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Complex response function obtained in reflection spectroscopy at the terahertz range is examined with
algorithms based on dispersion relations for integer powers of complex reflection coefficient, which emerge as
a powerful and yet uncommon tools in examining the consistency of the spectroscopic data. It is shown that
these algorithms can be used in particular for checking the success of the correction of the spectra by the
methods of Vartiainen et al. �J. Appl. Phys. 96, 4171 �2004�� and Lucarini et al. �Phys. Rev. B. 72, 125107
�2005�� to remove the negative misplacement error in the terahertz time-domain spectroscopy.
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I. INTRODUCTION

During the past years terahertz �THz� spectroscopy has
emerged as a powerful tool in investigation of dielectrics,
semiconductors and superconductors in the far infrared spec-
tral range.1 Since at THz frequencies we can measure ampli-
tude rather than intensity of the probe wave, the signal in
THz spectroscopy carries potentially more information on
the properties of the material1 in comparison with that in
conventional optical spectroscopy, which is based on inten-
sity measurements. This opens new horizons in various ap-
plications including medicine, security control, and materials
inspection.2 However, since many materials are nontranspar-
ent in the THz region, it is crucial for applications to estab-
lish THz measurements in the reflection configuration.3,4 Un-
fortunately, in reflection geometry, the sample-misplacement
problem still remains as a bottleneck in THZ time-domain
spectroscopy �THz-TDS� of opaque media.5,6

Specifically, measurement of the complex reflection coef-
ficient in the THz spectral range involves normalization of
the signal reflected from the studied sample to the reference
signal �usually it is a signal obtained by reflection of a THz
wave from a metal plate�. However, the phase of the signal in
THz-TDS depends on the position of the reflected surface in
the experimental setup. This implies that one has to place the
sample and the reference in the same position. Otherwise due
to the sample misplacement the measured reflection spec-
trum is not correct but distorted because of a finite phase
shift of the THz wave reflected from the sample with respect
to that of a reference. Recently we have presented two meth-
ods to correct the phase of the THz-TDS signal.7,8 The first
one is based on the maximum entropy method �MEM�,7
which relies purely on the mathematical model in informa-
tion theory, and it is to some extent complicated. The second
method is based directly on singly subtractive Kramers-
Kronig relations �SSKK�.8 These two methods allow one to
reveal the correct complex reflection coefficient of the me-

dium from the erroneous THz-TDS signal and emerge as
powerful tools for both fundamental and applied THz stud-
ies, in particular, for materials inspection. Importantly, in ad-
dition to the correction of the spectrum, MEM- and SSKK
methods enable us to avoid fine-tuning in THz reflection ex-
periments.

In this paper we demonstrate that negative misplacement
error �when the optical path in the setup with the sample is
shorter than that with the reference� in the band-limited THz-
TDS data can be detected by using dispersion relations with-
out data extrapolations beyond the measured spectral range.
Moreover such dispersion relations can also be employed for
checking how well the correction of the spectrum succeeded.
Here we make use of dispersion relations for the integer
powers of the complex reflection coefficient given by Smith
and Manogue �S&M�.9 In addition, we combine the method
with SSKK scheme. Both types of S&M relations are needed
in proper test of the corrected and uncorrected data.

II. DISPERSION RELATIONS FOR THE POWERS
OF THE COMPLEX REFLECTIVITY

The Kramers-Kronig �K-K� relations are based on the
causality principle10,11 which leads to the fact that the com-
plex reflection coefficient r���=����exp�i����� �or complex
refractive index N���� is holomorphic10,11 in the upper half
of the complex frequency plane �poles are located in the
lower half plane�, and has a strong enough fall-off at high
frequencies. The assumption that the function is holomorphic
in the upper half plane is valid if the incident electric field
oscillates proportional to exp�−i�t�. Since the function rn���
is also holomorphic for any positive integer n=1,2 , . . ., it
satisfies the following pair of S&M dispersion relations:9
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where P stands for the Cauchy principal value. One can ob-
serve from �1� that in these relations, amplitude, and phase
are coupled with each other. However, the problem of data
extrapolation beyond the measured spectral range is not as
severe as that for the conventional K-K relations, which are
presented in terms of log ���� and ����.10,11 Fast fall-off of
the power of the reflection coefficient at high frequency is a
crucial property for strong convergence of the dispersion re-
lations given in Eq. �1�.

A singly subtractive K-K �SSKK� relation for the phase
retrieval from the logarithm of reflectance was first em-
ployed by Ahrenkiel,12 and the concept was generalized by
Palmer et al.13 We apply this technique for the powers of the
complex reflection coefficient rn���, and obtain the relations
as follows:
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where �1 is an anchor point where the reflection coefficient
is known. In our calculations we have chosen the anchor
point using the method suggested in Ref. 13. For the sake of
simplicity we have chosen the same anchor point in both
dispersion relations �2�. Since in Eq. �2� the S&M and SSKK
techniques have been combined together, we will refer to Eq.
�2� as the singly-subtractive Smith and Manogue �SS-S&M�
dispersion relations. The merit of the SS-S&M dispersion
relations is their high convergence at finite measured spectral
range just like in the case of conventional S&M dispersion
relations.

Both types of S&M-dispersion relations allow one to
check the consistency of the reflection data. Specifically, by
using the measured amplitude and phase of the complex re-
flection coefficient one can calculate the corresponding real
and imaginary parts from Eqs. �1� and �2� at the frequency
�� that belongs to the frequency range in question. A large
discrepancy, which is discussed in some detail in Sec. III,
between the calculated and measured complex reflectivity
indicates the presence of an experimental error. This error
may originate, for example, from the �negative� sample mis-
placement �spatial precision of a few micron� in the
THz-setup.7,8

III. TESTING THE CONSISTENCY OF THE THz
REFLECTION SPECTRA

In the terahertz time-domain reflection spectroscopy, one
can obtain simultaneously both the amplitude and the phase
of the complex reflection coefficient from the time-domain
waveform of the reflected electric field. These measurements
are conventionally performed, by comparing the results ob-
tained with the sample and a reference. In practice various
experimental ambiguities can distort the obtained complex
spectra of the reflection coefficient. One of the ambiguities is
the problem of sample position. Since it is virtually impos-
sible to adjust the sample and the reference exactly at the
same position, the phase of the THz-TDS carries a frequency
dependent misplacement error. The amplitude of the signal
can be considered to be correct because �i� measurements are
performed in the far-field region and �ii� the reference reflec-
tivity is frequency independent. Since, the frequency-
dependent real and imaginary parts of the complex reflection
coefficient are not correct, due to the phase error, the com-
plex refractive index of an opaque sample obtained in THz-
TDS is not reliable. Fortunately, the phase error caused by a
sample misplacement can be corrected either by using maxi-
mum entropy method �MEM� �Ref. 7� or SSKK method.8

However, the consistency of the corrected data �i.e., whether
real and imaginary parts of the reflection coefficient fulfill
the causality principle� should be checked using dispersion
theory.

Next we apply the S&M and SS-S&M dispersion rela-
tions for the measured reflection spectra of an n-type, un-
doped �100� InAs wafer in the spectral range 0.5–2.5 THz.
The data was obtained with oblique incidence about 45° for
p-polarized THz radiation. Because of the large beam diam-
eter of the THz wave, the incidence angle was determined by
fitting which returned the value of 35°. The procedure will be
described later. As a reference we used an aluminum plate
and it is assumed that its reflection coefficient is unity in the
THz spectral range of interest. The experimental setup and
detailed description of the sample were reported in Ref. 14.

From the measured amplitude and the phase spectra
shown in Fig. 1 one can observe that there is a phase error
due to negative sample displacement. In the THz spectral
region, the permittivity can be obtained in terms of the clas-
sical Drude model that yields

���� = �b�1 +
�p

2

− �2 − i	�
� , �3�

where �b, �p, and 	 are the background permittivity, plasma
frequency, and damping factor, respectively. In Fig. 1 we
show also the amplitude and phase calculated with the Drude
model and Fresnel’s formula for reflection of p-polarized ra-
diation at oblique light incidence. One can observe in Fig. 1
that the measured and the calculated amplitude match pretty
well, while the experimental and the calculated phase of the
reflection coefficient do not correspond to each other. The
reason is the sample misplacement error, which can be re-
moved by either methods presented in Refs. 7 and 8. The
phase calculated by these two methods matches well with
that obtained using the Drude model for permittivity.7,8
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In Fig. 2 we show the erroneous real and imaginary parts
of the complex reflection coefficient calculated using uncor-
rected data presented in Fig. 1 along with those obtained
from the S&M and SS-S&M analyses for the case n=1. One
can observe that the calculated curves depart to a great extent
from the experimental ones. Hence we may draw a tentative
conclusion that the measured THz data is not correct. It is
necessary to emphasize that we have utilized pairs of disper-
sion relations, whereas in conventional K-K analysis only
the other partner of the K-K relations is exploited.

It should be noted that the algorithms based on S&M
dispersion relations are applied for the real and imaginary
parts of the complex reflection coefficient, whereas the mea-
sured quantities are the amplitude and the phase. This brings
some limitation in the analysis.

For the validity of the conventional K-K and both types of
S&M dispersion relations the true complex reflection coeffi-
cient has to be a holomorphic in the upper half of complex
plane, 
=�+ iv, v�0. It must decay sufficiently fast at high
frequencies and fulfill a symmetry relation due to the parity

of the complex reflection coefficient. Specifically, the phase
error due to sample displacement can be expressed as

�� =
�L

c
� , �4�

where �L is misplacement error �difference in the optical
path between the sample and reference� and c is the speed of
light in vacuo. Since the spot size of the incident THz beam
on the sample surface is about 0.3 mm in the case of the
present data, the ratio �L /c is constant. One can expect that
the real and imaginary parts of the reflection coefficient are
subject to an error when the phase error is large enough as in
the case of Fig. 2. The erroneous reflection coefficient can be
given as follows:

rerr��� = ����ei�����+��L/c���. �5�

For �L�0 this function is holomorphic in the upper half
plane and it fulfills the symmetry relations imposed on the
true reflection coefficient. At the same time, rerr, satisfies
S&M and SS-S&M dispersion relations for a positive mis-
placement error �L
0, i.e., this error cannot be identified

FIG. 1. Upper panel: The amplitude spectrum of n-InAs mea-
sured at the terahertz range �filled circles� and that calculated with
the Drude model �solid line�. Lower panel: The phase spectrum
measured �filled circles�, obtained with the Drude model �solid
line�, and corrected with the methods in Refs. 7 and 8 �filled
triangles�.

FIG. 2. Incorrect real and imaginary parts of the reflection co-
efficient �solid lines�. The curves obtained by S&M �dashed� and
with SS-S&M �dotted line� analyses were calculated using the mea-
sured data �solid lines� for the case n=1.
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by the S&M dispersion analysis. The situation is totally
different for the case of negative sample misplacement.
Indeed, when we extent the exponent function involving the
incorrect phase in Eq. �5�, into the upper half plane,

=�+ iv, we observe that we have to deal with a function
exp�−i�L��+ iv� /c� that blows up as v tends to plus infinity.
However, this is an apparent dilemma since we can perform
the contour integration, which is needed in the derivation of
K-K and the special dispersion relations of this paper, in the
lower half plane. Then the exponent function above remains
finite but the poles of the complex reflection coefficient in-
troduce residue terms in the dispersion relations. The prob-
lem is that these poles can not be resolved from measured
spectra. Eventually S&M and SS-S&M will yield erroneous
results in numerical data inversion. Breaking of the validity
of the S&M and SS-S&M dispersion relations manifest itself
as a discrepancy between inverted and experimental data.
Limitation of the sign of misplacement is resulting from the
procedure of the analyses. We convert the phase and the
amplitude data to real and imaginary part prior to the analy-
sis. Here we wish to refer to two important works that deal
with the conventional K-K relations that couple the phase
and logarithm of the amplitude of the complex reflection
coefficient. Nash et al.15 and Lee and Sindoni16 �see also Ref.
17� investigated dispersion relations for complex reflection
coefficient using also the Drude model for a medium. They
observed that a correction factor has to be included in the
relevant dispersion relations. Here we prefer analysis, which
is based on the use of the powers of the reflection coefficient
that provide better convergence of the dispersion integrals
than the logarithm function.

It is interesting that the agreement of the K-K and two
types of S&M dispersion relations depends on the experi-
mental set up. As we already discussed this has purely math-
ematical origin, and there is no failure of the principle of
causality. In THz experiments one can intentionally make
misplacement error to be negative so that the error can be

identified by the two types of S&M dispersion relations.
Naturally when we find the phase error and correct the

data according to it, we find agreement between the mea-
sured and inverted data. One should apply the two types of
S&M dispersion relations at two stages: One is at the point
of erroneous real and imaginary parts, and the other is after
correction of misplacement. This means that we can test how
good an estimate we have obtained for the complex reflec-
tion coefficient after correction of the misplacement error of
the sample in the relevant spectra.

The real part of the reflection coefficient of InAs calcu-
lated by the two types of S&M dispersion relations for
n=1, using the corrected experimental data, is presented in
Fig. 3. It is interesting to observe from Fig. 3 that the SS-
S&M analysis reproduces the real part from the imaginary
part pretty well, whereas in the curve obtained with S&M
there is an offset. However, it is important to calculate the
real part using both S&M dispersion relations, as it will be
described below. An approximation of this offset can be ob-
tained by averaging the difference of the two curves over the
relevant spectral range. It can be shown that if we lift the
S&M curve in Fig. 3 by the offset value, a little bit better
approximation for Re�r���	 is obtained than in the case of
SS-S&M. However, if we just substitute the obtained correct
real part of the reflection coefficient into relevant dispersion
relation we get absurd values for Im�r���	 with both types of
S&M analyses. The reason is that in order to calculate the
imaginary part of the reflection coefficient we have to take
into account the finite spectral interval of the experimental
data. Specifically, the derivation of the dispersion relations
involves an identity

P�
0

� C

�2 − ��2d� = 0, �6�

where C is a constant and �� is not equal to zero. In the case
of a finite spectral range, the integration is determined by the

FIG. 3. Real part of the reflec-
tion coefficient of InAs calculated
from S&M �dashed line� and from
SS-S&M �dotted line� dispersion
relations for the case n=1. The
solid line presents the real part,
which was obtained after phase
correction by methods of Refs. 7
and 8.
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frequency interval of the experiment and, correspondingly,
identity �6� can no longer be employed, and right-hand side
of Eq. �6� should be replaced with a finite value. It can be
shown that in such a case we arrive at a finite, frequency-

independent offset, roffset, to the real part of the reflection
coefficient in the S&M analyses. This offset has to be taken
into account in the analysis of the experimental spectra using
dispersion relations. Thus in order to calculate the imaginary
part of the reflection coefficient one needs to replace r with
r-roffset in S&M and SS-S&M dispersion relations. In order
to obtain roffset we need first to employ the S&M dispersion
relation for n=1. After the subtraction of the offset from the
real part of reflection coefficient the imaginary part is calcu-
lated for high power n. Naturally the high power technique
can be applied also to test the real part. In Fig. 4 we show the
curves for n=10 for Re��r-roffset�10	 and Im��r-roffset�10	,
which were calculated using both types of S&M dispersion
relations and the Drude model for fitting the experimental
data. The curves match very well with the exact ones. Obvi-
ously high power of reflection coefficient is effective in test-
ing band-limited data. One can freely select which one to use
�or both� between the two types of S&M or SS-S&M disper-
sion relations for high power n. The real and imaginary parts
of the complex reflection coefficient can be calculated by
taking the tenth root of the data of Fig. 4.

IV. CONCLUSIONS

In conclusion, we have demonstrated that S&M and
SS-S&M dispersion relations for the integer power of com-
plex reflectivity provide us with powerful tools to improve
data inversion at a relatively narrow spectral range. We com-
pared the S&M and SS-S&M analyses and observed that in
the present cases S&M dispersion relations performs as well
as SS-S&M relations, which need phase information at one
anchor point. As an application the developed analysis can
be applied to verify the consistency of the experimental data
in terahertz spectroscopy, for the case of negative misplace-
ment. From the measured amplitude and phase of the reflec-
tion coefficient we can successfully correct the erroneous
phase. The rigorous treatment of positive misplacement error
and the extension of the algorithm for application to the
other type of systematic error such as diffraction effects are
open for future study.
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