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We analyze current-voltage characteristics taken on Au-doped indium-oxide films. By fitting a scaling
function to the data, we extract the electron-phonon scattering rate as function of temperature. Consistently
good fits are obtained for both short-sample and long-sample limits using data of the same material. The fitting
implies a quadratic dependence of the electron-phonon scattering rate on temperature from 1 down to 0.28 K.
The origin of this enhanced electron-phonon scattering rate is ascribed to the mechanism proposed by Sergeev
and Mitin.
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I. INTRODUCTION

Energy relaxation processes play an important role in the
low-temperature transport properties of diffusive metals, al-
loys and semiconductors. In particular, they determine the
maximum electric field F allowed if the system is to be mea-
sured under near-equilibrium conditions at a given tempera-
ture. The condition for that may be expressed as eFL�

�kBT where the energy relaxation length L� is the length
over which the electron diffuses under F before the energy
gained from it is dissipated into the thermal bath. In particu-
lar, this issue is relevant for all aspects of quantum transport
such as corrections to the conductivity due to interference
and electron-electron interactions. For a system of size L
�L�, energy relaxation processes are usually controlled by
electron-phonon inelastic scattering, and in the following we
shall assume that L� is dominated by the electron-phonon
diffusion length Lep. Note that other forms of inelastic scat-
tering, such as electron-electron and electron-two-level sys-
tems, while acting as sources of dephasing �actually, they are
usually the dominant source of dephasing at low tempera-
tures�, are ineffective as energy relaxation agents in the con-
text used here. We shall further comment on this issue in the
discussion section.

In clean samples the electron-phonon scattering mecha-
nism is well understood and the scattering rate �ep

−1, is known
to be proportional to T3 �where T denotes the temperature�.
In dirty systems, however, where the elastic mean free path
of the electron is smaller than the phonon thermal length, the
situation is more complicated. Schmid1 showed that in this
case �ep

−1 is suppressed and becomes proportional to T4, in
accordance with Pipard’s ineffectiveness condition.2 His
model assumed that the impurities are anchored to the lattice,
and the scattering rate was calculated by moving into a ref-
erence frame which follows the lattice vibrations. Riezer and
Sergeev obtained the same result using the laboratory refer-
ence frame.3 A scattering rate proportional to T4 has indeed
been observed in a number of experiments.4–6 However, a T3

law was frequently observed even in systems that were pre-
sumably well into the dirty limit regime.7–10 Moreover, quite
a few observations of a T2 scattering law were reported in
other experiments.11–14 The latter experimental results trig-
gered further studies with the aim of understanding better the

electron-phonon scattering mechanism in disordered metals.
In particular, to obtain an electron-phonon scattering rate
proportional to T2 �rather than the “ineffective” T4 law�,
Belitz and Wybourne15 assumed a strong phonon damping,
while Jan Wu and Wei16 included effects associated with the
discrete lattice structure. Sergeev and Mitin17 obtained the T2

behavior from a model were impurities are assumed to be
fixed, namely, impurities which do not follow the lattice vi-
brations. They argued that heavy impurities or boundaries
which move differently from the host lattice produce the
same effect.

In this paper we analyze the non-ohmic characteristic of
thin films of In2O3−x :Au �crystalline indium-oxide doped
with 2% gold�, that were characterized and measured as de-
scribed elsewhere.18 We show that in this system �ep

−1�T2,
and interpret this behavior as a manifestation of the Sergeev
Mitin mechanism where the Au atoms play the role of the
“immobile impurities.” The sample resistance is used as a
thermometer of the electron temperature �see Ref. 18 for
limitations of this assumption�. The latter is determined by
the energy balance between the Joule heating, due to the
presence of electric field, and the heat transfer to the lattice
phonons governed by �ep

−1.
The data we shall analyze are traces of the differential-

resistance R versus voltage for a typical film at T�1 K
shown in Fig. 1 �top panel�. As expected, the deviations from
Ohm’s law become more pronounced as T decreases. In the
bottom panel of Fig. 1 it is shown that these curves taken at
different temperatures can be collapsed into a common func-
tion

�R

R
�

R�F,T� − R�0,T�
R�0,T�

= �Rp� F

Tp/2+1� �1�

with p=2. The scaling of the electric field as a power of the
temperature F�Tp/2+1 and its relation to the electron-phonon
time �ep

−1�T��Tp, has been already recognized by Anderson,
Abrahams, and Ramakrishnan,19 and later by Arai.20 In the
next section we shall calculate the function �Rp, and clarify
its relation to the electron-phonon relaxation time. We shall
consider the dependence on the sample length and compare
with further experimental results in Sec. III.
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II. THEORY

The essence of the picture developed below is the assign-
ment of an effective temperature for a given field and bath-
temperature. The electrons are accelerated by the electric
field, and the collisions with other electrons and phonons
result in a local equilibrium distribution characterized by an
effective temperature Teff. The latter differs from the bath
temperature T, and depends on the electric field. We shall
make the association R�F ,T��R�0,Teff�. Hence knowing
Teff�F ,T� and the form of the near-equilibrium R�0,T� yields

the desired R�F ,T� from which we deduce the scaling func-
tion �1�.

We begin by considering the Boltzmann equation for the
electron distribution function f:

�f

�t
+ v� ·

�f

�r�
+ eF� ·

�f

�p�
= I�f	 . �2�

Here r� is the position, v� is the velocity, p� denotes the mo-
mentum, F� the electric field, and I�f	= Iim�f	+ Iee�f	
+ Iep�f ,N	 represents the collision integrals due to impurity
scattering, electron-electron, and electron-phonon interac-
tions. The latter depends also on the phonon distribution
function, assumed to be the equilibrium distribution function
denoted by N.

Following Nagaev21 and Kozub and Rudin,22 we look for
a steady state solution of the form

f = f�r�, n̂,� − eF� · r�� , �3�

where n̂ denotes a unit vector in the direction of the momen-
tum, and �=��p� is the energy assumed to depend on the
absolute value of the momentum p= 
p� 
. Substituting Eq. �3�
into Eq. �2� leads to

v� ·
�f

�r�
+ �

ij

eFi

p
�	ij − ninj�

�f

�nj
= I�f	 . �4�

Next, we define the symmetric and anti-symmetric parts of
the distribution function with respect to the momentum di-
rection f±= �f�n̂�± f�−n̂�	 /2, and construct two new equations
from Eq. �4� associated with the addition and subtraction of
Boltzmann equations for f�n̂� and f�−n̂�. Then assuming that
momentum relaxation is dominated by scattering from impu-
rities, and that electron-electron and electron-phonon interac-
tions are essentially independent of the momentum direction
�i.e., Iee�f	� Iee�f+	, and Iep�f ,N	� Iep�f+ ,N	�, we obtain

v�
�f−

�r�
+ �

ij

eFi

p
�	ij − ninj�

�f−

�nj
= Ī�f+	 , �5�

where Ī�f+	� Iee�f+	+ Iep�f+ ,N	, and

v�
�f+

�r�
= Iim�f−	 . �6�

In the simplest approximation, the impurity collision term
takes the form Iim�f−	=−f− /�, where � is the elastic mean
free time. Thus using Eq. �6�, the antisymmetric part of the
distribution function can be expressed in terms of the sym-
metric part and substituted into Eq. �5�. The resulting equa-
tion is now averaged over the momentum directions to give

− D�2f+ = Iee�f+	 + Iep�f+,N	 , �7�

where D=�vF
2 /3 is the diffusion constant �vF is the Fermi

velocity�. Here and henceforth we neglect the energy depen-
dence of the diffusion constant.

We wish to solve Eq. �7� for homogeneous samples with
voltage contacts located at x= ±L /2. Thus f+ is independent
of the transverse coordinates, and the boundary conditions
assuming ideal contacts are

FIG. 1. �Color online� The fractional change in the nonohmic
characteristic of 200-Å-thick In2O3−x :Au sample measured at dif-
ferent temperatures �marked on each curve�. Sample length is L
=3500 
m and width W=1 mm. Top panel: The differential resis-
tance �defined in Eq. �1� as a function of the voltage	. Bottom panel:
The same data plotted as function of F�=V /L� normalized by T2.
Note the near perfect data collapse as well as the fit to formula �20�
represented by the continuous line.
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f+
x=±L/2 = nF� � − �F �
eV

2

kBT
 , �8�

where nF���= �1+exp���	−1 is the Fermi distribution func-
tion, � is the electron energy, �F is the Fermi energy, V
=FL is the voltage drop across the sample, kB is Boltzmann
constant, and T is the bath temperature.

Equation �7� is a nonlinear equation for the electron dis-
tribution function. To make progress, we shall assume that
the electron-electron diffusion length Lee is much smaller
than the system size L and the energy relaxation length Lep.
This should secure an effective local thermalization due to
the large number of collisions an electron experiences. We
looking then for a solution which describes local equilibrium
of the electrons

f+ = nF� � − �F − eFx

kBTloc�x�
� , �9�

where Tloc�x� is a local temperature of the electrons. At the
contacts the local temperature by assumption coincides with
the bath temperature

Tloc�±
L

2
� = T , �10�

so that the solution �9� with the boundary conditions �10�
satisfies the requirement �8�. Under the assumption of local
equilibrium the electron-electron collision term vanishes and
Eq. �7� reduces to

− D
�2f+

�x2 = Iep�f+,N	 . �11�

Finally, to extract the local temperature behavior we multiply
this equation by � and integrate over the energy. The result-
ing equation is

D��2kB
2

6

�Tloc
2 �x�
�x2 + �eF�2� = −� d��Iep�f+,N	 . �12�

To further simplify Eq. �12�, we take the electron-phonon
collision integral to have the form

Iep =� dK���− �1 − f+�� + ��f+���N� 

kBT
� + �1 − f+���	

�f+�� + ��N� 

kBT
� + 1� − �1 − f+�� − �	f+���

��N� 

kBT
� + 1� + �1 − f+���	f+�� − �N� 

kBT
�� , �13�

where K��=�p−1, is a kernel depending on the nature of
the collision between the electrons and phonons, while
N� /kBT�= �exp� /kBT�−1	−1 is the equilibrium phonon
distribution function. We substitute this expression into Eq.
�12� with the approximate local equilibrium form of the elec-
tron distribution function �9�, and integrate over � and . The
resulting equation is an equation for the local temperature

�2kB
2

6

�Tloc
2 �x�
�x2 + �eF�2 = �kB

p+2�Tloc
p+2�x� − Tp+2	 , �14�

where

� = �1 − 2−�p+1���p + 1�!��p + 2�
�

D
. �15�

In understanding the form of the solution of Eq. �14�, it is
instructive to identify first the relevant length scale for this
equation. To this end one may linearize the equation by sub-
stituting Tloc

2 �x�=T2+	T2�x� and expanding to linear order in
	T2�x�. The solution of the resulting equation with the
boundary conditions �10� is

Tloc
2 �x� = T2 +

6�eFLep�2

kB
2�2 �1 −

cosh� x

Lep
�

cosh� L

2Lep
� , �16�

where

Lep =
��kBT�−p/2

�3�p + 2��
�17�

is essentially the electron-phonon length at equilibrium.
From Eq. �16� one can see that Lep sets the distance from the
contacts over which the temperature profile reaches a satu-
rated value. Thus long sample satisfies L�Lep, and these
may be considered to have an essentially space independent
local temperature which we shall refer to as the effective
temperature.

The linearized solution for long samples �16� is strictly
justified when the electric field is weak, i.e., eFLep�kBT. We
shall be interested in the limit of strong fields where Lep will
presumably be smaller than its equilibrium value, the right-
hand side �RHS� of �17�. Provided L�Lep�T ,F� it makes
sense to assume an electron temperature which is essentially
constant throughout the sample. We then neglect the space
dependent term in Eq. �14�, and the effective temperature of
the electrons, at any field strength, is readily deduced to be

Teff � �Tp+2 +
�eF�2

�kB
p+2�1/�p+2�

. �18�

As mentioned earlier, once Teff is known, to find the scal-
ing function �Rp requires only the temperature dependence
of the resistance R�T� since R�F ,T��R�0,Teff�. At low tem-
peratures, the temperature dependent terms of the resistance
are the weak localization23 and the Altshuler-Aronov
corrections.24 For thin films, both of these have a logarithmic
behavior, thus

R�0,T� � RD�1 − � ln�T�	 , �19�

where � is a small dimensionless constant, depending on the
nature of the electron-electron interactions, the spin-orbit
coupling, and the ratio of the quantum unit resistance to the
Drude resistance of the sample RD. Substituting R�F ,T�
�R�0,Teff� and Eq. �19� in the definition of the scaling func-
tion �1�, and expanding to the leading order in � we obtain
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�Rp� F

Tp/2+1� � −
�

p + 2
ln�1 +

�eF�2

��kBT�p+2� . �20�

Note that this has the scaling form as in Eq. �1� above.
To anticipate the discussion in the next section, it is in-

structive to consider the case of short samples Lep�L. Here
one may neglect the contribution of the electron-phonon col-
lision term in Eq. �12� and readily obtain the solution for
Tloc�x�, whose space dependence, in general, cannot be ig-
nored:

Tloc
2 �x� = T2 +

3�eF�2

kB
2�2 �L2

4
− x2� . �21�

At the temperature range where the dephasing length is much
smaller than the system size one may view the sample as a
set of classical resistors connected in series. Therefore the
total resistance can be approximated by the sum R�F ,T�
�� jRj, where Rj =R�Tloc�xj�	 is the resistance of the jth seg-
ment �of size of the dephasing length�, centered at the point
xj. Thus, assuming homogeneous sample, the experimentally
measured resistivity is essentially an average over the posi-
tion. From this average one immediately obtains the scaling
function of short samples

�R0�V

T
� � − ��� tanh−1� 1

�
� − 1� , �22�

where

� =�1 +
4�2

3
� kBT

eV
�2

�23�

and V=FL is the voltage drop along the sample.

III. DATA ANALYSIS AND DISCUSSION

Comparing the resistance curves shown in Fig. 1 with Eq.
�20�, one notes that a scaling form that leads to the data
collapse occurs for p=2. This means that the energy relax-
ation time is quadratic with temperature: �ep

−1�D /Lep
2 �T2,

and therefore the electron-phonon length �17� is inversely
proportional to the temperature.

The procedure of extracting the detailed form of �ep
−1 or Lep

from the experimental results is as follows. First, the value of
� is obtained by fitting the R�F ,T� data of Fig. 1 to Eq. �20�,
as shown in the bottom panel of this figure. Note that the
latter needs the parameter � as input. This is defined by Eq.
�19� above and is thus obtained from the near-equilibrium
R�T� measurement performed on the same sample. Such
R�T� data and their associated � are shown in Fig. 2 for two
samples. These are made from the same batch of a Au-doped
In2O3−x film, they only differ in their lateral dimensions. The
first is the 3500 
m sample of Fig. 1. The second sample is
80 
m long. The sheet resistances of the two are within 1%
of each other, yet their logarithmic slopes are somewhat dif-
ferent. Also, both samples show a systematic deviation from
the theoretical ln�T� dependence, a feature that seem to occur
in some other 2D systems.25 Since we are mainly interested
in the restricted temperature range 0.28–1 K, this feature

may be ignored, and � is defined by fitting R�T� to a simple
ln�T� over the relevant range as shown in the figure. The fits
yield ��0.0098 and ��0.0081 for the long and short
samples respectively, and these values are used in the subse-
quent analysis below.

The 2D nature of transport in the samples used here is
natural for the temperature regime studied: The relevant
length scale for the Altshuler-Aronov corrections to the con-
ductivity is LT= �hD /kBT�1/2. For T�4 K, LT�300 Å, using
D=8.56 cm2/sec as measured for these samples. This scale
thus exceeds the sample thickness �200 Å� at all tempera-
tures relevant to the present study rendering the samples ef-
fectively 2D with respect to electron-electron interactions.
The WL corrections are characterized by the length scale L�

which is typically 10 times bigger �Ref. 18� therefore the
case for a 2D behavior is quite natural from this aspect as
well. We also note that the elastic mean-free-path l associ-
ated with D=8.56 cm2/s is about 50 Å which is at least an
order of magnitude smaller than any reasonable estimate of
the thermal phonon wavelength at T�4 K thus these
samples are deep in the dirty limit.

An excellent fit to the data in the bottom panel of Fig. 1
can be obtained using Eq. �20� with �=3.7�1055 1 /J2 m2,
�=0.0098 and p=2. The use of this formula, appropriate for
the L�Lep limit, is justified for this sample as can be seen by
estimating Lep. Inserting the above value of � in Eq. �17�,
gives Lep�20 
m at 1 K and only Lep�60 
m at T
�0.28 K. Thus Lep is much smaller than L down to the low-
est temperature we are dealing with here.

For the 80 
m sample, on the other hand, a crossover to
the short-sample regime is realized in the temperature inter-
val covered in our experiments. The crossover can be seen
by studying the data depicted in Figs. 3 and 4. Figure 3

FIG. 2. �Color online� Resistance versus temperature for the
sample of Fig. 1 �open squares� and for a In2O3−x :Au sample with
length L=80 
m and width W=500 
m �full circles�. The dashed
lines are the logarithmic slopes used in defining the value of � �see
Eq. �19�	.
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shows the raw R�V� data measured at different temperatures.
Figure 4 shows these data plotted according to the short-
sample formula �Eq. �22�	 in the top panel, and according to
the long-sample scheme �Eq. �20� with p=2	 in the bottom
panel. The crossover temperature is the temperature below
which the R�F ,T� data can be scaled as a function of V /T,
and above which it scales as F /T2. Comparison of the top
and bottom panels of Fig. 4 shows it is evident that this
temperature is approximately 0.5 K. Thus, with this sample,
the consistency of our approach can be tested in the two
limits. As shown in the top panel of Fig. 4, a good fit to the
�R /R�0� data is obtained using Eq. �22�, which involves just
the parameter �. Note that the best fit � is quite close to the
� that one gets from the logarithmic fit to the R�T� data of
this sample �Fig. 2�. The other limit, which conforms to Eq.
�20�, also yields a reasonable agreement, with the same � as
used above, and with �=2.2�1055 1 /J2 m2 �see bottom
panel of Fig. 4�. The quality of the fit here is less good than
in the 3500 
m sample, perhaps due to the fact that even at
the highest temperature used the sample is not really in the
long-sample limit.

Finally, using the value of � for this sample in Eq. �17�,
one gets Lep�34 
m at 1 K and �100 
m at T�0.28 K.
Since it is plausible to expect that the crossover from the
short-sample to long-sample regime should occur when Lep
becomes comparable with L /2, these numbers are consistent
with our picture.

We turn now to discuss the physics that underlies the
�ep

−1�T2 law for the electron-phonon scattering rate suggested
by our analysis. It is important to note that the enhanced
electron-phonon inelastic scattering resulted from the inclu-
sions of Au atoms in the indium-oxide matrix: By compari-
son, an undoped In2O3−x sample showed �ep

−1 that, at T

�0.5 K, was more than three orders of magnitude smaller18

�in fact, L� in the undoped samples was larger than the
sample length for T�1 K, making it obey the short-sample
scaling Eq. �22�, see Ref. 18, Fig. 14	. Since these “pure”
and the Au-doped samples had otherwise quite similar pa-
rameters �their R�, and diffusion constant are the same to

FIG. 3. �Color online� Dependence of the differential resistance
on voltage at several temperatures. In2O3−x :Au sample with length
L=80 
m and width W=500 
m. The noisier data here �as com-
pared with those of Fig. 1�, is mainly due to the much smaller
sample size.

FIG. 4. �Color online� Top panel: The differential resistance
versus the voltage V normalized by the temperature T using the data
of Fig. 3. The full line is a best fit to the data using Eq. �22�. Note
the data collapse for the three lowest temperatures and the devia-
tions from the short-sample behavior at T=837 mK. Bottom panel:
Data from the same figure �Fig. 3� plotted as a function of F�
=V /L� normalized by T2. The full line is a best fit to the data using
Eq. �20�. Note the data collapse for the two highest temperatures
and the deviations from the long-sample behavior at T=279 mK.
For clarity of presentation, the data for T=620 mK �386 mK� were
eliminated from the top �bottom� panels, respectively.
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within 40%�, the nontrivial role of the gold in enhancing �ep
−1

must be considered.
It seems likely that the enhanced electron-phonon scatter-

ing rate is a manifestation of the Sergeev-Mitin mechanism
for electron-phonon scattering in disordered metals. The gold
impurities in our samples are heavier than the host atoms,
and being inert they are also loosely attached to the indium-
oxide lattice. These factors limit their ability to follow the
lattice movement, and thus the main assumption of the
Sergeev-Mitin mechanism is fulfilled. At the same time, the
Au atoms are active as local soft-modes which could be very
effective in dephasing the electrons.26 However, being
weakly coupled to the lattice, they cannot efficiently dissi-
pate the energy, gained by inelastic collisions with the elec-
trons, to the bath. Therefore the Au inclusions contribute to
dephasing much more than to energy relaxation. Note indeed
that the phase coherence length in these samples is domi-
nated by the interaction of the electrons with these local
modes18 and it is �0.4 
m at T=0.3 K as compared with
Lep�100 
m. That the dephasing rate exceeds the energy
relaxation rate by many orders of magnitude is quite a gen-
eral property of low temperature transport, which follows
from the different temperature dependencies of energy relax-
ation processes, on the one hand, and dephasing, on the other
hand.

To summarize, we have employed a scaling analysis of
nonohmic resistance curves in order to extract the electron-
phonon scattering rate of metallic films. The method makes
use of the temperature dependence of the resistivity therefore
it is best suited for those cases where the resistance can be
used as a sensitive thermometer. Our theoretical results for
quasi-two-dimensional samples may be easily generalized to
other dimensionalities. In these cases the temperature depen-
dence of the resistance, at sufficiently low temperatures, is
dominated by a power low behavior, R�T�=RD�1−�T��.

From here it follows that the scaling function �1� of long
samples satisfies the relation

T−��R = ��1 − �1 +
�eF�2

�Tp+2��/�p+2�� .

Having the equilibrium parameters �� and ��, the experimen-
tal data of R�T ,F� can be fitted to the above form and both �
and p can be extracted. The electron phonon length is then
deduced from Eq. �17�.

We reiterate that in order to apply the scaling approach,
the following conditions should be satisfied: �a� the heat
transfer from the electrons to the bath is dominated by the
electron-phonon collisions and �b� the electron-electron dif-
fusion length should be much smaller than the energy relax-
ation length. On the other hand, the scaling approach is in-
sensitive to the inclusion of other ingredients such as two
level systems and Kondo impurities as long as they do not
serve as additional channels for heat conduction to the bath.
Furthermore, for long samples the quality of the contacts is
of minor importance, since the amount of heat transferred by
the electrons through the contacts is anyhow negligible. For
short samples, however, our analysis assumes that the elec-
trons near the contacts are at the bath temperature. This
means that the contacts are ideal heat sinks, a caveat that
should be borne in mind when using contacts made of a
superconducting material.
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