest interband transitions
cv contribute to the exciton but also higher optical transitions
c�v� which are mixed in by the matrix elements of W �8� and
v̄ �9�. Consequently, it makes no sense to ask directly for an

FIG. 5. Imaginary parts of the macroscopic
dielectric function calculated including quasipar-
ticle �dashed lines� and excitonic �solid lines� ef-
fects for w-AlN. The lattice polarization has been
neglected. Ordinary �a� and extraordinary �b�
light polarizations are studied. An experimental
spectrum �Ref. 79� is shown as dotted line. A
Lorentzian broadening of �=0.2 eV and 1000
random k points in the BZ have been used.

FIG. 6. Imaginary part of the dielectric function of rs-NaCl
including quasiparticle and excitonic effects �solid line�, within the
independent quasiparticle approximation �dashed line�, and the in-
dependent Kohn-Sham-particle approximation �dotted line�. Only
pure electronic screening has been taken into account. A broadening
of �=0.2 eV is used.

QUASIPARTICLE BANDS AND OPTICAL SPECTRA OF… PHYSICAL REVIEW B 72, 245114 �2005�

245114-9



exciton binding energy because the question with respect to
which QP transition energy cannot be answered.

In the experimental work29 it was claimed that an addi-
tional excitonic feature shifted by about 0.8 eV towards
higher energies has been observed. This feature has been
interpreted as the n=2 exciton peak of a hydrogenlike series
with an exciton binding energy of almost 1.1 eV, though the
Wannier-Mott-like exciton picture should be inappropriate.
The calculated spectrum in Fig. 6 also shows a shoulder at
photon energies of about 1 eV higher in energy. However,
we cannot really derive the main character �either due to
Coulomb effects or due to interband transitions� of this fea-
ture. The pronounced exciton peak, the second peak roughly
3.4 eV above the first one, and the absolute values of the
spectral strength agree well with the corresponding features
in experimental spectra, at least in that measured at room
temperature. The low-temperature spectrum exhibits a stron-
ger exciton peak which may be simulated by a smaller
broadening parameter.

However, there is a discrepancy between the measured29

and the calculated �Fig. 6� exciton peak. In the measured
spectra this peak is redshifted by about 1 eV. In order to
bridge this discrepancy, we include effects of the lattice po-
larizability in the many-body calculations, at least on the
quasiparticle level. We have also performed test calculations
�not presented here� with the inclusion of the lattice polariz-
ability in the electron-hole attraction. This leads to a consid-
erable reduction of the excitonic effects and, hence, to a
change of the lineshape. In particular, the bound excitonic
peak is dramatically reduced. For that reason, we conclude
that the dynamics of exciton formation does not allow a sub-
stantial contribution of the lattice polarizability to the
electron-hole screening and, hence, omit this contribution.
Within the Wannier-Mott picture and a reduced pair mass of
0.44 m29 an exciton binding energy of about 1.1 eV would
result. This value is indeed large compared with the optical
phonon energy of about 
�LO=0.03 eV. Therefore, the lat-
tice polarizability is only taken into account in the QP shifts.
In order to account for the vertex corrections we reduce the
effect of the lattice polarizability. Numerically we replace �0
by the average 3.9 of �0 and ��. This procedure leads to a QP
gap of about 7.7 eV �cf. Table IV�. The resulting imaginary
part of the dielectric function is presented in Fig. 7 and com-
pared with the experimental room-temperature spectrum.29 It
seems that this procedure may roughly explain the measured
lineshape of the absorption and the measured peak positions.
There remain differences. After partial inclusion of the lattice
polarizability the high-energy peaks are seemingly too much
redshifted and the broad structures around 9.5 or 10.5 eV
between the two peaks in the computed spectra are too pro-
nounced. Probably the vertex polaron corrections are stron-
ger for the high-energy transitions compared with the 50%
reduction assumed here.

A similar tendency has been observed for the energy loss
function −Im�1/����� of rs-NaCl in Fig. 8. The comparison
of the calculated spectrum with the function constructed
from measured optical data29 shows qualitative agreement.
All the observed peaks occur in the computed spectrum.
However, the majority of the high-energy peaks is too much
redshifted and the intensity of the calculated loss spectrum is
somewhat to small.

V. SUMMARY

Using a combination of an ab initio density functional
theory for the ground-state properties and the many-body
perturbation theory to describe electronic properties we have
studied the band structures and optical spectra of the wide-
gap semiconductor AlN and the insulator NaCl. Because of
their high static ionicity of the chemical bonds, these crystals
also possess large dynamical ion charges ��1/��−1/�0�1/2

and, hence, a large polarizability of the vibrating lattice.
Consequently, in addition to the screening reaction of the
inhomogeneous electron gas one also expects a response of
the ion lattice after excitation of electrons, holes or electron
hole pairs.

In order to simulate the lattice influence we have added
the dynamic lattice polarizability to the electronic effect. In

FIG. 7. Imaginary parts of the macroscopic dielectric function
calculated including quasiparticle and excitonic effects without
�solid line� and with �dotted line� the effect of the lattice polariza-
tion for rs-NaCl. The experimental room-temperature spectrum
�Ref. 29� is shown as dashed line. A Lorentzian broadening of
0.2 eV has been used.

FIG. 8. The energy-loss function for rs-NaCl. Solid line: derived
from a dispersion analysis of the optical-reflectance data �Ref. 29�;
dashed line: computed with reduced lattice polaron effects in the
QP calculations.
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the limit of small frequencies, 
��gap energy, this ap-
proach yields the well-known lattice-polaron effect on single
bands in the self-energy of electrons and holes. In the limit of
small wave vectors, q�qTF, �which is fulfilled for extended
effective-mass states� and small frequencies, ���TO, the
Coulomb attraction of electrons and holes can be replaced by
the static dielectric constant of the ionic crystal including the
lattice polarizability. The opposite limit of pure frequency-
and wave-vector-dependent electronic screening is also in-
cluded.

In the case of quasiparticle bands and gaps we found hints
for a reduced lattice polaron effect for AlN. We have dis-
cussed this finding in terms of vertex corrections. In the
NaCl case the situation is less clear. Comparing the results of
the quasiparticle approach only with band positions derived
from initial- and final-state photoemission spectroscopy
�PES�, it seems that the lattice effect can be widely ne-
glected. However, looking for the correct peak positions in
optical absorption spectra, a contribution of the lattice polar-
izability to the quasiparticle shifts seems to be necessary. To
bring the bound exciton peak at the absorption onset in
agreement with the experimental position a large polaron
shift of about 1 eV is needed. For higher optical transitions
this shift can be smaller because of the more efficient vertex

corrections due to the electron-phonon interaction.
The discussion of the lattice contribution to the screened

Coulomb attraction is difficult because it requires studies of
the dynamical screening, which, however, does not lead to a
closed Bethe-Salpeter equation. For that reason we studied
only limiting cases. The nonexistence of Wannier-Mott-like
excitons in particular in NaCl makes the conclusions more
difficult. However, the large redshifts of the optical absorp-
tion with respect to the independent-quasiparticle approach
and the complete change of the lineshape in the NaCl case
indicate strong excitonic effects, which would mean large
exciton binding energies in the Wannier-Mott limit. For that
reason, we concluded that the lattice cannot follow the large
effects of the Coulomb attraction and, therefore, not contrib-
ute to its screening.
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