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Plane-wave reflection and refraction at an interface with a double-wire medium is considered. The problem
of additional boundary conditions �ABC� in application to wire media is discussed and an ABC-free approach,
known in the solid state physics, is used. Expressions for the fields and Poynting vectors of the refracted waves
are derived. Directions and values of the power density flow of the refracted waves are found and the conser-
vation of the power flow through the interface is checked. The difference between the results given by the
conventional model of wire media and the model, properly taking into account spatial dispersion, is discussed.
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I. INTRODUCTION

Wire medium �WM� is an artificial medium formed by a
lattice of ideally conducting thin wires. Recently, interest in
such artificial media which offer new physical phenomena
and applications has been growing. This medium at low fre-
quencies is usually described as a uniaxial crystal, whose
axial permittivity tensor component is expressed by the
plasma formula

� = �h�1 −
�p

2

�2�h
� = �h�1 −

kp
2

k2� . �1�

Here �h is the permittivity of the host medium, k=���h /c
=ko

��h, and c is the speed of light. The constant �p �or the
corresponding kp� is an equivalent “plasma frequency” that
gives grounds to call the wire medium “artificial plasma.”
There exist different models for the plasma frequency, see
Refs. 1–3. For thin wires all models give similar results, and
we will use below in our calculations the following approxi-
mate formula:2

kp
2 =

2�/L2

ln
L

2�r0
+ 0.5275

. �2�

It has been shown,4 that if the wave vector in a WM has a
nonzero component along the wires, the plasma model

should be corrected introducing spatial dispersion �SD�.
Similarly, spatial dispersion is inherent to the double WM
�DWM� formed by two mutually orthogonal lattices of thin
ideally conducting straight wires. See Fig. 1.

For consideration of waves in double wire media let us
take a case where the wires are perpendicular to each other in
the y and z directions. The waves in unbounded space filled
with a DWM medium were studied in Refs. 5–7 numerically,
and in Ref. 8, using a semianalytical approximation of the
local field, and in Ref. 9 both numerically and using the
effective medium �EM� approach. In a previous paper, a very
good agreement between the results given by the EM and
full-wave theories for all types of waves in DWM �if the
wires are thin� has been demonstrated.

In this paper we consider the plane-wave reflection and
refraction at an interface of DWM using the effective me-
dium approach. We assume that the two orthogonal wire ar-
rays are identical, the period of the lattice is equal to L in the
x, y, and z directions, and the radius of the wires is equal to
r0. In this case the wire lattice is square in the plane of the
wires, i.e., the �yz� plane. We assume also that the interface
of DWM lies in the �xy� plane and the incident wave vector
lies in the �yz� plane �see Fig. 2�.

In the following sections we will give basic expressions,
obtained in the framework of the EM approach, and formu-
late the wave refraction problem, demonstrating the neces-

FIG. 1. Geometry of the unbounded DWM.
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sity of additional boundary conditions �ABCs� both for inter-
face problems with single and double wire media. Then we
will discuss some approaches, applying in solid state physics
in order to overcome the ABC problem and look what may
be useful for us in application to WM. Using the ABC-free
approach we will find the reflection coefficient, amplitudes
and Poynting vectors for refracted waves. We will compare
directions of the group velocity and the energy density flow
found from the expression for the Poynting vector containing
additional terms inherent for media with spatial dispersion.
Conservation of the normal component of the power-flow
vector at passing through the interface is checked.

II. FIELD EQUATIONS AND EIGENWAVES IN THE
DOUBLE UNBOUNDED WIRE MEDIUM

Assuming space-time dependence of fields as ej��t−kyy−kzz�,
there are nonzero wave vector components parallel to wires.
Anisotropy appears in this electromagnetic crystal with
square lattice and DWM behaves as a biaxial crystal with the
relative permittivity dyadic

� = �xuxux + �yuyuy + �zuzuz, �3�

with

�x = �h, �y = �h�1 −
kp

2

k2 − ky
2�, �z = �h�1 −

kp
2

k2 − kz
2� .

�4�

Note, that Eq. �4� works both for real and imaginary ky �for
propagating and evanescent waves, respectively�, see Ref. 4.

In the wire medium the Maxwell equations

� � E = − j��oH �5�

� � H = j��o� · E �6�

split into two separate subsystems describing wave propaga-
tion of fields with TE and transverse magnetic �TM� polar-
izations:

− j�kyuy + kzuz� � �Exux + Eyuy + Ezuz�

= − j��o�Hxux + Hyuy + Hzuz� , �7�

− j�kyuy + kzuz� � �Hxux + Hyuy + Hzuz�

= j��o��xExux + �yEyuy + �zEzuz� . �8�

For ordinary TE waves this leads to the wave equation

�k2 − ky
2 − kz

2�Ex = 0. �9�

The same equations hold for Hy and Hz. There are no effects
due to wires, and ordinary waves propagate as in any isotro-
pic dielectric medium.

Whereas for extraordinary TM waves the wires affect the
propagation, and we obtain the wave equation

�k2�y − kz
2 − ky

2�y

�z
	Hx = 0. �10�

The same equation can be written for Ey and Ez.
In order to solve the wave reflection problem we need to

evaluate the eigenwaves which are outgoing from the inter-
face of DWM. It means that we have to find kz under fixed k
and ky. Let ky =k sin �, where � is the incidence angle.

It follows from �10� that the dispersion equation has the
form

T�kz,�� = kz
2 − �k2�y�ky� − ky

2�y�ky�
�z�kz�

	 = 0, �11�

and its solution is

kz±
2 =

2k4 − 2k2kp
2 − 3k2ky

2 + 2kp
2ky

2 + ky
4 ± ky

��ky
2 − k2���2kp

2 + ky
2�2 − k2�4kp

2 + ky
2��

2�k2 − ky
2�

. �12�

Two waves propagating or attenuating in both directions fol-
low from the effective medium theory �12�.The conventional
isotropic plasma model leads to only two waves for a certain
direction, namely, kz= ±�k0

2�−ky
2, �=�h�1−kp

2 /k2�.
For the following consideration of the refraction problem

we will need to know properties of waves propagating in the

z direction. Here we briefly revise these properties �see our
previous paper9 for more details�. The real and imaginary
parts of kz versus the normalized frequency k /kp are pre-
sented in Fig. 3 for �=� /4. Let us assume that �h=1. In the
simple case of the conventional model �dotted curve� kz is
imaginary if k�K2=kp / cos �, and it is real if k	K2. The

FIG. 2. Geometry of the wave reflection problem.
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solution of the conventional model is completely wrong be-
tween K1 and K2 because it gives an imaginary value of kz
instead of a real one which is obtained from the correct
model. The correct, more complicated solutions, follow from
Eq. �12�. Analyzing Eq. �12�, one can see that there exist
three frequency regions, corresponding to different kinds of
solution.

The first one is the low frequency band k�K1, where

K1 = kp

�2

sin �
�1 − cos �

cos �
�13�

is the stop band edge: above this wave number the waves are
propagating. Thus, the band edge shifts to smaller k com-
pared with the point K2 given by the conventional model.
There the propagation constant kz is complex despite the fact
that we have assumed the medium to be lossless �see Fig. 3�.
Actually, there are two complex conjugate solutions for each
Re�kz�	0.

The second frequency area is K1�k�K2. At point K2 one
of the solutions is zero and within the range K1�k�K2 we
have a forward wave and a backward wave with respect to
the interface. It means that the energy density velocity �group
velocity� for both waves points into the material, obeying
causality, but for one of the waves the normal component of
the wave vector �or phase velocity� is positive while for the
other wave it is negative. The group velocity is equal to zero
at point K1. Note that it takes place under nonzero kz and it is
very similar to the vanishing of the group velocity in super-
conductors near the Josephson plasma resonance due to spa-
tial dispersion.10 A branch of the dispersion characteristics
corresponding to the real part of kz for the complex wave
originates exactly at this point. Compare with the result ob-
tained in the framework of the conventional model, where
the point K2, and not K1, corresponds to the edge of the
passband and kz=0 at the edge.

Finally, for k	K2 both of the waves are propagating for-
ward waves. Electrodynamical calculations9 �using the three
dimensional periodic Green’s function� confirm the results of
the effective medium theory with a high accuracy in a wide
spectral range including the regions of evanescent and propa-
gating waves �see solid and dashed curves in Fig. 3�. Thus,

the model taking into account spatial dispersion leads to a
considerably more complicated structure of eigenwaves than
the conventional model of an isotropic plasma, and it is in
very good agreement with the results of the full-wave analy-
sis.

III. WAVE REFLECTION FROM A WIRE MEDIUM
INTERFACE AND THE PROBLEM OF ADDITIONAL

BOUNDARY CONDITIONS

As was shown above, there exist two extraordinary waves
with the wave vector and the electric field in the �yz� plane.
Assuming the y component of the electric field of the inci-
dent wave to be equal to unity, and applying the continuity
conditions of the tangential field components results in the
reflection problem formulated as follows:

1 + RE = E+ + E−,

�1 − RE�/Z0 = E+/Z+ + E−/Z−, �14�

where RE is the unknown reflection coefficient for electric
field, E+, E− are the unknown amplitudes of refracted waves
in the wire medium, Z0 is the wave impedance �TM� in free
space, and Z± are the wave impedances of the refracted
waves. Thus the problem becomes similar to one appearing
in crystallooptics, where excitons arise and spatial dispersion
cannot be neglected.11 The main difficulty here is the neces-
sity to invoke additional boundary conditions in order to
match solutions at the interface of media. It was pointed out
by Pekar12 �1956� that the well-known Maxwell’s boundary
conditions �14� are not sufficient to connect the amplitudes
of the incident and transmitted waves in adjoining media, if
more than one independent wave can propagate in any me-
dium.

Probably, the first ABCs were proposed by Pekar,12 and
his ABCs stay among the more often used in the theory of
media with SD. The most general ABC looks like11

Pz + �
�Pz

�z
= 0, �15�

where � is a phenomenological parameter to be determined
from a microscopic model.

After pioneering Pekar’s publication, different ABCs were
proposed for problems of crystallooptics, as well as semicon-
ductor and plasma electrodynamics. All of these works relate
to specific media and take into account the properties of a
subsurface layer at the media interface �see Refs. 11 and 13,
and the bibliography presented there�. Besides, phenomeno-
logical assumptions and experimental data are used very of-
ten in these theories. Since WM strongly differs from a solid-
state crystal, only general approaches to ABCs which do not
concern particular media may be interesting for us.

Many authors �see, for example, Refs. 14 and 15� derived
ABCs from a given model of medium with an explicit speci-
fication of its surface. After simplifications these models give
nothing more than Pekar’s ABCs. Recently the microscopic
approach was applied to study optical properties of layered
superconductors near the Josephson plasma resonance.10,16,17

FIG. 3. Real and imaginary parts of kz, calculated using the
electrodynamical model �solid curves� and the EM theory �dashed
curves�. The dotted curve shows kz given by the conventional
plasma model.
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In these, media effects of spatial dispersion appear due to a
strong delay of the group velocity in vicinity of the reso-
nance. Despite that the wavelength is much larger than the
lattice constant, spatial dispersion strongly influences trans-
mission of light through a layered structure when the energy
velocity approaches zero and the interaction time of light and
matter remarkably increases. Actually, authors of Refs. 10,
16, and 17 derived parameter � entering Eq. �15�, solving the
electrodynamical problem for the medium and neglecting
some insignificant terms. Direct application of such an ap-
proach to WM is not possible due to the strongly different
nature of superconductors near the Josephson plasma reso-
nance and media consisting of infinitely long conductive
wires. Among different theories of SD media, so-called
“ABC-free” theories attract our attention. One of the ways
for ABC derivation is a concept of “exciton dead layer,”
proposed by Hopfield and Thomas. Actually, there is a layer
in which exciton wave function has an evanescent form.
Cho18 has pointed out that there is a certain limit of transition
layer thickness, below which the ABC theory is unnecessary.
However, the Cho theory is not yet free from some param-
eters determined by specific surfaces. Chen and Nelson de-
clare that their work19 solves the macroscopic ABC problem
completely. Despite the fact that the authors of Ref. 19 used
a complicated quantum mechanical model, their derivation
found that the fully macroscopic solution is equivalent to the
use of Pekar’s ABC P�z=0�=0, whose application to the
WM cannot be proved. Thus, such an approach also is not
suitable for us. Vinogradov et al. considering in Ref. 20 the
effects of SD in composite metamaterials, have obtained
ABCs using an assumption of existence of additional waves
in free space which are the same as in the metamaterial but
have evanescent nature. This assumption leads to additional
equations at the interface.

Another way to solve the problem was proposed recently
by Henneberger.21 It is based on the assumption of an abrupt
transition from medium to vacuum. It is assumed that the
incident wave excites a source s�z ,��, located within a sub-
surface layer 0�z�2a, and its thickness is assumed to be
negligible. This approach is appropriate for our problem of
wire-media interface. Indeed, it is known, for problems of
diffraction by single semiinfinite wire grids, that the induced
currents deviate from the regular amplitudes far from the
interface only in a very narrow region whose width is of the
order of the grating period.22 This conclusion holds for grids
of wires that are both parallel and perpendicular to the edge.
For this reason we assume that for the wire-medium interface
the transition layer has the thickness of only a few periods of
the lattice. This thickness is much smaller than the wave-
length and negligible as compared with the length of the
wires �wires are infinite in our model�.

Applying this approach to our interface problem of free
space and the wire medium, the wave equation for Hx in
unbounded medium �Eq. �10� written for Hx� should be re-
placed by an inhomogeneous equation

�2Hx

�z2 + �k0
2�y�ky� − ky

2�y�ky�
�z�kz�

	Hx = s�z,�� , �16�

where Hx is the refracted field. It means that any propagating
wave has to be created by a source. The proper source of the

penetrating wave in the wire medium is the incident wave
and the polarization induced by it in the medium. Such an
externally controlled source can be identified with some po-
larization additionally induced to the one already described
by �. Therefore it is located only on the surface and in the
transition region, where the induced polarization deviates
from that in the bulk medium. After the Fourier transform of
Eq. �16� one obtains

Hx�z,�� = 

−



 dq

2�

s�q,��ejqz

T�q,��
, �17�

where s�q ,�� is the Fourier transform of s�z ,�� and T�q ,��
is determined by Eq. �11�. Assuming an abrupt transition
from the medium to vacuum, we can present the source as a
delta function s�z ,��=s0�����z�, then s�q ,��=s0���. If
T�q ,�� is an analytical function, the integration in Eq. �17�
can be performed using the residue method. Residues can be
found by presenting 1/T in the form

1

T�kz,��
=

1

kz
2 − �k0

2�y�ky� − ky
2�y�ky�

�z�kz�
	 =

�+

kz
2 − kz+

2 +
�−

kz
2 − kz−

2 ,

�18�

where the coefficients are

�+ =
k2 − kp

2 − kz+
2

kz−
2 − kz+

2 , �19�

�− = −
k2 − kp

2 − kz−
2

kz−
2 − kz+

2 . �20�

The residues �the relative amplitudes of the transmitted field
components� read

R+ =
�+

2kz+
=

k2 − kp
2 − kz+

2

2�kz−
2 − kz+

2 �kz+

, �21�

R− =
�−

2kz−
= −

k2 − kp
2 − kz−

2

2�kz−
2 − kz+

2 �kz−

. �22�

Finally, the field component Hx in the wire medium is

Hx = so�R+e−jkz+z + R−e−jkz−z� = so� �+

2kz+
e−jkz+z +

�−

2kz−
e−jkz−z	 .

�23�

The expression for Ey and Ez can be obtained from the Max-
well equations as

kzHx = − ��0�yEy, − kyHx = − ��0�zEz, �24�

which gives us the electric field components in the wire me-
dium

Ey = −
so

2��0�y
��+e−jkz+z + �−e−jkz−z� , �25�
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Ez =
kyso

��o
� �+

2kz+�z+
e−jkz+z +

�−

2kz−�z−
e−jkz−z	 . �26�

Now we have expressions for all field components induced
in the wire medium for the TM polarization.

In free space there exist incident and reflected TM waves.
Magnetic field components are

Hx
i = H0e−jkyye−j�0z, Hx

r = Hre
−jkyyej�0z = RHH0e−jkyyej�0z,

�27�

where �0=�k0
2−ky

2 and the electric field components are

Ey
i = −

�0

k0
H0e−jkyye−j�0z, Ey

r = RH
�0

k0
H0e−jkyyej�0z, �28�

Ez
i =

ky

k0
H0e−jkyye−j�0z, Ez

r = RH
ky

k0
H0e−jkyyej�0z. �29�

At the interface z=0 the continuity of the tangential field
components leads to relations

H0 + RHH0 =
s0

2
� �+

kz+
+

�−

kz−
	 , �30�

−
�0

k0
H0 +

�0

k0
RHH0 = −

s0

2k0�y
��+ + �−� , �31�

from which the reflection coefficient for the magnetic field is
obtained

RH =
� �+

kz+
+

�−

kz−
� −

1

�y
��+

�0
+

�−

�0
�

� �+

kz+
+

�−

kz−
� +

1

�y
��+

�0
+

�−

�0
� . �32�

Finally, the explicit expression for the coefficient s0 �the
transmission source� is obtained,

s0 =
1 + RH

1

2
� �+

kz+
+

�−

kz−
�H0 =

4H0

� �+

kz+
+

�−

kz−
� +

1

�y
��+

�0
+

�−

�0
� .

�33�

In the region of complex waves k /kp�K1 we have to
choose the branches of the square roots for kz± having posi-
tive imaginary parts. In the region K1�k /kp�K2 it is nec-
essary to take for the backward wave �“−” wave� the root
branch with the opposite sign. In the above derivation we
evaluated the reflection coefficient for the magnetic field.
The reflection coefficient for the electric field is RE=−RH.

Reflection from a single wire medium interface

The plane-wave reflection coefficient from an interface of
a single wire medium where wires are along the z axis is
easily obtained as a special case of the previously considered
double-wire medium reflection problem. In a single wire me-
dium the permittivity components are �x=�y =�h and �z
=�h�1− �kp

2 / �k2−kz
2���. Evaluating the dispersion equation

�11� we have as solutions kz+=k, which is the propagation
factor for the TEM mode and kz−=�k2−ky

2−kp
2 for the TM

mode. Thus, in the single wire medium the two extraordinary
eigenwaves are TEM and TM polarized.

We can use exactly the same expressions for the reflection
coefficient as in the case of the double wire medium by sim-
ply substituting kz+=k and kz−=�k2−ky

2−kp
2. This leads to

expressions for the coefficients

�+ =
kp

2

ky
2 + kp

2 , �34�

�− =
ky

2

ky
2 + kp

2 , �35�

and residues

R+ =
kp

2

2k�ky
2 + kp

2�
, �36�

R− =
ky

2

2�k2 − ky
2 − kp

2�ky
2 + kp

2�
. �37�

IV. GROUP VELOCITY, POYNTING VECTOR AND
REFRACTED WAVES IN DWM

In this section we will discuss the group velocity and
Poynting vectors of waves excited in a double wire medium
and check the power conservation at the interface. It is well
known that the group velocity is defined as

vgr = gradk� . �38�

The Poynting vector that determines the energy density flow
for media with spatial dispersion has the form23

S =
1

2
Re�E � H*� −

�

4

��ik

�k
Ei

*Ek, �39�

where the permittivity dyadic components are expressed by
Eq. �4� for DWM. Their partial derivatives read

��x

�kx
= 0,

��y

�ky
= −

2kp
2ky

�k2 − ky
2�2 ,

��z

�kz
= −

2kp
2kz

�k2 − kz
2�2 .

�40�

Let us derive expressions for the Poynting vector in free
space and in the wire medium. In free space the field expres-
sions are

H1 = H0�e−j�0z + RHej�0z�e−jkyyux, �41�

E1 =
�0H0

k0
�− e−j�0z + RHej�0z�e−jkyyuy

+
kyH0

k0
�e−j�0z + RHej�0z�e−jkyyuz. �42�

The fields of the waves, marked by + and −, in the wire
medium are
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H2± =
s0

2

�±

kz±
e−jkz±ze−jkyyux, �43�

E2± = −
s0

2k0�y
�±e−jkz±ze−jkyyuy +

kys0

2k0

�±

kz±�z±
e−jkz±ze−jkyyuz.

�44�

Now we can write the Poynting vector in free space and in
the wire medium �at the interface�

S1�0� =
1

2
Re�E1 � H1

*� =
H02

2k0
��0�1 − RH2�uz

+ ky�1 + 2RHcos � + RH2�uy� �45�

with the notation RH= RH ej�. In the wire medium, the cross
product term is

S2±
0 �0� =

1

2
Re�E2± � H2±

* � =
s02

2k0

1

4
Re� 1

�y

�±�±
*

kz±
* uz

+ ky

�±�±
*

kz±kz±
* �z±

uy� , �46�

and the spatial dispersive term is

S2±
d �0� =

s02

2k0

1

4
� kp

2ky
2kz±�±�±

*

�k2 − kz±
2 �2kz±kz±

* �z±�z±
* uz

+
kp

2ky

�k2 − ky
2�2�y

2�±�±
*uy	 . �47�

The total Poynting vector in wire medium is

S2±�0� = S2±
0 �0� + S2±

d �0� . �48�

As an example, we consider excitation of modes, located
above the plasma frequency.5 For the taken parameters of
DWM, the wire radius r0=0.01 cm, and the period L=1 cm,
the plasma wave number is kp�1.38 cm−1. The dispersion
diagram in the form of isofrequencies and directions of the
Poynting vector �the energy velocity� for these modes with
respect to the normal to the interface �z axis� are shown in
Fig. 4. Isofrequencies, the lines of constant frequencies in the
plane of wave vectors, are presented in Fig. 4 in coordinates
ky ,kz. If one draws a vector from the origin to a point at an
isofrequency, it will show the direction of the phase velocity
corresponding to this frequency and certain ky ,kz. Normal to
the isofrequency at the same point shows the direction of the
group velocity. Isofrequencies are very convenient for con-
struction of refraction and reflection laws using the following
rules: projection of the wave vector on the interface is the
same for the incident, refracted and reflected waves, and the
group velocity that is outgoing from the interface.

The calculations were performed at k /kp=1.35. Here we
observe two elliptic-type isofrequencies for TM modes, that
is, appearance of SD, because without SD we would have
one circle for a square-wire lattice in the �yz� plane. The
value of the tangential component ky is determined by the
incidence angle �, namely, ky =k sin �. The direction of the
group velocity, found by numerical differentiation of the dis-
persion characteristics �which are the isofrequencies in Fig.

4�, exactly coincides with the direction of S2±, calculated
using formulas �46�–�48�. The solid curves in Fig. 4 show the
angle � between the Poynting vector �or the group velocity�
and the normal to interface versus ky. Disregarding the term
that takes into account spatial dispersion leads to a strongly
incorrect result, illustrated by dashed curves.

Next, let us consider the power conservation at the inter-
face of free space and the wire medium. It is important to
check this properly because in the wire-medium region there
exist two waves, and the wire medium is spatially dispersive.
In the frequency range considered here, the parameter values
are assumed to be real. The normal components of the Poyn-
ting vector on both sides of the interface are �using the con-
tinuity condition of the tangential field components�

Sz1�0� =
so2

8��o�y
� �+

kz+
+

�−

kz−
� , �49�

and

S2z�0� =
so2

8��o
� 1

�y
� �+

2

kz+
+

�−
2

kz−
� +

kp
2ky

2�+
2

�k2 − kz+
2 �2�z+

2 kz+

+
kp

2ky
2�−

2

�k2 − kz−
2 �2�z−

2 kz−
	 . �50�

Subtracting these power density components leads to the ex-
pression

Sz1�0� − Sz2�0� =
so2

8��o
� 1

kz+

+
1

kz−

���+�−

�y
−

kp
2ky

2

�kz−
2 − kz+

2 �2	 .

�51�

Using the expressions for �±, kz±
2 , and �y, we find that the

term inside the square brackets vanishes. The normal com-
ponent of the Poynting vector is continuous across the inter-
face, which means that the power conservation law is satis-
fied.

FIG. 4. Dotted curves indicate isofrequencies. Solid curves
show the angle � between the energy velocity and the z axis versus
ky. Dashed curves show the angle between S2±

0 �0� and the z axis
versus ky.
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V. DISCUSSION OF THE REFLECTION AND
REFRACTION AT THE INTERFACE OF WM

Figure 5 shows the phase of the reflected wave �
=arctan�Im�RH� /Re�RH�� versus the incidence angle �, cal-
culated for different k /kp, corresponding to the region of
complex waves �see Fig. 3�. Here Re�RH� and Im�RH� are the
real and imaginary parts of the reflection coefficient RH. The
calculations have been performed using the model �4�, taking
into account spatial dispersion, and the conventional one,
�y =�z=�, � is expressed by formula �1�. As it is expected,
both models give the modulus of the reflection coefficient
equal to unity due to the absence of losses and propagating
waves in wire medium. It is remarkable that the spatial dis-
persion results in a weak dependence of the phase of the
reflected wave on the incidence angle. The parameters of the
wire medium are taken as above in the eigenvalues calcula-
tions.

The real and imaginary parts of the reflection coefficient
in a wide spectral range cover areas with complex waves,
forward and backward waves, and forward waves only, pre-
sented in Fig. 6. The incidence angle is taken to be � /4. To
understand these characteristics, it is useful to compare them
with the eigenvalue dispersion �Fig. 3�. Distinctive points K1,
where propagating waves appear in the framework of a new
model, and K2, where both of the waves become forward
ones. Results, given by the old model, are also shown here.
The most important feature is that the area of propagating
waves shifts by �k /kp=K2−K1 in comparison with that
given by the old model.

The normal to the interface components of the Poynting
vectors of the refracted waves as well as the reflection coef-
ficient �which is purely real beyond K1� are shown in Fig. 7.
The values of S2z+ and S2z− are normalized to the power
density of the incident plane wave Si  = �1/2�H0

2 cos �.
These results agree with those shown in Fig. 3, namely, S2z−

becomes zero at point k /kp=K2. The point K2 is a transition
point of the “−” wave because it is a backward wave with
respect to the interface if k /kp�K2, and a forward wave if
k /kp	K2. It is important, that birefringence takes place for
the waves having the same TM polarization as found in Ref.
10 for superconductors.

Angular dependence of the normal components of the
Poynting vector is presented in Fig. 8. Both refracted modes
are TM modes in this case. At low frequencies �k /kp�1�, a
plane wave cannot excite propagating TM modes at any in-
cidence angle �, so we present here the results for k /kp
=1.5. There exists a critical angle �c�0.3�, such that Sz1
=Sz2=0 if �	�c. As in the previous case, RH= +1 if �=�c,
and RH→1 if �→� /2, so DWM is an electric wall for graz-
ing incidence.

FIG. 5. Normalized phase of the reflected wave � /� versus the
incidence angle � /�, calculated at different k /kp: curves 1 corre-
spond to k /kp=0.3 and curves 2 correspond to k /kp=0.7. Solid and
dashed curves show the reflection phase given by the new and con-
ventional models, respectively.

FIG. 6. Real and imaginary parts of the reflection coefficient
versus the normalized wave vector k /kp. The solid line shows
Re�RE�, the dashed line shows Im�RE� �the new model�, the dash-
dot and dot lines correspond to Re�RE� and Im�RE�, respectively,
obtained in the framework of the old model.

FIG. 7. Reflection coefficient RH �Re�RH� dotted curve, Im�RH�
dashed curve�, S2z+ and S2z− �solid curves� versus the normalized
wave vector.

ELECTROMAGNETIC WAVE REFRACTION AT AN… PHYSICAL REVIEW B 72, 245113 �2005�

245113-7



Poynting vector in single wire media

The Poynting vector in a single wire medium can be sim-
ply deduced from the expressions for the double wire media.
In this case, the partial derivatives of the permittivity com-
ponents read

��x

�kx
= 0,

��y

�ky
= 0,

��z

�kz
= −

2kp
2kz

�k2 − kz
2�2 . �52�

The additional term arises now only in the z component of
the Poynting vector, and it is equal to

S2±
d =

so2

2ko

1

4

kp
2ky

2�±2

kz±�k2 − kz±
2 − kp

2�2uz. �53�

Thus, the total Poynting vector reads for real parameter val-
ues

S2± =
so2

2ko

�±
2

4kz±
2 � ky

�z±
uy + kz±� 1

�y
+

kp
2ky

2

�k2 − kz±
2 − kp

2�2�uz	 .

�54�

This gives us after substituting kz± and �±

S2+ =
so2

2ko

kkp
2

4�ky
2 + kp

2�
uz �55�

and

S2− =
so2

2ko

ky
2 + kp

2

4ky
2 �kyuy + �k2 − ky

2 − kp
2uz� . �56�

One can see from �56� that for the TM mode, the Poynting
vector is also in the same direction as the phase velocity. The
continuity condition of the power flow across the interface
�continuity of the normal component of the Poynting vector�
can be easily checked similarly as for double wire media. For
the TEM mode directions of the phase velocity and the Poyn-
ting vector are different. The Poynting vector and energy
flow are always directed along the wires, see Eq. �55�. The

angle � between the phase velocity and the interface is equal
to

� = arctan sin � . �57�

Figure 9 illustrates the angular dependence of the reflec-
tion coefficient RH and the normal to the interface compo-
nent of the Poynting vector Sz for the TEM mode �STEM�.
Parameters of the WM are taken the same as in the case of
DWM. The calculated Poynting vector is normalized to the
incident wave power flow density. Wave number k /kp corre-
sponds to the frequency below the plasma resonance and the
TM mode cannot be excited at any �. For grazing incidence
RH→−1. It is obvious that in this case the surface must
behave as a wall, because no traveling waves in the medium
can be excited. Actually, it behaves as a magnetic wall, be-
cause in this geometry the wires are orthogonal to the inter-
face, and the normal component of the electric field is zero.

More complicated is the case when the wave number is
taken beyond the plasma resonance, i.e., k /kp=1.5, see Fig.
10. However, it follows from Eq. �4� that for oblique wave
incidence, the “effective” plasma wave number becomes kp�
=kp / cos � because ky =k sin �. The grazing incidence for
RH→−1, is similar to the previous case.

For small incidence angles, both TEM and TM modes are
excited. There exists an incidence angle ��, which is the
angle of total reflection. It takes place when k=kp�, so
cos ��=2/3. Neither TEM nor TM modes are excited, and
RH→1 which corresponds to the case of an electric wall. For
larger �, the TM mode disappears.

VI. CONCLUSIONS

Considering the problem of a plane-wave refraction at the
interface of a double wire medium exhibiting strong spatial
dispersion, we have analyzed the literature discussion on the
ABC problem and have come to the point of view that Hen-
nenberger’s approach21 for SD media can be applied for
some kinds of metamaterials in the microwave range includ-
ing single and double wire media.

FIG. 8. The real and imaginary parts of RH �dashed and dotted
curves, respectively�, Sz+ and Sz− �solid curves� versus the incidence
angle, calculated at k /kp=1.5.

FIG. 9. The real and imaginary parts of RH �dashed and dotted
curves, respectively� and STEM �solid curves� versus the incidence
angle, calculated at k /kp=0.5.
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Despite criticism of the used ABC-free method �see Refs.
24–26�, we suppose that application of this approach has
allowed us to overcome the problem of additional waves
appearing in media with spatial dispersion and to obtain rea-
sonable results for the reflection coefficient and for the
power densities and group velocities of the refracted waves.
Fulfilment of the conservation of the power, passing through
the interface, can be considered as evidence of the correct-
ness of this approach. A series of phenomena, similar to

those found in superconductors near the Josephson plasma
resonance,10,16,17 can be observed in WM. There are excita-
tion of multiple propagating or evanescent eigenmodes with
the same polarization, nonapplicability of the conventional
Fresnels reflection formulas, and stopping of a wave in the
vicinity of some spectral point under a nonzero wave vector
�“stop light”�. We have shown that such an extremal point
appears when two modes in DWM with positive and nega-
tive dispersion are mixed, and this effect is almost the same
as described in Ref. 10 for superconductors. All those effects
cannot be obtained in the single-mode approach without dis-
persion. However, there is an essential difference in the rea-
son of appearance of spatial dispersion in the medium stud-
ied in Refs. 10, 16, and 17 and in artificial WM. Namely, in
superconductors near the Josephson plasma resonance, spa-
tial dispersion is caused by a strong delay of the group ve-
locity and in WM a strong SD appears in the model of infi-
nitely long conductive wires due to the nonlocal response
even at very low frequencies. Thus SD in WM has a non-
resonant nature and exists in a very wide frequency range.

Possible applications of DWM include antenna structures,
low-frequency filters, frequency selective radomes, and
double-negative metamaterials.
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