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Dynamical tunneling systems have been proposed earlier to display a two-channel Kondo effect, the orbital
index of the particle playing the role of a pseudospin in the equivalent Kondo problem, and the spin being a
silent channel index. However, as shown by Aleiner et al. �Phys. Rev. Lett. 86, 2629 �2001��, the predicted
two-channel Kondo behavior can never be observed in the weak coupling regime, where the tunneling induced
splitting of the levels of the tunneling system always dominates the physics. Here we show that the above
scenario changes completely in the strong coupling regime, where—as a nonperturbative analysis reveals—the
two-channel Kondo regime can easily be reached. We show that tunneling systems end up quite naturally in
this regime if the conduction electrons are scattered by resonant scattering off the tunneling impurity, and we
also speculate about the possible origins of such a resonant scattering.
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I. INTRODUCTION

There are a number of somewhat mysterious low-
temperature transport anomalies in disordered point
contacts,1–5 structurally disordered single crystals, and disor-
dered alloys,6–9 which have not been explained satisfactorily.
In some cases, the observed anomalies display power law
behavior1,10 ��T1/2 or V1/2�, sometimes they show universal
scaling properties,1 but they have the common feature that all
of them seem to be related to the presence of some dynami-
cal impurities. Although very attractive, electron-electron in-
teractions fail to explain the absence of this zero bias
anomaly in point contacts with strong static disorder,11 and
the complete absence of magnetic field dependence in some
experiments.2,7

Much before the above-mentioned experimental results,
Vladár and Zawadowski proposed that dynamical two-level
systems—abundant in amorphous regions12—could lead to
an orbital Kondo effect.13,14 They considered the motion of
an ion in an effective double well potential, depicted in Fig.
1, interacting with free conduction electrons. They assumed a
simple potential scattering interaction between the atom and
the conduction electrons and derived the following effective
Hamiltonian for low temperatures, where the atom moves by
tunneling between the two minima of the potential well:

H = −
�0

2
�x −

�z

2
�z + vz�

�

�z��e�
† �o� + �o�

† �e��

+ vx�
�

�x��e�
† �e� − �o�

† �o�� . �1�

Here, the Pauli matrices �i describe the motion of the particle
in the double well potential, with �z= ±1 corresponding to
the left and right potential wells, �0 the tunneling, and �z the
asymmetry of the potential �see Fig. 1�. The operators �e/o�

†

create conduction electrons in some even and odd angular
momentum channels �s and p, e.g.�,13 respectively, and are
defined as

�e/o�
† = �

−D0

D0

d��†���e/o;�.

Here, D0 is a high energy cutoff discussed later and the
�†���e/o�’s satisfy canonical anticommutation relations

��†�����, ���������	 = ��� − �����������.

This corresponds to a normalization of the fields �e/o,� in Eq.
�1� such that the imaginary time propagators at T=0 tem-
perature behave asymptotically as


T���,�������,��
† �0�� =

����

�
. �2�

The dimensionless couplings vx and vz in Eq. �1� and the
splitting �0 have also been estimated by Vladár and
Zawadowski.13 Assuming a simple s-wave scattering U off
the tunneling impurity, they found

�0 � �	0e−
, �3�

vx � U�0
�kFd�2

24

�0

VB
, �4�

FIG. 1. Sketch of the tunneling system. The tunneling system is
probably formed by a single atom in an amorphous region �a�. The
tunneling atom moves in an effective double well potential �b�.

PHYSICAL REVIEW B 72, 245103 �2005�

1098-0121/2005/72�24�/245103�10�/$23.00 ©2005 The American Physical Society245103-1

http://dx.doi.org/10.1103/PhysRevB.72.245103


vz � U�0
kFd

3

, �5�

where �0 denotes the density of states of the conduction
electrons at the Fermi energy, d is the tunneling distance, kF
the Fermi momentum, VB is the height of the tunnel barrier,
and 
 the Gamow factor. The attempt frequency 	0 is typi-
cally somewhat less than the Debye temperature and is typi-
cally in the range 	0�100 K assuming a tunneling atom of
mass M �50mp, with mp as the proton mass. Vladár and
Zawadowski13 also obtained the perturbative scaling equa-
tions for the model defined by Eq. �1� and showed that the

couplings vi and the dimensionless tunneling �̃0��0 /D sat-
isfy the following scaling equations:

dvx

dl
= 4vyvz − 8vx�vy

2 + vz
2� , �6�

d�̃0

dl
= �1 − 8�vz

2 + vy
2���̃0, �7�

where l=ln�D0 /D� denotes the scaling variable with D the
running cutoff �energy scale�. The other equations are ob-
tained by cyclic permutation from Eqs. �6� and �7�. The cou-
pling vy is absent in the original Hamiltonian, it is, however,
generated by the scaling procedure. Clearly, Eq. �6�—apart
from a prefactor in the second term—is that of the aniso-
tropic Kondo model13 and generates a Kondo effect at the
energy scale �TK, the Kondo temperature, where the run-
ning coupling constants become of the order of unity. This
Kondo effect is, however, strikingly different from the ordi-
nary Kondo effect, where the low-temperature physics is that
of a Fermi liquid below TK. In the present case, spin is con-
served in the course of the scattering, and the two spin chan-
nels give rise to a singular two-channel Kondo behavior be-
low TK, provided that the splitting of the two levels can be
neglected.15 The anomalous properties of this two-channel
Kondo state �resistivity �T1/2, V /T scaling, etc.� have been
proposed to explain the experimentally observed anomalies.1

However, the tunneling amplitude �0 is always a relevant
variable, and it ultimately kills orbital fluctuations �and thus
the Kondo effect� of the tunneling system below a character-
istic energy scale �0

*. If this energy scale �0
* is larger than TK,

then the anomalous properties of the two-channel Kondo
fixed point cannot be observed. Vladár and Zawadowski13

argued that—for a symmetrical tunneling system—there is a
parameter range where �0

*�TK, implying that there is a tem-
perature window where the physics is dominated by the
Kondo effect.

Unfortunately, Vladár and Zawadowski13 assumed in their
analysis that the scaling equations above are valid at all en-
ergy scales below the Fermi energy EF. However, as pointed
out by Aleiner et al.,16 this assumption is wrong: Electrons
with energy ��	0 follow the tunneling particle
adiabatically17 and do not give contribution to the vertex
renormalization. As a consequence, Eqs. �6� and �7� become
trivial for 	0
D
EF

�dvi/dl = 0

d�̃i/dl = 1
� for 	0 
 D 
 EF. �8�

Therefore, as pointed out by Aleiner et al.,16 Eqs. �6� and �7�
must be solved with the initial conditions D=	0, �̃0�e−


�vx���0U��kFd�2e−
. Since in the perturbative regime, �̃0

grows always faster than vx, �0
* is always larger than TK, and

the two-channel Kondo effect can never be observed for vz
�1, in contrast to the original conclusions of Vladár and
Zawadowski.13

In this paper, we first show that the arguments of Aleiner
et al.16 hold only in the weak coupling regime, vz�1. In the
strong coupling regime, vz�1, one must treat the coupling vz
nonperturbatively and use the scaling equations originally
derived by Vladár, Zimányi, and Zawadowski in Ref. 18 that
treat vz exactly, while handling the small coupling vx and the
tunneling only in leading order. The analysis based on these
equations clearly shows that there exists a critical value, vz
=vz,c�1/�. Above this so-called Emery-Kivelson line,19 vx
typically wins over �0, i.e., the renormalized splitting is
smaller than the Kondo temperature, TK��0

*, and thus, there
is usually a wide temperature range where the physics of the
tunneling system is dominated by the two-channel Kondo
fixed point.

Then, we show that a possible, and probably the most
natural, way to get into this regime is to have a tunneling
atom that also acts as a resonant scatterer at the Fermi
energy.20 Indeed, as was already observed in the original
work of Vladár and Zawadowski,13 it is known from experi-
ments that the value of vz can be large, suggestive of reso-
nant scattering from the tunneling systems, whatever they
are. As we shall see, in this case it is not enough to start from
the simple potential scattering model studied in Refs. 13 and
16 and one must take into account the dynamical motion of
the internal levels of the tunneling atom. As we show later,
due to this resonant scattering, one easily gets outside the
range of validity of the perturbative equations considered by
Aleiner et al.,16 Eqs. �6� and �7�, and ends up in the strong
coupling regime.

To show why resonant scattering is of primary impor-
tance, let us consider a simple toy model describing an atom
with a single resonant level at the Fermi energy,

H = �
�,k

��k�ck,�
† ck,� + V�

�,k
�ck,�

† d� + H.c.� . �9�

Here, d� is the annihilation operator describing the level, V is
the hybridization, and ck,�

† creates a conduction electron with
spin �, momentum k, and energy ��k�. This model can be
trivially solved, and we can compute the spectral functions
�d�	� and ���	� of the d level and the fermionic field at the
impurity site, ����kck,�,

�d�	� =
1

2�

�

	2 + �2/4
, �10�
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���	� = �0
	2

	2 + �2/4
. �11�

Here, �0 is the density of states of the conduction electrons
at the Fermi energy, and �=2��0V2 is the width of the reso-
nance. Clearly, if we now try to move the atom, it will then
couple to its own resonant level d the most strongly, which is
centered at the atom, and not to the rest of the conduction
electrons, which are sitting at neighboring ions in reality.
Even for a not too narrow resonance with ��1 eV, the den-
sity of states of the resonant level at the Fermi energy is
large, �1/�, while that of the conduction electrons hybrid-
izing with the atom actually vanishes at the Fermi energy
�see Fig. 2�. This large increase in the density of states is
what immediately pushes the system in the strong coupling
regime, vz�vz,c, where the two-channel Kondo behavior
prevails, provided that the resonance is narrow enough. For
typical parameters, we obtain that the resonance should be
narrower than about 0.1EF−0.01EF�1000–10 000 K.

We emphasize though that the above resonance does not
have to be narrower than 	0: As we discussed earlier, only
electrons with energy �	�
	0 are unable to follow the mo-
tion of the atom at a time scale �1/	0. These latter are
exactly the electrons that are responsible for the Kondo ef-
fect. However, these electrons only need a time scale �1/�
to notice the increased scattering strength at the Fermi en-
ergy, i.e., all these “slow” electrons see an increased scatter-
ing strength from the atom. This simple picture can be
readily verified21 through a path integral treatment similar to
that of Ref. 22 as well as by the extension of the the dia-
grammatic approach of Refs. 16 and 23. For a resonance
narrower than 	0, our analysis must be slightly modified, and
the vertex renormalization only occurs in the range D
�,
since electrons with energy 	�� do not couple strongly to
the atom.

As we show later, the increase in the coupling constant
can simply be understood as a matrix element effect: The
wave functions of the conduction electrons at the Fermi en-

ergy �where the resonance is located� have an increased am-
plitude at the tunneling atom’s position, and therefore the
motion of the atom couples more strongly to the conduction
electrons.

It is, thus, the structure of a resonant level itself which is
ultimately responsible for the orbital Kondo effect in the
above scenario, and this resonance cannot be replaced by a
simple potential scatterer in a free electron gas.24 The tech-
nical reason for this is that in a simple potential scattering
model, there is always a term ���,�=e,ov0,����

† ���, which is
large, cannot be neglected, leads to a suppression of the con-
duction electron’s density of states, and ultimately reduces
the effective value of vz. As we shall see, the effective
Hamiltonian for this resonant level finally takes also the
form, Eq. �1�, however, the couplings will be related to some
atomic orbitals, and no large term �v0��,����

† ��� appears.
Therefore, we can use the nonperturbative scaling equations
valid for all values of vz, derived by Vladár, Zimányi, and
Zawadowski in Ref. 18 to construct the phase diagram of our
model. The summary of this analysis is shown in Fig. 3. The
bell-shaped line in Fig. 3 shows the estimated value of the
Kondo temperature TK, while �0

* is the renormalized tunnel-
ing amplitude. In Fig. 3, we also show another energy scale,
�2

*, associated with a two-electron scattering process.25 Be-
low this energy scale, the two-channel Kondo behavior is
also suppressed. As one can see from Fig. 3, there is an
extended regime dominated by the two-channel Kondo fixed
point. The size of this region increases if we decrease the
value of vx and �0, however, then TK is also shifted toward
smaller temperatures. As we discussed above, the tunneling
system ends up immediately in this regime if there is a suf-
ficiently narrow resonant scattering on the tunneling atom.

We would also like to mention that another possibility to
get to the strong coupling regime is to increase the tunneling
distance and have a broader resonance at the Fermi energy.
This might be possible for very light tunneling impurities,

FIG. 2. �Color online� Density of states �spectral function� of a
resonant level d and the conduction electron operator � hybridizing
with it. The conduction electrons’ spectral function is suppressed,
while �d displays a huge resonance at the Fermi energy.

FIG. 3. �Color online� Phase diagram of the tunneling system as
a function of the phase shift �=arctan�vz��. The arrow indicates the
two-channel Kondo regime. The symbol �0

* denotes the energy
scale where the tunneling becomes dominant, while �2

* is the energy
scale where a special two-electron scattering process becomes im-
portant. We have used 	0�100 K, D0�105 K, �0=10 K, and vx

�0.1 as bare parameters.
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possibly by hydrogen: Hydrogen has typically resonant scat-
tering in the s channel and it can possibly tunnel over a large
distance in a metal. Zero bias anomalies have indeed been
observed in hydrogen doped palladium point contacts where
the anomaly is clearly related to the presence of hydrogen.26

The rest of the paper is structured as follows. In Sec. II,
we shall construct a microscopic model that enables us to
treat the resonance properly and map this problem to the
original Vladár-Zawadowski model. We then analyze the
scaling equations and construct the phase diagram of this
model in Sec. III. Finally, in Sec. IV, we present our conclu-
sions and speculate about possible candidates producing a
resonant scattering at the Fermi energy.

II. MICROSCOPIC MODEL

As a first step in constructing a microscopic model for a
tunneling system coupled to the electrons, we write the
Hamiltonian in a first quantized form as

H = −
1

2M
�R − �

i

1

2m
�i + U�R� + �

i

V�ri − R�

+ �
j�0

�
i

V�ri − R j� , �12�

where R denotes the coordinate of the tunneling atom, and
ri’s are the coordinates of the conduction electrons. We treat
the motion of the tunneling atom quantum mechanically,
however, we assume that all other atoms are immobile, and
their position R j �j�1� is a constant classical variable. The
tunneling atom has a mass M and moves in the double well
potential U�R� formed by the rest of the ions. In the Hamil-
tonian �12�, we also assumed that electrons form a Fermi
liquid and, thus, neglected the electron-electron interaction,
which is supposed to be included in the effective electron-ion
interaction potential V�r−R� at the Hartree or Hartree-Fock
level.

To simplify this Hamiltonian, as a first step, we rewrite
Eq. �12� as H=H0+Hint with

H0 = −
1

2M
�R + U�R� − �

i

1

2m
�i + �

j�0
�

i

V�ri − R j� ,

�13�

Hint = �
i

�V�ri − R� − V�ri − R0�� , �14�

where R0 is a somewhat arbitrary “reference position” of the
ion, which is chosen to minimize the interaction part Hint. A
natural choice is, of course, to choose R0 to correspond to
the maximum of the barrier in U�R�. Clearly, the noninter-
acting part H0 can be diagonalized.

To make further progress, we shall adopt a tight-binding
scheme for the atom. Though this approach is justified by the
observation that the tunneling impurity moves in a small
cavity, our analysis does not rely on it, and our conclusions
are independent of this approximation. To arrive at a tight-
binding Hamiltonian, we first solve the atomic Schrödinger
equation

�−
1

2m
�r + V�r − R0�����r� = �����r� , �15�

where �� labels the atomic levels. The states �� above are
atomic eigenstates centered at the tunneling atom. As a next
step, we solve the Schrödinger equation for the rest of the
conduction electrons without making any approximation,

�−
1

2m
�r + �

j�0
V�r − R j���n�r� = �n�n�r� . �16�

Then, using the wave functions �� and �n, we can compute
the appropriate overlap matrix elements and construct the
following tight-binding Hamiltonian for the conduction elec-
trons:

H0
el = �

�,�
��d�,�

† d�,� + �
n,�

�ncn,�
† cn,� + �

�,n,�
�tn,�cn,�

† d�,�

+ H.c.� , �17�

where cn,�
† denotes the creation operator of a conduction

electron in the �extended� state n with spin �, d�,�
† creates a

conduction electron at the atomic orbital �, and tn,� denotes
the corresponding hopping matrix element. Since the inter-
action part Hint is large only at the position of the tunneling
impurity, we can integrate out all electrons cn,�

† and arrive at
the following imaginary time effective action for the d lev-
els:

Seff
0 = − �

�,��,�

�
0

�

d��
0

�

d��d̄�����G���
−1 �� − ���d������� ,

�18�

where G��� denotes the local propagator of the d levels,
which can be expressed in Fourier space as

G���
−1 �i	n� = i	n − ������ − �

n

tn,�
* 1

i	n − �n
tn,��. �19�

This Green’s function can be written even more conveniently
in a spectral representation as

G����i	n� = �
−�

�

d	
�����	�

i	n − 	
. �20�

It is this spectral function �����	� which contains the reso-
nance discussed in Sec. I, and which solely determines the
low-temperature properties of the tunneling system.

In the following, we shall consider the simplest case,
where the tunneling system is fully symmetrical. We first
diagonalize the Hamiltonian of the tunneling atom,

�−
1

2M
�R + U�R�����R� = E����R� . �21�

In principle, we could formulate our theory by keeping all
levels of the tunneling particle,27 However, at low enough
temperatures, only the two lowest lying even and odd states,
�e and �o, matter, and the role of all other eigenstates is to
reduce the electronic cutoff to a value of the order of the
Debye frequency, D0→	0.16,23 Therefore, in the following,
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we shall keep only these two states. To obtain the usual tun-
neling form that occurs in Eq. �1�, we introduce the left and
right states ��=±

�± �
1

2

��e − �o� , �22�

which transform into each other under reflection, and rewrite
the Hamiltonian, Eq. �21�, in this restricted subspace as

H0
tun = −

�0

2
�x, �23�

with �x as the Pauli matrix. The tunneling amplitude �0
=Eo−Ee is approximately given by Eq. �3�.13

Having diagonalized the noninteracting part �13� of the
Hamiltonian, we now turn to the analysis of the interaction
part. First, we shall simplify our treatment by keeping only
those two even and odd electronic states d� ��=e ,o�, which
couple the most strongly to the tunneling particle. In a real
system, these correspond to the most strongly coupled d and
p states or s and p states. In case of a p state, e.g., it is clear
that the p state aligned along the tunneling axis couples the
most strongly to the motion of the atom. Due to the assumed
spatial symmetry of the Hamiltonian, the corresponding
spectral function is diagonal in the index �, ����=������.
We shall assume, furthermore, that at least one of the spectral
densities, say �o contains a resonance of width �, while the
other one is approximately constant, �e��0�1/EF,

�o�	� =
1

2�

�

	2 + �2/4
, �24�

�e�	� = �0. �25�

To construct the interaction part of the Hamiltonian in this
restricted basis, we have to compute matrix elements of Hint
given by Eq. �14�. Assuming that the tunneling distance is
small, we can approximate Hint as

Hint � − �
q=x,y,z

Rq
�V

�rq
+

1

2 �
p,q=x,y,z

RpRq
�2V

�rp�rq
+ ¯ ,

�26�

and then compute the appropriate matrix elements to obtain
the effective Hamiltonian as

Hint � A���e�
�o� + ��o�
�e���de�
† do� + do�

† de�� + �Be��e�

�
�e� + Bo��o�
�o���Cede�
† de� + Codo�

† do�� ,

where summation is assumed over repeated spin indices, and
the constants A, Be/o and Ce/o are given by the following
integrals:

A = − 
�e�Rz��o�
�e�
�V�r�
�rz

��o� , �27�

Be/o =
1

2

�e/o�Rz

2��e/o� , �28�

Ce/o = 
�e/o�
�2V�r�
��rz�2 ��e/o� . �29�

This Hamiltonian can easily brought to the form, Eq. �1�, if
we notice that only electronic excitations with energies 
	0
contribute to the orbital Kondo correlations.16 Therefore, if
the width of the resonance is broader than the attempt fre-
quency, ��	0�100 K�0.01 eV, then we can introduce
the new fermionic fields normalized according to Eq. �2�

de� → �e� � de�/
�e, do� → �o� � do�/
�o, �30�

where �e and �o denote the density of states at the Fermi
energy in the even and odd channels, respectively. In terms
of these fields, the interaction Hamiltonian takes on the form
Eq. �1�, with the couplings vx and vz given by

vz = A
�e�o,

vx =
1

4
�Be − Bo��Ce�e − Co�o� . �31�

There are two more terms that appear in addition to these
two terms, both of which are small: One is a simple potential
scattering term, ���e

†�e−�o
†�o�, that only renormalizes the

spectral densities �o and �e and can be eliminated by a
simple counterterm procedure. The other term is proportional
to ��x��e

†�e+�o
†�o� and gives a small renormalization of the

double well potential U�R�.23 This term can be taken into
account at the Hartree level and is of no importance. In the
following, we shall, therefore, keep only the two couplings
vx and vz in Eq. �31�.

Note that the above procedure of integrating out the elec-
trons cn,� and then rescaling the couplings is just a technical
trick to extract the dimensionless couplings and to derive
quickly the scaling equations. However, one can proceed in
the usual way and obtain the dimensionless couplings by
analysis of the structure of the dimensionless vertex func-
tions, as in Refs. 23 and 28.

The couplings vz and vx can be estimated along similar
lines as in Refs. 13 and 15, and one obtains

vz � 
�e�o
�e�d
�V�r�
�rz

��o� , �32�

vx � − �0



16

1

VB
�o
�o�d2�2V�r�

��rz�2 ��o� , �33�

where in the second equation, we assumed a quartic double
well potential with barrier height VB and displayed only the
contribution of the odd channel. The constant d in Eqs. �32�
and �33� denotes the tunneling distance. A similar but smaller
contribution is given by the nonresonant even channel. Re-
markably, the matrix elements above are expressed in terms
of the atomic �tight-binding� orbitals of the tunneling atom.
They can be easily estimated assuming a simple Coulomb
interaction, V�r�=−e2 /r, and hydrogen-like wave functions.
Taking the 1s and 2p orbitals, e.g., we find


2p�
�V�r�
�rz

�1s� =
e2

a0

4

27
2a0

� 5.4
eV

Å
, �34�
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2p�
�2V�r�
��rz�2 �2p� = −

e2

a0

1

40a0
2 � − 2.43

eV

Å2 , �35�

where a0 is the Bohr radius.
It is not difficult to show that even for a wide resonance

with ��1000–10 000 K and d�0.3 Å, vx is about the same
as the dimensionless tunneling �0 /	0. More importantly,
however, vz is proportional to 1/
�. Therefore, if the con-
duction electrons scatter resonantly off the tunneling atom,
then the value of vz can become large, and eventually be-
come larger than the critical value corresponding to the
Emery-Kivelson line mentioned in the Introduction, vz,c
=1/�. For typical parameters, this transition takes place
where the width of the resonance is around �
�1000–10 000 K.

Throughout this paper, we shall assume that ��	0, i.e.,
that the resonance is relatively broad compared to typical
frequencies related to atomic motion. Under these condi-
tions, the cutoff energy is given by 	0 and the couplings
between the tunneling system and the electrons can be safely
approximated by their values at the Fermi energy.

The above large increase in the effective couplings can be
understood as a simple matrix element effect and is related to
the well-known structure of scattering states: To clarify this
point, let us consider the textbook example of scattering
states in the s channel of a simple spherically symmetric
potential scatterer, U�r�=V��r−r0�. The scattering wave
functions in this simple case take the form sin�kr+�� /r and
b sin�kr� /r for r�r0 and r
r0, respectively, with k as the
radial momentum of the electrons and � as the scattering
phase shift. The amplitude b2 of the wave function inside the
sphere is given by the expression,

b2 =
k2

k2 + V2 sin2�k� + 2kV sin�2k�
, �36�

where we used units of r0=2m=�=1. For V�0, the ampli-
tude of the wave function is simply 1. However, for larger
values of V, a resonance appears, and b2 displays a sharp
peak as a function of energy �Fig. 4�. It is a trivial matter to
show that the amplitude b of the resonance is simply related
to the width � of the resonance, b�1/
�, and becomes
larger and larger for sharper and sharper resonances. This
large factor b shows up in the local density of states and also
any matrix element computed in terms of the appropriately
normalized scattering states and results in an increase of all
couplings, provided that the resonance appears at the Fermi
energy.

III. NONPERTURBATIVE SCALING ANALYSIS

We have seen in Sec. II that for resonant scattering from
the tunneling impurity the coupling, vz can be very large. In
this case, the perturbative scaling equations, Eqs. �6� and �7�,
are insufficient and a new approach is needed. Fortunately,

for �̃0, vx�1, one can construct scaling equations which are
nonperturbative in the coupling vz by generalizing the com-
putations of Yuval and Anderson.18,29 In this limit, one ob-
tains the following scaling equations:18

d�̃0

dl
= �1 − 8� �

�
�2��̃0, �37�

dvx

dl
= 4

�

�
vy − 8� �

�
�2

vx, �38�

dvy

dl
= 4

�

�
vx − 8� �

�
�2

vy , �39�

with the phase shift � defined as �=arctan��vz�. Here we

neglected terms of order O�vx
2 ,vy

2 , �̃0
2�. These terms give rise

to a renormalization of � in the strong coupling regime and
slightly change the numerical values of the various energy
scales we estimate, but do not affect their overall scale and
the picture obtained using the above equations. Equations
�38� and �39� can be rewritten in terms of the average cou-
pling, v���vx+vy� /2, and the asymmetry, v−��vx−vy� /2,
as

dv�

dl
= �4

�

�
− 8� �

�
�2�v�, �40�

dv−

dl
= − �4

�

�
+ 8� �

�
�2�v−. �41�

In other words, the anisotropy vx�vy is irrelevant, while the
average coupling v� is relevant. Therefore, the two cou-
plings vx and vy become rapidly equal in the initial stage of
the scaling. Equations �40� and �41� are only valid below the
scale D�	0; above this energy scale, the couplings vx, vy

remain unrenormalized, while �̃0 transforms according to its
engineering dimension and satisfies Eq. �8�. Therefore, Eqs.
�40� and �41� must be solved with the initial conditions D

=	0, �̃0�	0�=�0 /	0�e−
, vy�	0�=0, and vx�	0� given by
Eq. �33�.

FIG. 4. �Color online� Amplitude b2 of the scattering state of the
conduction electrons at the origin in a simple scattering state model.
The amplitude of the scattering state at the origin increases as the
resonance gets sharper and sharper. The inset shows the potential
producing the resonance.
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From Eqs. �37� and �38�, we see that the value vz=1/�
corresponding to �=� /4 is very special: For �
� /4, the

scaling dimension of �̃0 is always larger than that of vx, and
therefore, tunneling is always more relevant than assisted
tunneling. As a result, the motion of the tunneling system
freezes out at an energy scale �0

*��0

�0
* = �0,�

* � �0��0

	c
��

, � =

8� �

�
�2

1 − 8� �

�
�2 , �42�

where the assisted tunneling is still small compared to unity,
and thus, the system is far from the two-channel Kondo fixed
point.

Equation �42� only makes sense if �0
*�TK. This is always

the case for �
� /4. If, however, ��� /4, then the physics
can become very different. In this case, vx grows faster than

�̃0, so vx�1 can be satisfied first. The condition vx�1 de-
fines the so-called Kondo temperature

TK � 	o�vx

2
��

, �−1 = 4
�

�
− 8� �

�
�2

, �43�

where the renormalized tunneling satisfies

�0�TK� � TK
2�0

	0vx
�vx

2
��

, � =

4
�

�
− 1

4
�

�
�1 − 2

�

�
� . �44�

From this equation, it is obvious that for ��� /4 the effec-
tive tunneling amplitude is usually still small at the energy
scale T�TK compared to the temperature itself. Below the
Kondo energy TK the scaling equations are governed by the
two-channel Kondo fixed point. There the tunneling is still
relevant and has a scaling dimension 1/2 and, therefore, its
scaling equation must be replaced by15

d�̃0

dl
=

1

2
�̃0, �D 
 TK� . �45�

Integrating this equation, we obtain for the renormalized tun-
neling amplitude for the case �0

*
TK,

�0,

* � TK�2�̃0

vx
�2�vx

2
�2�

� TK, �46�

From our discussions, it immediately follows that in the
tunneling regime for a symmetrical tunneling center with
vz�vz,c there is typically a large temperature window, �0

*


T
TK, where the two-channel Kondo fixed point rules
and the non-Fermi liquid properties such as the �
T resis-
tivity anomaly associated with the two-channel Kondo fixed
point should be manifest. We have to emphasize, however,
that below the scale �0

*, the physics becomes again that of a
boring Fermi liquid. The corresponding crossover lines were
sketched in Fig. 3 for typical parameters of the tunneling
system. As one can see in the figure, there is a large region in
the parameter space, which is governed by the two-channel

Kondo behavior. This region increases even further for

smaller values of �̃0�vx, however, it also shifts toward
smaller values of TK.

Before we conclude this section, let us discuss another
important issue, raised by Moustakas and Fisher.25 Mousta-
kas and Fisher observed that at the two-channel Kondo fixed
point, a special two-electron scattering of the form

H2 =
�̃2

D0
�x��+↑

† �+↓
† �−↓�−↑ + H.c.� �47�

is also relevant, and that for ��� /4 this operator is more

relevant than the tunneling �̃0 discussed above. The coupling

�̃2 above denotes a dimensionless coupling constant, and its
bare value can be estimated to be around vx, while the energy
scale D0 is of the order of the Fermi energy EF. Below the
energy scale D=	0, this operator satisfies the scaling equa-
tion

d�̃2

dl
= �− 1 + 8

�

�
− 8� �

�
�2��̃2. �48�

Fortunately, this operator is irrelevant at high energies, 	0

D, where its scaling dimension is simply −1,

d�̃2

dl
= − �̃2, �D � 	0� . �49�

As a result, by the time we get into the regime D
	0, this
two-electron process is reduced by a factor 	0 /D0�10−3

compared to vx.
Below 	0, this process becomes relevant and generates a

crossover to a Fermi liquid at an energy scale �2
*. Similar to

�0
*, we have to distinguish two possibilities. For larger values

of �, TK
�2
*, and �2

* is given by the following expression:

�2
* � �2,�

* � 	0�	0

EF
�̃2��

, �50�

�−1 = 8
�

�
− 8� �

�
�2

− 1. �51�

However, this formula is not correct if TK��2
*, since �̃2 has

scaling dimension 1/2 below the Kondo temperature.25 Car-
rying out an analysis similar to the case of �0

*
TK, we find
in this regime that

�2
* � �2,


* � 	0�	0

EF
�̃2�2�vx

2
��

,

� =

3 + 16� �

�
�2

− 16
�

�

4
�

�
− 8� �

�
�2 . �52�

The corresponding crossover line is also shown in Fig. 3. As
one can see, �2 does not play a significant role in the regime
where TK is the largest, however, for larger values of � it is
indeed �2 that provides an infrared cutoff for the two-
channel Kondo behavior.
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IV. CONCLUSION

In the present paper, we constructed a theory which de-
scribes the low-temperature behavior of a tunneling particle
with resonant scattering. We have shown that the resonance
plays a crucial role in the physics of the tunneling center.
While the local density of states of the resonant atomic state
has a huge peak inversely proportional to the width of the
resonance, �d�1/�, the density of states of the correspond-
ing conduction electrons is strongly suppressed, and thus, the
tunneling atom couples the most efficiently to its own elec-
tronic state. Despite this complication, after a proper treat-
ment of the electron-tunneling particle interaction, we arrive
at the original model of Vladár and Zawadowski. However,
our treatment does not rely on the free electron approxima-
tion, the various coupling constants can be large and they are
determined by atomic integrals.

As we have shown, the resonant scattering can completely
change the physics of the tunneling impurity and push it in
the nonperturbative regime. While in the weak coupling re-
gime, the tunneling always intervenes before we enter the
two-channel Kondo regime, in this nonperturbative regime,
the two-channel Kondo behavior usually dominates over the
spontaneous tunneling over a wide temperature range of pos-
sibly several decades for physically relevant parameters. We
emphasize again that a model where the tunneling center
interacts with some local interaction with a free electron gas
is unable to capture this behavior.24,29 The physical reason
for this is simply that electrons are not free. Even if we do
not move the tunneling atom, the electron’s wave function is
adjusted to the atomic potential of the tunneling impurity.
This effect has been heuristically taken into account in Ref.
23, where only the change in the scattering potential has
been considered as a perturbation, without justifying this ap-
proach. Also, the simple potential scattering model is unable
to take into account the dynamics �retardation effects� of the
electronic states at the tunneling impurity itself, which one
actually tries to eliminate from the theory.

It is not quite clear what the origin of such a resonant
level could be in practice. In the point contact measurements,
one natural candidate would be hydrogen. Hydrogen is small
enough, can diffuse into the substrate, and is known to have
a phase shift � /2 in the s channel.30 �This phase shift, which
just characterizes the atomic scattering off a hydrogen ion is
not to be confused with the phase shift � corresponding to
vz.� Moreover, hydrogen is light: This implies that the cutoff
	0 can be in the range of 	0�1000 K. As a result, all tem-
perature scales can be about an order of magnitude larger for
hydrogen than the ones in Fig. 3, and TK can be easily in the
range of a few Kelvins. Being light, hydrogen can tunnel
over relatively large distances, d�1 Å, implying that vz is
presumably large even if the resonance is very broad. In fact,
in the point contact experiments, it is very difficult to ex-
clude the presence of hydrogen in the course of sample
preparation,31 and recent experiments on hydrogen doped
palladium point contacts indeed exhibit zero bias anomalies
associated with the presence of hydrogen.26 However, more
detailed calculations would be needed to estimate the size of
the coupling vz for tunneling hydrogen.

Tunneling systems with small effective masses can be
formed by dislocations too.32 In this case, however, the spa-

tial extent of the defect can be large, and it is not quite clear
how the two orbital scattering channels driving the two-
channel Kondo effect could be selected.

Other natural candidates would be impurities with strong
magnetic correlations, i.e., Kondo-type impurities. In this
scenario, two types of Kondo effect take place: �i� a mag-
netic Kondo effect with a large Kondo temperature, TK

magn,
and �ii� the orbital Kondo effect discussed so far at a much
smaller energy scale, TK

orb�TK
magn. The magnetic Kondo reso-

nance would provide the resonance needed for the orbital
Kondo effect, and the magnetic correlations serve only to
boost up the couplings of the tunneling system and generate
an orbital Kondo effect at lower temperatures. Above the
magnetic Kondo temperature, T�TK

magn, magnetic scattering
provides also a strong inelastic scattering. Correspondingly,
there is a temperature-dependent time scale, �spin�T� at which
the spin of a conduction electron is flipped. These spin-flip
processes could, in principle, destroy the two-channel Kondo
behavior. To be able to neglect these spin-flip processes, one
needs to satisfy the criterion 1/�flip�T�
T at all tempera-
tures. Luckily enough, the rate 1 /�flip�T� is suppressed below
the Kondo scale. Unfortunately, however, to our knowledge,
this spin-flip rate has never been determined so far reliably.
However, one can obtain a simple estimate for it using the
knowledge about the inelastic scattering cross section.33

From these considerations, one concludes that well below
TK, in the Fermi liquid range, the spin-flip rate must scale as
�T2 /TK, while in the vicinity of TK, it must be of the order
of 1 /�spin�T��T. Above TK, this rate must scale to zero loga-
rithmically. From these considerations, it appears that the
criterion 1/�flip�T�
T is always satisfied, and one can, there-
fore, probably safely neglect spin-flip scattering processes.
We have to emphasize though that these impurities do not
need to be Kondo impurities in the usual sense, since the
width of the magnetic “Kondo resonance” can be in the
range of thousands of Kelvins or even larger. For such a
correlated impurity, the local density of states remains
unrenormalized.34 However, there is a strong field renormal-
ization proportional to the Z factor, Z�TK

magn/EF, which ul-
timately rescales vz as vz→vz /
Z. We emphasize again that
even an extremely large �magnetic� Kondo temperature in
the range �1000–10 000 K could give rise to the phenom-
ena discussed in this paper, and therefore, the usual transport
and specific heat anomalies associated with the magnetic
Kondo effect may be hardly observed in this case.

In the case of a tunneling system with strong magnetic
correlations, the zero bias anomaly may be very sensitive to
the external field too. The reason is that, in this case, the
density of states and thus the couplings in the two spin chan-
nels may depend rather sensitively on the applied magnetic
field. This translates to a channel anisotropy in the effective
two-channel Kondo model and drives the system to a Fermi
liquid. This may possibly explain the strong magnetic field
dependence in some experiments.1

Strongly coupled electron-phonon systems have also been
proposed as possible candidates to produce an orbital Kondo
effect.35 In this case, the two-level systems form dynami-
cally. It is, however, not clear how the regime of extremely
strong electron-phonon coupling needed can be reached. Fur-

G. ZARÁND PHYSICAL REVIEW B 72, 245103 �2005�

245103-8



thermore, in these studies, only a few vibrational modes
could be considered, which has been shown to be insufficient
to produce the correct low-temperature behavior.16,23

Finally, let us comment on the presence of the splitting
�z. In our previous analysis, we completely neglected the
asymmetry of the tunneling centers. In lattice structures such
as in Refs. 7–9, �z can be rather small. However, in a disor-
dered point contact, �z has a random distribution and should
provide a low energy cutoff for the non-Fermi liquid proper-
ties similar to the spontaneous tunneling. Therefore, a break-
down of universal scaling is expected due to the presence of
�z. Such a breakdown of universal scaling has indeed been
observed in Ti point contacts,2 where the zero bias anomaly
did not depend on the presence of an external magnetic field,
was sensitive to electromigration, and had an amplitude con-
sistent with the presence of just a few tunneling centers.
These experiments seem to be in perfect agreement with all

predictions of the two-level system model. However, it is
much harder to explain the origin of the zero bias anomaly in
Cu samples.1 While the sensitivity to the magnetic field
could be explained assuming that the tunneling impurities
have a sharp resonance, the zero bias anomaly in these ex-
periments has a very large amplitude, and as pointed out by
Smolyarenko and Wingreen,36 the observed anomalous resis-
tivity exponent close to 1/2 can hardly be understood assum-
ing a completely random distribution of �z.
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