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The correlation effects between excitation and trapping sites after light excitation in a Li-deficient Fe-doped
LiNbO3 crystal have been quantitatively analyzed. They appear as a direct consequence of the thermally
activated random transport �hopping� of electrons �free polarons� by using a Monte Carlo approach. The
physical consequences of those effects, not present in usual coherent band-transport analyses, are explored and
discussed in the light of available experiment. In particular, nonexponential decay kinetics for the evolution of
electrons trapped at antisites �small polarons� are predicted.
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I. INTRODUCTION

LiNbO3 is a reference material for electrooptic and non-
linear optical applications.1 It is usually grown in the Li-
deficient congruent composition ��Li� / �Nb�=0.945� and so it
is strongly defective. Two main models2–4 have been pro-
posed for the defects associated to the deviation from stoichi-
ometry. One assumes that those intrinsic defects are Nb va-
cancies and NbLi antisites4 �with a concentration around
4.8%�. The other model supported by recent evidences, con-
siders Li vacancies and also NbLi antisites2,3 �in this case the
NbLi concentration would be 1%�. They show5,6 a character-
istic broad absorption band in the IR peaked at about 1.6 eV
�780 nm�. On the other hand iron-doped crystals show ab-
sorption and photoconductivity in the visible and near UV
range. In fact, two valence states of iron Fe+2 and Fe+3 are
well-known donors and traps, respectively, for free electrons.
The donor state Fe+2 presents1,7 a broad absorption band at
�500 nm.

Most photoconductive �PC� and photorefractive �PR� ex-
periments performed in congruent LiNbO3 crystals have
been satisfactorily explained in terms of an one-center or
two-center band-transport models.8–10 The latter �more real-
istic� model involves light excitation of Fe+2 centers coherent
motion through the conduction band, temporary trapping at
NbLi

+5 antisites, and final trapping at Fe+3 acceptor centers. In
either of the two above models, coherent band transport is
usually assumed. However, there is abundant experimental
evidence that carrier transport occur via thermally activated
random motion �hopping� of self-trapped electrons �free
polarons�.11–13 Therefore, the models should be reformulated
within this hopping-transport framework. Fortunately, CW
experiments do not distinguish between the two transport
mechanisms as it was early demonstrated in a detailed work
by Feinberg et al.14 The situation is different for short-pulse
experiment. They are much more sensitive to the subtle de-
tails of the electron dynamics and to the interplay between
the excitation and trapping centers. In particular, some spa-
tial correlation between the excitation and the antisite trap-
ping sites is expected that may significantly influence the
after-pulse kinetics.

The purpose of this work is to discuss the correlation
effects between excitation and trapping sites that cannot be
properly handled in a band-transport model. They appear as a
direct consequence of randomness in the hopping motion of
electrons. In fact, the physical consequences of randomness
in hopping transport models have been recently put forward
in a very broad perspective by Sturman et al.15 In our work,
a Monte Carlo simulation approach has been developed to
reach quantitative predictions for LiNbO3. The physical con-
sequences of these effects on the after-pulse kinetics are ex-
plored. It has been concluded that significant effects should
be observed, such as a clear departure from the exponential
kinetics derived from band-transport models when saturation
is avoided. Therefore, spatial correlations may play a role in
interpreting available experiments and should add or com-
pete with other mechanisms previously invoked. The analy-
sis could be readily extended to other materials where hop-
ping transport has also been demonstrated.

II. ELECTRON EXCITATION AND TRAPPING IN LiNbO3:
HOPPING TRANSPORT

We will assume throughout the paper that free electrons in
LiNbO3 self-trap at host Nb atoms and form free polar-
ons.13,16 They experience thermally activated random jumps
between neighbor regular NbNb ions.11,17 The overall process
proceeds as illustrated in the level scheme of Fig. 1. First we
assume, in accordance with previous views, that illumination
at the Fe+2 absorption band �2.60 eV� transfers7,12 the excited

FIG. 1. Schematics of the light induced electron excitation, ran-
dom walk across the lattice, and final retrapping.
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electron to the nearest Nb+5 neighbors �charge transfer band�.
The position of the Fe+2 excited levels within the band gap
has been obtained from X� calculations18,19 although it is still
a matter of controversy. The photoexcited electrons move,
then, by random hopping through the host Nb lattice �diffu-
sion like transport�. The final fate of the electrons is being
trapped at the Fe+3 acceptors, which are substitutionally lo-
cated �as the Fe+2 donors� at the Li sites.20,21 During the
random motion and before recombining with the Fe+3 accep-
tors, they can be temporarily trapped at the more abundant
NbLi

+5 antisites forming small polarons. They are thermally
unstable with a relatively long lifetime and decay in the dark
so that the photogenerated electrons are transferred back to
the iron centers. In the rest of the paper we will use the term
polaron to refer to the small polarons.

The electron motion through the Nb sublattice is governed
by the jump frequency � between regular nearest-neighbors
atoms. The possibility of a tunneling contribution is here
ignored although it cannot be ruled out. The jump frequency
can be estimated from the measured diffusion coefficient for
free polarons at room temperature �i.e., from the electron
mobility�. The values in the literature11,22,23 are quite disperse
covering the range D�10−3−10−5 cm2 s−1. This leads to �
�1011−1012 s−1. We will take �=1011 s−1, although it has
been checked that all results presented in the paper are es-
sentially independent of this particular choice. On the other
hand, during the migration process the free electrons can be
trapped by NbLi, antisites or Fe+3 iron acceptors, which are
both located in the Li sublattice. The corresponding trapping
coefficients, as used in the band-transport model, are given
by SFe=�VFe and SA=�VA , VA and VFe being the capture
volumes of an antisite and an iron acceptor, respectively.
They are expected to be of the order of the lattice volume per
atom �V�10−21 cm3� so we will assume that they includes
all host Li atoms that are nearest neighbors to the visited Nb
atom. Therefore, one predicts, SFe=SNb=10−10 cm3 s−1,
which are comparable to the values used in band-transport
models.

The electron trapped at the iron acceptor, i.e., the Fe+2

donor, is stable in the dark. On the other hand, the thermal
stability of a filled antisite is described by a lifetime �A

−1

before jumping into a neighbor NbNb ion. From some decay
data,24 this lifetime can be estimated around 1–10 �s. We
will take it to be 1 �s. As to the photoionization cross sec-
tion, the available information indicates that the ionization
cross sections for Fe2+��Fe� and NbLi

4+��A� are of the same
order of magnitude25,26 for green light used in relevant ex-
periments in the range 1–8�10−18 cm2 at the peak of the
corresponding absorption band. For convenience, we will
take �Fe=�A=5�10−18 cm2.

III. RANDOM WALK OF ELECTRONS: MONTE CARLO
SIMULATIONS

A. Crystal structure

The simulation of electron transport requires an adequated
knowledge of the crystal structure in LiNbO3. The Nb and Li
lie on rhombohedral sublattices having trigonal symmetry
around the c axis, as illustrated in Fig. 2. They are identical

except for a shift of 3.01 Å along that axis.27 The three basic
vectors of the primitive cell have a modulus of 3.76 Å and
form an angle �=52.1° with the c axis. It can be readily
checked that the lattice is very close to cubic. Any Nb or Li
lattice point can be labeled in that primitive basis by the
generic coordinates �m ,n , p�Nb and �m ,n , p�Li, respectively.
Each Nb �or Li� atom has six nearest Nb �or Li� neighbors at
a distance of 3.76 Å. All other Nb �or Li� atoms are at further
distances. On the other hand, each Li �or Nb� atom is at 3.05
Å from three Nb �or Li� neighbors contained in a plane per-
pendicular to the c axis, at 3.38 Å from another 3 Nb �or Li�
atoms in a plane parallel to the previous one, and has two
additional neighbors along the c axis at 3.01 and 3.92 Å �see
Fig. 2 and Ref. 27�. Li atoms can be occupied by a NbLi
antisite or an Fe atom. In order to simplify the mathematical
artillery, we will consider all these eight neighbor atoms
equivalent from the point of view of electron transfer from a
NbLi antisite defect.

B. Ramdom walk of electrons

As previously mentioned, the migration and trapping of
the photoexcited electrons will be simulated using a random-
walk approach implemented with a Monte Carlo code. At the
start of each history the electron will be excited from a ge-
neric Fe+2 atom, assumed to be located at �0,0 ,0�Li. The
excitation takes place at a random instant within the pulse
duration generated according to an exponential law with con-
stant �Fe�I�=�FeI, where �Fe=�Fe/h�. Photon absorption
transfers the electron to the nearest neighbor Nb at �0,0 ,0�Nb

which is taken as the starting point of the migration process.
From each �n ,m , p�Nb site the electron Random Walk of elec-
trons jumps into one of the six nearest Nb neighbors that

FIG. 2. Schematics of the Li and Nb sublattices of LiNbO3.
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occupy the sites �n±1,m , p�Nb, �n ,m±1, p�Nb, and �n ,m ,
p±1�Nb, assuming equal probability for all jumps. The coor-
dinates of the visited sites are properly stored along each
history. At each visit to a NbNb atom �not previously visited�
the code decides whether there is a trap �either Fe+3 or
NbLi

5+� available in a nearest-neighbor location at the Li sub-
lattice. If this is so, the electron is trapped. The decision is
based on a random spatial distribution of the traps. Possible
trapping at the original �0,0 ,0�Li donor site is taken into
account.

After the trapping, the next step depends on whether the
time t�	 or t
	. In the first case, we are still within the
pulse duration and so one has to consider the light-induced
ionization for the corresponding center NbLi

4+ or Fe+2. The
lifetime for the NbLi

4+ should include the thermal as well as
the light-induced lifetime, i.e., �A�I�=�A�0�+�AI, where �A

=�A /h�. In other words, the electron will be kept at this
position during a random time consistent with its lifetime
�A

−1�I�. The same scheme is followed for the Fe+2, but con-
sidering only photoexcitation, with a lifetime �Fe

−1�I�. In the
other case, when t
	 �the illumination is over� the Fe+2

center is completely stable and the corresponding history is
finished. On the other hand, the lifetime for the NbLi

4+ will be
that one exclusively associated to thermal ionization �A

−1�0�.
The random-walk migration proceeds until the electron is
finally trapped at an iron acceptor. This is the end of the
corresponding history. The calculations typically include
around 105 histories. The final information obtained from the
simulated experiment include electrons that have been re-
trapped at the initial iron center, location of the occupied
antisites just after the pulse, and concentration of small po-
larons surviving at any time t.

IV. RESULTS OF MONTE CARLO SIMULATIONS

The results derived from the simulation program will be
presented in two main steps. First, the total concentration of
filled antisites at the end of the light pulse and its spatial
distribution around the initial donor Fe+2 center will be
given, as well as its dependence on light intensity and anti-
site concentration. These data will illustrate the site-corre-
lation effects appearing in the process. Then, the overall ki-
netics of small polarons and iron centers will be given for
several intensities. Data will refer to two relevant antisite
concentrations corresponding to the values expected from the
two main structural models for a congruent crystal: lithium
vacancy model �1% antisites� and niobium vacancy model
�4.8 % antisites�.

A. Spatial correlation between excitation „Fe2+
… and trapping

„Nb4+
… sites

This is a key information provided by our hopping model
that cannot be provided by the standard band-transport ap-
proach. Let us look at the spatial �radial� distribution of the
filled antisites just after the light pulse, but letting all surviv-
ing electrons become trapped at either iron or antisite cen-
ters. Simulation results for antisite concentrations of 1 and
4.8 % are, respectively, displayed in Figs. 3�a� and 3�b�. The

iron concentration has been fixed at the typical value of 1000
ppm, so the average distance between Fe traps is around 38
Å. The simulation results clearly illustrate the site correlation
between the iron donor and the generated small polarons. In
all cases the distribution is peaked at a short distance of the
photoexcited iron donor, whereas beyond the peak region the
distribution approaches an exponential decay. On the other
hand, the correlation effects are progressively reduced on
going to higher light intensities. This can be intuitively un-
derstood since higher intensities cause multiple excitations
during the duration of the pulse, contributing to separate the
photoexcited electron from its initial position.

The distributions corresponding to several antisite con-
centrations up to a maximum of 5% �roughly corresponding
to a niobium vacancy model in a congruent crystal� are de-
picted in Fig. 4. Data for two light intensities, one in the
linear response region �1 MW/cm2, Fig. 4�a�� and the other
in the saturation stage �40 MW/cm2, Fig. 4�b�� are shown.
Iron concentration is again 1000 ppm. The simulation results
show the progressive smearing out of the site-correlated dis-
tribution on moving to smaller antisite concentrations. In
fact, the position of the distribution peak shifts to longer
distances and its height decreases when the antisite concen-

FIG. 3. Normalized distribution of filled antisites as a function
of the distance from the origin to the first antisite visited after the
end of the light pulse. Different light intensities are considered.
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tration is reduced. Moreover, the peak becomes progressively
broader. Figure 5 shows the dependence of the position of
the maximum of the distribution and its height as a function
of the antisite concentration for the two investigated light
intensities. In conclusion, correlation effects progressively
disappear for increasing crystal stoichiometry. For the usual
antisite concentrations and iron-doping levels most electrons
have been trapped in the near vicinity of the photoexcited
iron, where the presence of other iron ions is hardly prob-
able.

B. Limit case of a �-type pulse: Analytical approach

It is interesting for comparison purposes to plot the radial
distribution of the electrons trapped at an antisite following a
�-type light pulse. This is a limit case that should approxi-
mately reproduce the data obtained for a sufficiently short
pulse and arbitrary light intensities. One interesting feature
of the � case is that the trapped electron distribution can be
well approximated by the following analytical expression

which strictly applies for a cubic lattice, in which retrapping
at the origin is neglected:

f�R� = 4�R2�
N=1


ae−a�N−1�e−R2/�2N/3�

�2�N/3�3/2 , �1�

where R is the distance to the origin measured in lattice
constant units, N is the number of steps, and a a constant
whose meaning is explained below. Figure 6 shows the com-
parison of this analytical formula and the Monte Carlo re-
sults for a delta-type light pulse. A reasonable agreement is
observed.

The physical arguments behind such expression are as
follows: one may assume that the probability p�N� of being
trapped at step N+1, after N steps, where trapping has not
occurred, is a quantity a, independent of the step number N.
The value of this constant can be expressed as a=c 5

6 f , where
c is the antisite concentration. The factor 5 /6 takes into ac-

FIG. 4. Normalized distribution of filled antisites as a function
of the distance from the origin to the first antisite visited after the
end of the light pulse. Different antisite concentrations are consid-
ered.

FIG. 5. Position and height of the peak value in the radial fre-
quency distribution as a function of antisite concentration for two
values of light intensity.

FIG. 6. Normalized distribution of filled antisites as a function
of the distance from the origin to the first antisite visited after a
�-type light pulse. An analytical approach, given by Eq. �1�, is also
depicted for the two chosen antisite concentrations.
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count the fact that one of the six nearest neighbors has been
visited in the previous step, and f assumes the probability
that some other nearest neighbors has been visited before.
The value of f can be derived from direct comparison to the
Monte Carlo results, yielding f �0.912. This implies that the
probability distribution for the random variable N is approxi-
mately exponential p�N�=ae−a�N−1�.

Once this behavior p�N� is known, it is very simple to
apply the well-known result of random walk theory about the
radial distribution of the presence probability per unit vol-
ume after a fixed number of steps N. This probability can
be expressed as p�R �N�= f�R�dxdydz, where f�R� follows
Gaussian statistics with sigma equal to 	N /Nd ,Nd being the
dimensionality of the problem �Nd=3 in our case�. Therefore
we have

p�R�N� =
e−R2/�2N/3�

�2�N/3�3/2dxdydz = 4�R2 e−R2/�2N/3�

�2�N/3�3/2dR . �2�

Finally, the probability density function p�R� that we want to
obtain can be readily calculated by conditioning its distribu-
tion to the random variable N and integrating over its full
range of definition, namely, p�R�=�N=1

 p�R �N�p�N� which
yields the final proposed expression �1�.

V. PHYSICAL EFFECTS CAUSED BY THE SITE
CORRELATION

Now we will discuss the physical effects caused by the
above site correlation effects �SCE�. At a qualitative level,
they are in line with experimental data recently observed and
should be considered in future rigorous treatment of the
after-pulse kinetics.24,28

A. Intensity dependence and saturation effects

The dependence of the total concentration of electrons
trapped at NbLi

+5 antisites on light intensity is shown in Fig. 7.
It covers the intensity range from 1 to 60 MW/cm2. Two
antisite concentrations have been used in the simulations: 1%
�Li vacancy model for a congruent crystal� and 4.8% �Nb
vacancy model for a congruent crystal�. The data points
show a linear dependence at low intensities but start to de-
viate from it for I�5 MW/cm2 �saturation effects�, in quali-
tative accordance with experimental data obtained in Refs.
24 and 28. On the other hand, the relative concentration of
Fe+2 donors that remain occupied at the end of the pulse is
the complementary �with regard to 1� of the values for the
antisite concentrations plotted in Fig. 7. The curves ignoring
SCE �i.e., ignoring the position of the original excited Fe2+

for each electron history� have also been plotted for compari-
son. It can be seen that when ignoring SCE, the curves satu-
rate at lower intensities and the absorption bands are higher.
This effect can be explained as follows: when the possibility
of electron trapping at the original Fe center is enabled, the
relative probability for trapping at a NbLi center increases.
Finally, it can be expected that the hopping model results
neglecting SCE are equivalent to the band transport model
predictions. This has been checked solving the band trans-
port equations as presented in Ref. 10 with the same material

parameters and experimental conditions simulated in Fig. 7.
As expected, the obtained curves exactly coincide with the
hopping model neglecting SCE.

B. After-pulse kinetics in the dark

The objective of this section is to find out how SCE in-
fluences the overall kinetics of the process. After the light
pulse �i.e., in the dark�, the small polarons decay thermally
and electrons go back to the iron acceptors. Although the
average distributions of filled antisites and iron centers are
uniform along the crystal, a fraction of the antisites have a
correlated close-by iron corresponding to the original donor,
as illustrated in the previous section. The time evolution in
the dark of the polaron concentration is represented in Fig. 8
for several light pulse intensities. The concentration is given

FIG. 7. Small polaron concentration reached just after a 10 ns
pulse as a function of light intensity. The hopping neglecting SCE
predictions �dash-dotted line� has been also included for compar-
ison.

FIG. 8. Time evolution of the antisite absorption band intensity
normalized to its initial value for different pumping light intensities
and antisite concentrations, as given by the Monte Carlo model. The
hopping neglecting SCE predictions �dash-dotted line� has been
also included for comparison.
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in a linear scale whereas time is plotted in a log scale. For
comparison, the polaron decays predicted by the hopping
model ignoring SCE are also shown in the figure. As in the
previous section �A�, it has been checked that these latter
curves coincide with the BT predictions. It is clear that in the
hopping model the decay deviates from an exponential law,
as experimentally observed by Berben et al.24 The deviation
is larger for the lower intensities as expected from the larger
site-correlation effects �see Fig. 3�. The faster decay obtained
when SCE effects are present is easy to understand. At the
end of the pulse, an important amount of excited electrons
have formed small polarons in the vicinity of the “original”
Fe center �see Fig. 3�. Therefore, they have a relatively high
probability to be trapped at this center during subsequent
migration in the dark. This fraction of electrons become
trapped within an average time much smaller than electrons
trapped at Fe+3 placed at random position from the “original”
Fe center. The shape of the decay curves has been analyzed
using either a single exponential, a two-exponential, and a
stretched exponential law n=n�0�exp
−�t /	���. The fitting
appears reasonable in the two latter cases, as illustrated in
Fig. 9. One should remark that the difference between a two-
exponential and a stretched exponential relaxation is not of-
ten obvious and the example of polymer relaxation is
illustrative.29

VI. SUMMARY AND CONCLUSIONS

A theoretical model has been developed to describe the
kinetics of iron and niobium antisite centers, during and after
a short light excitation pulse of green light. It is based on
hopping electron transport and is alternative to standard two-
center approaches assuming coherent band transport. A
Monte Carlo code has been use to simulate the electron dy-
namics. The key feature of the hopping model is the strong
spatial correlation between donor and acceptor sites that ac-
counts for significant deviations from the predictions of band
transport approaches. The SCE are a direct consequence of

the random motion of electrons in the LiNbO3 lattice. Other
models explain these site-correlation effects in terms of a
direct electron transfer between iron and niobium antisite
centers, which is introduced in a phenomenological way. Ad-
ditional experiments should be performed to clarify the con-
tribution of each of these approaches to the observed kinetic
behavior.
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