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The electronic structure of the thulium monochalcogenides TmS, TmSe, and TmTe is studied with several
theoretical approaches. The total energy is evaluated with the self-interaction corrected local-spin density
approximation, whereby the Tm ions are described with either twelve or thirteen localized f electrons with the
remaining electrons forming bands. The comparisons of these two scenarios reveal the valency shift of the Tm
ion through the series. The spectral functions of TmX compounds are calculated including multiplet effects,
and they are compared to experimental x-ray photoemission spectra. The basic tool is the Hubbard-I approxi-
mation in which the embedding of an isolated fn ion in a solid is performed by modifying the crystal Hamil-
tonian as obtained from the local-density approximation with the atomic self-energy of the ion. The parameters
of the model are obtained from the self-consistent band structure calculation. The agreement with experiment
is excellent, reproducing all significant multiplet structures.
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I. INTRODUCTION

The Tm monochalcogenides have attracted a lot of inter-
est due to their complex physical and chemical properties.1

At ambient pressures TmS is a trivalent metal,2 TmSe is in a
mixed valence state2–4 �with a valency between 2.55 and
2.72�, and TmTe is a divalent, magnetic semiconductor.2 The
resistivity of TmSe shows a Kondo-like logarithmic tempera-
ture dependence at high temperatures, whereas at low tem-
peratures TmSe is suggested to be insulating.5 The resistivity
of TmS is also complex, with a Kondo-like behavior.6 High
pressure experiments7 show that TmTe is divalent and insu-
lating up to a pressure of 2 GPa, a mixed valent between 2
and 6 GPa, and a trivalent metal above 6 GPa. In addition a
crystallographic phase transition has been reported at
�8 GPa, from the NaCl structure to a tetragonal phase.8–10

The optical properties of TmSe1−xTex alloys have also been
measured,11 in particular the Kerr rotation spectrum.

The low temperature properties of TmTe have been stud-
ied with particular emphasis on the quadrupolar ordering that
occurs due to the crystal field split �8 state.12 By measure-
ments of susceptibility, elastic constants, magnetization, and
specific heat it was concluded that quadrupolar ordering oc-
curred below 1.7 K.12 Neutron scattering experiments13,14

were consistent with this conclusion.
The phonons were measured in TmTe by using far infra-

red spectroscopy and Raman scattering,15 and these measure-
ments agreed well with the theoretical phonon distribution
curve calculated by Jha.16 Concerning the electronic struc-
ture, first principles calculations have been carried out for the
Tm chalcogenides17–19 both in the local spin density approxi-
mation �LSDA� and local density approximation �LDA�+U.
However, the only conclusion that can be drawn from the
comparison with photoemission spectra is that neither of
these approximations can reproduce the features in the ob-
served data due to their lack of atomic multiplet effects.

In the present paper we aim at improving the agreement
between theory and experiment and in order to do this we
adopt the approach of Ref. 20 to calculate the spectroscopic
data of the Tm-chalcogenides. The main advantage with this
approach is that atomic multiplet effects naturally enter the
one-particle Green’s function and hence it is appropriate for
localized electron systems, such as the 4f states in the Tm
chalcogenides. The spectroscopic data were measured in
Refs. 21–23 and a detailed comparison between theory and
experiment at ambient conditions is made here.

In addition to addressing the spectroscopical properties
theoretically we present here also an analysis of the cohesive
properties and in particular pressure induced phase transi-
tions, by means of a self-interaction corrected local-spin den-
sity functional. The rest of this paper is organized as follows:
In Sec. II we present our theoretical methods, Sec. III con-
tains our results, and in Sec. IV we summarize and offer our
conclusions.

II. THEORY

A. The SIC-LSD total-energy method

The self-interaction correction to the local-spin density
approximation �SIC-LSD� formalism that is used here to
treat the localized f states has been described in details
elsewhere,24–26 but we shall review here the key concepts.

In density functional theory �DFT�,27–29 the ground state
of a spin-polarized system is obtained by minimizing the
spin density functional of the energy,

E�n,m� = T�n,m� + U�n� + Vext�n� + Exc�n,m� , �1�

with n�r�=n↑�r�+n↓�r� and m�r�=n↑�r�−n↓�r� being the to-
tal and magnetization densities, respectively. T, U, Vext, and
Exc are the kinetic energy, the Hartree energy, the energy of
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the external potential, and the exchange-correlation energy.
The most used and probably most successful approximation
to the exchange-correlation functional is the LSDA in which

Exc
LSDA�n,m� =� d3r�xc

hom�n�r�,m�r��n�r� , �2�

where �xc
hom�n ,m� is the exchange-correlation energy of the

homogeneous electron gas of density n and magnetization
density m. The correct form of the exchange-correlation
functional has the property for any single-particle densities
n� and m�=n� as it exactly cancels out the Coulomb
self-interaction,30 i.e., Exc�n� ,n��+U�n��=0. This is, how-
ever, not true in the LSDA for localized states �it still holds
for delocalized Bloch states, where both terms vanish in the
thermodynamic limit�. Hence, the LSDA contains a spurious
self-interaction

�� = U�n�� + Exc
LSDA�n�,n�� . �3�

The SIC-LSD approximation consists of subtracting this
term from the energy functional for each localized orbital,
which results, after minimization, in an orbital-dependent
Kohn-Sham equation,24,25

�H0 + V�
SIC����� = 	

��

��,������� , �4�

H0 = − �2 + VH�r� + Vext�r� + Vxc
LSDA

„n�r�,m�r�… , �5�

V�
SIC�r� = − 2� dr�
 n��r��

�r − r��
− Vxc

LSDA
„n��r�,n��r�…� , �6�

where VH, Vext, and Vxc
LSDA are the Hartree, external, and

LSDA exchange-correlation potentials. In Eq. �4�, the ��,��
are the Lagrange multipliers associated to the orthonormality
constraint between the ����. As we have already mentioned,
V�

SIC�r� vanishes identically for an extended Bloch state and
the LSDA “ground” state is therefore a suitable solution of
Eq. �4�, i.e., it makes the SIC energy functional stationary. In
our implementation, Eq. �4� is solved by steepest descent and
unitary state mixing in order to find the lowest energy state
corresponding to a predefined number of localized
electrons.24,25

B. Spectral functions within the Hubbard-I approximation

For systems showing strong correlations �i.e., the Cou-
lomb interaction exceeds the band width, U /W	1� as is the
case for rare earth compounds, calculations based on the
DFT are often unable to reproduce experimental data. This is
especially true for spectroscopic data and arises from the fact
that atomic multiplets are present in the spectrum that cannot
be described by one-particle approaches such as the DFT. To
achieve a satisfactory description of this kind of phenom-
enon, one has to use a theory which combines the many body
effects due to localization of electrons, with the bands from
delocalized states. One way to do that is to use the so-called
Hubbard-I approximation �HIA�.31 This method is described
shortly here, a full account may be found in Ref. 20. A

simple diagrammatic derivation of this approximation is
given in the Appendix. First, the eigenvalues E
 and eigen-
vectors �
� of a Hubbard Hamiltonian representing an atomic
fn shell and written as

Hat =
1

2 	
�mj


Um1m2m3m4
cm1

+ cm2

+ cm3
cm4

+ �	
i

l�i . s�i − �	
m

cm
+ cm,

�7�

are obtained by exact diagonalization. Here, indices mj refer
to the individual orbitals of the fn shell including spin, i.e.,
mj =1, . . ,14, for f orbitals. The spin-orbit coupling is in-
cluded in the second term where � is the spin-orbit constant

related to the derivative of the radial potential and l�i and s�i
are the orbital moment and spin operators for the ith electron
in that shell. The chemical potential, �, included in the third
term, is treated here as an adjustable parameter. The four-
center integrals of the Coulomb operator read,

Um1m2m3m4
= 	

�=0



4�

2� + 1
� 	

m=−�

+�

�m1�Y�m�m4��m2�Y�m
* �m3�F�

�8�

where �mi�Y�m�mj� are the Gaunt coefficients and F� the
Slater integrals. Because of the properties of the Gaunt coef-
ficients, only F0, F2, F4, and F6 are relevant in the case of f
electrons.

The atomic Green’s function Gmm�
at and atomic self-energy,

�mm�
at , are computed from the eigenvectors of Hat as

Gmm�
at ��� =

1

Z
	

�

�
�cm������cm�
+ �
�

� + E
 − E�

�e−�E
 + e−�E�� ,

�mm�
at ��� = ��mm� − �Gat�mm�

−1 ��� , �9�

where �=1/T and Z is the partition function written as
Z=	
e−�E
. Finally, the crystal Green’s function Gk is ob-
tained by combining �mm�

at with the Hamiltonian Hk
LDA from a

DFT calculation �in our case in the LDA�

Gk
−1��� = � − �at��� − Hk

LDA. �10�

The spectral function A��� is obtained from the Green’s
function by

A��� =
1

�
Im 	

k
Gk��� . �11�

This is the quantity we will compare to experimental photo-
emission spectra of TmX compounds, an approximation
which ignores the dependence of the photoemission spec-
trum on the photoelectron matrix elements. The values of the
parameters F� and � are determined in an ab initio way by
using the f partial waves of the self-consistent LDA calcula-
tion. However, the first Slater integral, F0�U, needs to be
reduced from its bare value in order to get satisfactory agree-
ment with the experiments. This is a well-known effect in all
solid state spectroscopies, caused by the screening of the
atomiclike electrons by the fast conduction electrons of the
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solid. The only parameter which needs to be adjusted is the
chemical potential of the reference atom, which determines
the ground state configuration fn. This chemical potential is
crucial for embedding the atom into the solid host in that it
relates the atomic energy levels to the solid’s energy bands.

Compared to other methods currently used to compute
spectra of strongly correlated systems, the present approach
lies in between LDA+U �Ref. 32� and dynamical mean-field
theory �DMFT� �Refs. 20 and 33� techniques. For the de-
scription of spectroscopic properties, the HIA is superior to
the LDA+U method or the charge transfer multiplet model,34

but it cannot improve over the LDA for quantities such as a
lattice parameter, a magnetic moment, etc., since it has not
yet developed into a �self-consistent� total energy method.
Indeed, it can describe multiplet effects contrary to the
LDA+U technique where the localized states are accounted
for by only a mean-field Hubbard term which is added to the
LDA Hamiltonian. Moreover, it can reproduce the k depen-
dence of the spectrum �Eq. �10��, which is required for com-
parison with angle-resolved experiments, in contrast to the
charge transfer multiplet model34 which in addition relies on
a large number of parameters �charge transfer energy, hop-
ping strength, crystal field parameters, etc.� to embed the
atom into the solid.

III. RESULTS AND DISCUSSION

A. Cohesive properties and pressure-induced valence
transitions

The calculated cohesive properties of thulium chalco-
genides are summarized in Tables I and II as well as in Fig.
1. Table I compares the calculated equilibrium lattice con-
stants to experimental values. Three scenarios are consid-
ered, the LSDA where all f electrons are treated as band
states, and the cases of 12 or 13 localized f electrons. The
best agreement between the calculated lattice constant and
experiment is seen for the LSDA calculation for TmS, for the
f12 configuration in TmSe and for the f13 configuration in
TmTe, reflecting the increasing tendency to localization with
a larger ligand. However, the fact that the calculated lattice

constant in the LSDA are close to the experimental value for
TmS �Table I� can only be considered accidental. The experi-
mental lattice constant reported35 for TmPo breaks this trend,
being in fact smaller than that of TmTe. Note, however, that
the sample investigated was not stoichiometric and may then

TABLE I. Calculated and experimental lattice constants �from
Ref. 37 except where noted� for the different Tm monochalco-
genides and for different localization scenarios �f0, LSDA, i.e., “all
delocalized;” f12: 12 localized f electrons; f13, 13 localized f
electrons�.

TmX
compound

Lattice constants �Å�

Calculated

f0 �LSDA� f12 f13 Experimental

TmS 5.411 5.483 5.757 5.41

TmSe 5.651 5.696 5.990 5.706

TmTe 6.027 6.069 6.363 6.364, 6.049a

TmPo 6.228 6.256 6.561 6.256b

aFrom Ref. 36.
bFrom Ref. 35.

TABLE II. Total energies, Etot, with respect to the f12 state,
calculated and experimental bulk moduli, B and Bexp, as well as
calculated transition pressures from f12 to f13 configurations, Pc and
Pc� for the different Tm monochalcogenides and the different local-
ization scenarios �f0 or LSDA, f12 or mixed valent �MV� and f13 or
divalent�. The transition pressure Pc� is obtained after having shifted
down the energy of the f12 configuration by 13.5 mRy �see discus-
sion in text�. The total energies for the LSDA calculations are not
shown �they lie some 1.2 Ry above the other ones� as they are not
relevant to our discussion.

Etot

�mRy�
B

�GPa�
Bexp

�GPa�
Pc

�GPa�
Pc�

�GPa�

TmS f0 �LSDA� 78

f12 �MV� 0.0 87 81a 0.5 −3.8

f13 �Tm2+� −1.2 59

TmSe f0 �LSDA� 65

f12 �MV� 0.0 80 25,b 39c 4.6 0

f13 �Tm2+� −13.5 48

TmTe f0 �LSDA� 65

f12 �MV� 0.0 51 30,d 45,e 83f 7.9 3.0

f13 �Tm2+� −24.3 41

TmPo f0 �LSDA� 49

f12 �MV� 0.0 69 22.2 8.0

f13 �Tm2+� −37.4 32

aReference 40.
bReference 41.
cReference 42.
dReference 8.
eReference 9, 43, and 44.
fReference 45.

FIG. 1. �Color online� Calculated and experimental lattice con-
stants for the different Tm compounds and for different localization
scenarios �see also Table I and text�.
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be trivalent as a consequence hereof. Similarly, older
measurements36 on TmTe have revealed much lower lattice
constants than generally accepted nowadays, probably for
the same reason.

In the LSDA calculation an average f occupation between
12 and 13 is found for all compounds. When 12 f electrons
are localized, essentially 12 of the occupied LSDA f bands
are repopulated as localized states, which does not lead to
any significant change in the electron charge distribution and
thus affects only slightly the calculated equilibrium lattice
constants �Fig. 1�. In contrast, when 13 f electrons are taken
as localized a significant charge transfer is imposed on the
system, the cost of which is balanced by the localization
energy gained. The f12 calculation leads to an electronic
structure characterized by a narrow f band straddling the
Fermi level in addition to the 12 localized f electrons. This is
similar to the situation found in the Sm chalcogenides in
their high pressure intermediate valence phases, which were
all well described with the same SIC-LSD method as used
here,38 assuming a localized f5 �i.e., trivalent� Sm configura-
tion. This scenario is interpreted as the most suitable DFT
representation of the intermediate valent state. Here, it is
found to be the most adequate description of TmSe, in ac-
cord with the intermediate valence nature of this compound.

As listed in Table II, the energy difference between the f13

and f12 configurations are −1.2, −13.5, −24.3, and
−37.3 mRy, for TmS, TmSe, TmTe, and TmPo, respectively,
reflecting again the trend towards greater localization with
the larger ligand. The total energy of the f13 state is, how-
ever, found to be lower for all studied compounds, indicating
that the SIC-LSD energy functional in fact overestimates the
stability of this configuration, by an amount �15 mRy. A
similar overshooting was found for SmX compounds,38 and
most probably originates in the fact that the theory is still a
one-electron theory, which does not take into account the
energy gain due to multiplet formation in the f12 configura-
tion �or f5 configuration for Sm�. A somewhat different ap-
proach, which replaces the atomic polarization energy of the
SIC functional with experimental data, gives similar errors,
but in this case with the trivalent phase too low in energy.39

The lattice constants obtained for the f12 configuration for
TmTe and TmPo come close to the old values measured for
TmTe36 and TmPo,35 corroborating the suggestion that these
are in fact mixed valent samples. The TmS compound seems
to be inappropriately described both by LSDA and SIC-LSD
theory, since in both cases the f bands appear at the Fermi
level, which should similarly be interpreted as an intermedi-
ate valent situation. Experimentally, TmS appears to be in a
relatively pure trivalent ground state.1 This is most distinctly
supported by the photoemission spectra, which will be dis-
cussed in the next section. In the present f12 configuration the
additional f band at the Fermi level is approximately 60%
populated for both TmS and TmSe, leading to an average
valency of �2.4 for both, where the best estimate from ex-
periment �lattice constant and photoemission� is 3 for TmS,
2.75 for TmSe, and 2 for TmTe,1 or 2.91, 2.79, and 2.15 from
resonant photoemission,21 or 2.80, 2.53, and 2.02 from
susceptibility.21 Hence, in particular, the calculated valency
of TmS is too low compared to these experimental estimates.
The reason for the lower effective valencies calculated with

the SIC-LSD approach is the too low position of the partly
occupied f bands with respect to the Tm s-d band. The
LDA+U method applied to TmS18 is however capable of
finding a ground state close to pure trivalent f12, although the
procedure of applying the U-shift in the band structure in this
method is uncertain. The SIC-LSD approach in its present
implementation mostly resembles that version of the
LDA+U method where all of the U-shift is applied to the
occupied states.

The calculated bulk moduli are presented in Table II
where they are compared to available experimental data. The
bulk moduli, B�V�=V�2E /�V2, are calculated from a 4th or-
der polynomial fit of the total energies around the respective
equilibrium volumes. Around the energy minimum they fol-
low the expected trend, i.e., to decrease with increasing vol-
ume �by about 5–10 GPa per Å3�, except for TmTe in the
f13 configuration �divalent� where the bulk modulus first de-
creases slightly with increasing pressure before increasing
again. This qualitative behavior appears to be consistent with
the experimental volume dependence of the bulk moduli for
TmSe and TmTe.42 The bulk moduli are very sensitive to the
localization scenario which is due mainly to two factors: �i�
the second derivative of the total energy with respect to vol-
ume depends on the degree of localization, and �ii� their
volume dependence make them very sensitive to the actual
equilibrium volume. In general, the stiffness is largest for the
f12 configuration, the exception being once again TmTe
where LSDA gives a somewhat higher value, whereas it is
always smallest for the divalent f13 case. Another general
trend from our calculations is that the softness of Tm
monochalcogenides increases with the size of the ligand. It is
not easy to find any systematics in the experimental bulk
moduli reported in the literature �see Table II�. It seems that,
all compounds confounded, the experiments based on mea-
suring the equation of state8,9,41–44 report bulk moduli in the
range 30–45 GPa whereas those based on ultrasonic mea-
surements of the elastic constants40,45,46 are around 80 GPa.
Such a scattering of the experimental results makes it virtu-
ally impossible to draw any conclusion for the f-electron
localization on that basis.

The comparison of the enthalpies, H=Etot+ PV, for the
different localization scenarios gives some insight into the
pressure induced valence transitions of the Tm monochalco-
genides. Figure 2 shows the calculated enthalpy differences
between the f12 and the f13 cases for the different com-
pounds. The critical pressures, Pc, for the Tm2+−Tm3+ tran-
sition can be obtained directly from our calculations when
�H=0 and are shown in Table II. These are all positive and
are too large compared to the experiment. However, for rea-
sons already discussed above in relation with equilibrium
lattice constants, the stability of the f13 case is overestimated
by the SIC-LSD method. When this fact is taken into ac-
count, i.e., when the f13 energies �or enthalpies� are shifted
by the energy difference between the f12 and f13 states for
TmSe �in order to make it a mixed valent at ambient pressure
as is experimentally observed�, the calculated critical pres-
sure, Pc�, are found to be in good agreement with experimen-
tal findings for TmTe42 �2–5 GPa� and are predicted to be
around −4 GPa for TmS and 8 GPa for TmPo �see Table II
and Fig. 2�.
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B. Photoemission spectra

In this section, the formalism outlined in Sec. II B is ap-
plied to compute the spectral functions of the TmX com-
pounds. The experimental photoemission spectra21,22 of these
systems exhibit distinct multiplet features over a wide range
of energies due to the localization of f electrons. This cannot
be reproduced by the LDA, which only leads to a narrow f
band at the Fermi level. In Figs. 3–5, the calculated spectral
functions including multiplet effects of �respectively� TmS,
TmSe, and TmTe are compared to available experimental
data.21–23

For thullium sulfide, the experimental spectra are charac-
terized by a broad band of f-related emission at large binding

energies, in the range �−5 eV to �−14 eV, together with
some features in the vicinity of the Fermi level. The deep
emission features are related to f12→ f11 transitions, as also
seen for the TmSb compound,22 for which the three dominat-
ing peaks can be ascribed to the f11�4I�, f11�4G�, and f11�2L�
final states. Both the calculated and experimental spectrum
reveal the three dominating peaks, at binding energies −5.6,
−9.4, and −11.5 eV �theory�, while experiment seems to find
the first of these at slightly larger binding energy �around
−6.0 eV�. Even the shoulders at −8.3 eV �due to f11�2H� final
states� and around −7 eV �due to spin-orbit splitting of
f11�4I�� are resolved, somewhat more clearly in the calcu-
lated spectra than in experiment. At lower binding energies
only weak emission is observed, confirming the similarity of
the ground state of the Tm ion in TmS to that in TmSb, i.e.,
a pure f12 configuration. For unoccupied states, a dominating
f12→ f13 peak is found at 1.0 eV, in perfect agreement with
the BIS �bremsstrahlung isochromat spectroscopy�

FIG. 2. �Color online� Enthalpy difference, �H, between the f12

and the f13 for the different Tm monochalcogenides. The critical
pressures, Pc and Pc� in Table II can be read from the two lines at 0
and −13.5 mRy. This latter shift is just the energy difference be-
tween the f12 and f13 configurations for TmSe which is mixed va-
lent at ambient pressure.

FIG. 3. �Color online� The calculated f contribution to the spec-
tral function of TmS at equilibrium volume computed within the
Hubbard-I method �full line� compared with x-ray photoemission
spectroscopy �dots�, and BIS �triangles� spectrum of Wachter et
al.23 The spd contribution from Tm to the total spectral function is
shown as dashed lines. The Fermi level is put at zero energy.

FIG. 4. �Color online� The calculated f-contribution to the spec-
tral function of TmSe at equilibrium volume computed within the
Hubbard-I method �full line� compared with the photoemission
spectrum of Campagna et al.22 �squares�, and of Ufuktepe et al.21

�triangles�. The Fermi level is put at zero energy.

FIG. 5. �Color online� The calculated f contribution to the spec-
tral function of TmTe at equilibrium volume computed within the
Hubbard-I method �full line� compared with photoemission spec-
trum �dots� of Ufuktepe et al.21 The Fermi level is put at zero
energy.

ELECTRONIC STRUCTURE AND SPECTROSCOPIC… PHYSICAL REVIEW B 72, 245102 �2005�

245102-5



experiment.23 A second broad structure �around 4 eV� has
been associated with Tm 5d-6s states18 and is therefore not
related to the multiplet of the f , shell. This is confirmed by
the dashed line on Fig. 3 where we show the ‘spd’ band
contribution from Tm to the total spectral function. Notice
that this contribution might also be responsible for the struc-
tures observed experimentally between 0 and −4 eV.

Thulium selenide is probably the most difficult case to
handle due to its mixed valent character. Therefore, both the
f12 and f13 configurations must be accounted for in the cal-
culation. This requires a relatively sensitive tuning of the
chemical potential of the reference atomic system such as to
render the f12 and f13 nearly degenerate. The resulting spec-
trum is shown in Fig. 4. Clearly, this spectrum may be
viewed as a superposition of the spectrum of TmTe �for bind-
ing energies between 0 and −6 eV� and that of TmS �from
−6 to −15 eV�. The characteristic three dominating peaks
and shoulders of the f12→ f11 emission are distinct, now be-
ing calculated at �1.2 eV larger binding energy compared to
TmS. At low binding energies three narrow peaks, calculated
at −0.2, −0.9, and −2.0 eV together with a broader feature at
−4.8 eV, are signatures of the f13→ f12 emission with final
states f12�3H�, f12�3F�, f12�1G�, and f12�1I�, respectively.22

Note that Fig. 4 includes two experimental spectra21,22 re-
ported for TmSe, which seem to deviate somewhat with re-
spect to the position of the Fermi level. Both reveal, how-
ever, the signatures of f12→ f11 as well as f13→ f12 emission,
the present calculations being apparently in best agreement
with the spectrum of Ref. 22. The relative weight of the
f12→ f11 and f13→ f12 features in the experimental spectra
are quite sensitive to matrix elements and resonance effects,
while the theoretical calculations are sensitive to the Boltz-
mann weights �cf. Eq. �9�� of the two components of the
ground state. A further uncertainty in the comparison of
theory and experiment is concerned with possible surface
effects. Notice that the spectral function of TmSe has already
been calculated within the HIA approximation.20 However,
this calculation did not take into account the spin-orbit term
�see Eq. �7��, and also used slightly different values of Fl.

The results for TmTe are presented in Fig. 5 together with
the experimental results from Ref. 21. In this case, the
chemical potential of the reference atom has been chosen so
as to give a ground state of the thulium ion of f13. Also in
this case we find a good description of the experimental re-
sults by the present HIA theory. The three peaks located at
binding energies of approximately −0.9, −1.6, and −2.7 eV
are well placed in our calculation compared to experiment.
Compared to the same features in TmSe, these peaks have
moved towards larger binding energies by �0.7 eV. The two
additional structures, observed at −4.3 and −5.5 eV, appear
as well in theory, but HIA gives them too low in energy by
about 0.5 eV. The additional week structures observed at
�−8, −11, and −13 eV could indicate the presence of small
amounts of f12 Tm ions, which are not reproduced by the
present theory. As already discussed different samples of
TmTe do show different degrees of trivalency, so it might be
a question of sample and/or surface purity.

For the three compounds, the calculated Slater integrals
have values close to F0=31.9 eV, F2=14.7 eV, F4=9.1 eV,
and F6=6.5 eV. F0 was rescaled to account for screening

effects, to give a value of F0=8 eV. Similarly, the computed
spin-orbit constant � �see Eq. �7�� is largely independent of
the ligand atom, with a value of approximately 0.34 eV. The
invariance of these parameters shows that the effect of the
environment of the thulium ion is weak on the 4f wave func-
tions, but sufficient to induce a change in the valency.

Finally, it is worth noting that the spectrum of the TmX
compounds has to some extent been reproduced by Antonov
et al.18 Their approach, which uses a weighted sum of
LDA+U f density of states in order to mimic multiplet struc-
tures, is however, less well-defined than HIA from the theo-
retical point of view, and has probably limited predictive
capability.

IV. SUMMARY

The electronic structures of Tm chalcogenides have been
investigated. The total energy was calculated on the basis of
the SIC-LSD approximation, and the ground states of TmTe
and TmPo were best described in terms of a localized f13 Tm
configuration, while TmS and TmSe are characterized by a
localized f12 Tm configuration and a narrow and partly oc-
cupied f band pinned at the Fermi level. This situation is
interpreted as the DFT realization of the mixed valent state,
i.e., the best single-Slater determinant representing fluctua-
tions between the f12 and f13 configurations.

The photoemission spectra of TmS, TmSe, and TmTe
were calculated using the Hubbard-I approximation, in
which an isolated reference ion of fn configuration is exactly
diagonalized and subsequently embedded in the solid state
environment. The detailed multiplet structures of the experi-
mental photoemission spectra were well described with an
essentially pure f12 ground state of TmS, a mixed f12+ f13

ground state of TmSe, and a pure f13 configuration of TmTe.
The only inconsistency of the two approaches seems the
overestimation of the mixed valent character of TmS in the
SIC-LSD description.
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APPENDIX

Formally, the Hubbard-I approximation is a first-order
perturbation theory in the hopping term in the Hamiltonian

Ht = 	
i�j

mm�

tij
mm�cim

† cjm�, �A.1�

where m labels both orbital and spin indices. Considering the
hopping term �A.1� as a small external potential one can
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write a formally exact expression for the corresponding
variation of the Green’s function

�Ĝ = Ĝ
̂t̂Ĝ , �A.2�

where 
̂ is the three-leg vertex


̂ = 1 + �̂ĜĜ �A.3�

and �̂ is the four-leg vertex.47 One has to calculate 
̂ in
zeroth-order approximation in the hopping. Thus the Green’s

function Ĝ is diagonal in the site indices. Assuming that the
Coulomb interaction matrix is also diagonal in the site indi-
ces �the Hubbard-type Hamiltonian; Eq. �7�� one can see
that, due to the conservation of the site index at any interac-
tion vertex there are no nontrivial diagrams contributing to
�Gij at i� j and one has to replace 
̂ by 1 in Eq. �A.2�. This

leads to the following equation: �G−1ˆ =−t̂ and justifies the
Hubbard-I approximation Eqs. �9� and �10�, where we used
the realistic hopping terms from the LDA Hamiltonian.
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