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We report the experimental realization of a correlated insulating phase in two-dimensional �2D�
GaAs/AlGaAs heterostructures at low electron densities in a limited window of background disorder. This has
been achieved at mesoscopic length scales, where the insulating phase is characterized by a universal hopping
transport mechanism. Transport in this regime is determined only by the average electron separation, indepen-
dent of the topology of background disorder. We have discussed this observation in terms of a pinned electron
solid ground state, stabilized by the mutual interplay of disorder and Coulomb interaction.
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In the presence of Coulomb interaction, both magnetic
field and disorder are predicted to stabilize many-body
charge-ordered ground states.1,2 Strong perpendicular mag-
netic field B� quenches the vibrational motion of electrons,
and has been extensively exploited to realize a charge-
density wave �CDW� ground state in systems with weak
background disorder.3,4 Despite the effort, however, the na-
ture of localization in such systems has been controversial,
with both pinned Wigner solid �WS� formation and inhomo-
geneity driven percolation transition being suggested.5 On
the other hand, disorder stabilizes Coulomb correlation ef-
fects by introducing a pinning gap �pin in the phonon density
of states, which provides a long-wavelength cutoff.2 This has
led to the theoretical prediction of several forms of CDW
ground states at zero or low B�. Systematic experimental
investigations on such possibilities, however, have been rare,
and form the subject of this work.

Increasing the magnitude of background potential
fluctuations increases �pin, which stabilizes the CDW phases
to higher temperatures. In modulation-doped GaAs/AlGaAs
heterostructures, where disorder primarily arises from
the charged dopant ions,6 �pin�exp�−4��sp /�3ree� depends
strongly on the setback distance �sp that separates the 2D
electron system �2DES� and the dopants, where ree is
the mean distance between the electrons in the 2DES
�Refs. 7 and 8�. However, disorder affects the ground-state
transport in two critical ways. First, the presence of �pin
disintegrates the CDW phase into domains of finite size �d
�sound velocity/�pin. At strong pinning, �d becomes micro-
scopically small, leading to significant averaging in transport
measurements with conventional macroscopic devices. Sec-
ond, strong potential fluctuations can also result in a “freez-
ing” of transport below a certain percolation threshold even
when electron density �ns� is relatively high, thereby making
the regime of strong effective Coulomb interaction inacces-
sible.

Here, we show that these difficulties can be largely over-
come by using modulation-doped heterostructures of mesos-
copic dimensions. In such devices transport freezes at much
lower ns in comparison to macroscopic devices at the same
�sp or disorder, thereby allowing transport at a large interac-
tion parameter rs=1/aB

* ��ns�7–8 �aB
* is the effective Bohr

radius�, even when �sp is relatively small. The typical dimen-

sion L of our devices in the current carrying direction was
chosen to be �2–4 �m, which is also similar in order of
magnitude to the �d suggested by recent microwave absorp-
tion studies for pinned WS ground states.4 The low-B� mag-
netotransport in these devices was found to display a striking
universality in that the hopping distance in the localized re-
gime was determined by ree=1/�ns, rather than the details of
background disorder, indicating an unusual self-localization
of electrons at sufficiently low ns.

We have used Si modulation-doped GaAs/AlGaAs het-
erostructures where �sp was varied from 20 to 80 nm. At a
fixed ns, the effect of �sp on the strength of potential fluctua-
tions is reflected in the mobility �, as can be observed from
Fig. 1�b�. Both monolayer ���- and bulk-doped wafers were
used. Relevant properties of the devices are given in Table I.
Devices were cooled from room temperature to 4.2 K over
24–36 h to allow maximal correlation in the dopant layer
�redistribution of charged-donor �DX� centers�.9 This slow
cooldown technique also leads to excellent reproducibility
over repeated thermal cycles. Electrical measurements were
carried out with a standard low-frequency �7.2 Hz� four-
probe technique with an excitation current of �0.01–0.1 nA
to minimize heating and other nonlinear effects. A direct
measurement of ns within the mesoscopic region was carried
out with an edge-state reflection-based technique.10

In Fig. 1�a� we compare the ns scale of localization tran-
sition at B�=0 and T=0.3 K in macroscopic and mesoscopic
devices from the same wafer. In a standard 100�900 �m2

Hall bar, as illustrated with wafer A2677, the linear conduc-
tivity �→0 �A77L, inset of Fig. 1�a�� at �3 times the ns
compared to the mesoscopic sample �A77� from the same
wafer. Further, � in the large sample A77L shows excellent
classical percolationlike scaling ���ns−nc�	 �nc=1.72
�1010 cm−2�, where 	�2, implying a inhomogeneity driven
percolation transition at nonzero T5 �solid line in the inset of
Fig. 1�a��. Similar scaling in the mesoscopic systems, how-
ever, was found to be difficult, with unphysically large esti-
mates of 	�3.2–3.7 �not shown�, indicating a different
mechanism of localization transition.

As ns is lowered below a sample-dependent characteristic
scale ns

* �denoted by the crosses in Fig. 1�a��, the onset of
strong localization is identified by the resistivity 
 �=1/��
exceeding �h /e2. At ns�ns

*, the T dependence of 
 at a
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fixed ns can be divided into three regimes, as illustrated with
A78a: First, transport in the classical regime at T�TF is
magnified in Fig. 1�c�, where TF is the Fermi temperature. In
this regime 
T−�, where ��1 �indicated by the solid line�.
As T is decreased, the onset of the quantum regime �T
�TF� results in a stronger increase in 
 with decreasing T.
Note that the clear classical to quantum crossover implies a

well-defined TF, and hence a uniform charge-density distri-
bution down to the lowest ns�6.5�109 cm−2 �in A77L, in-
homogeneity sets in at ns as large as �4–5�1010 cm−2�. In
the quantum regime and for TF�T�T*, Fig. 1�d� shows that
the behavior of 
 is activated with 
�T�=
3 exp��3 /kBT�,
where �3 is the activation energy. From the ns and B� depen-
dence of the pre-exponential 
3, we have shown earlier that
the transport mechanism in this regime corresponds to
nearest-neighbor hopping.10 Below the characteristic scale
T*�1 K, variation of 
 becomes weak, tending to a finite
magnitude even in the strongly localized regime. This satu-
ration in the insulating regime cannot be explained in terms
of an elevated electron temperature due to insufficient ther-
mal coupling to the lattice since T* depends only weakly on
electron density up to ns�ns

* �Fig. 1�d��, and the damping of
Shubnikov–de Haas oscillations in the metallic regime shows
the base electron temperature to be �300 mK.

In order to explore the physical mechanism behind the
weak T dependence of 
, we have carried out extensive mag-
netoresistivity �MR� measurements at the base T. Figures
2�a�–2�d� show the B� dependence of MR in the insulating
regime of four devices with increasing �sp from 20 to 80 nm.
In general, we find a strong negative MR in A07, A78, and
C67 at low B�, which can be attributed to interference of
hopping paths. The negative MR is followed by an exponen-
tial rise in 
 as B� is increased further. We have recently
shown that the logarithm of such a positive MR at low B�

varies in a quadratic manner with B�, i.e., 
�B��
=
B exp��B�

2 �, where 
B and � are ns-dependent factors.10

Such a variation, denoted by the solid lines in Fig. 2, is found
to be limited to ns�ns

*, and extends over a B� scale of Bc,
where Bc was found to decrease rapidly as �sp is increased.
Note that in T46 �lowest disorder�, neither a clear negative
MR nor an exponential B�

2 dependence were observed. A
physical significance of Bc and of the qualitatively different
MR behavior of T46 will be discussed later.

TABLE I. Geometrical and structural property of the devices. n�

is the density of Si dopants and W is the width. The background
doping concentration is �1014 cm−3 in all devices.

Wafer Device
�sp

�nm�
n�

�1012 cm−2�
W�L

��m��m� Doping

A2407 A07a 20 2.5 8�2 �

A07b 20 2.5 8�3 �

A2678 A78a 40 2.5 8�2.5 �

A78b 40 2.5 8�4 �

A2677 A77 40 —a 8�3 Bulk

A77L 40 —a 100�900 Bulk

C2367 C67 60 0.7 8�3 �

T546 T46 80 1.9 8�3 �

aThe doping concentration of bulk-doped devices is 2�1018 cm−3

over a range of 40 nm.

FIG. 1. �Color online� �a� Conductivity ��� of mesoscopic
samples as a function of electron density ns at T�0.3K. The crosses
denote ns

* for individual samples �see text�. Inset: ns dependence of
� for a macroscopic Hall bar A77L. The solid line is the best fit of
a classical percolationlike scaling relation ���ns−nc�	. �b� �sp de-
pendence of mobility at constant ns and n� for heterostructures simi-
lar to those used in presented work. �c� Resistivity �
� as a function
of temperature measured at B�=1 T. The solid line represents a
power law of �T−1; the vertical lines in �c� and �d� indicate the
Fermi temperatures TF. �d� Activation and saturation of 
 at B�

=1.5 T.

FIG. 2. Typical magnetoresistivity traces in four samples with
varying levels of disorder. The vertical lines denote �=1. The num-
bers indicate electron density in units of 1010 cm−2. Bc denotes the
field scale up to which a quadratic B� dependence could be ob-
served. The parameters � and 
B were obtained from the slope and
y intercept of linear fits to ln�
�−B�

2 traces, respectively.
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The observed behavior of 
 can be naturally explained in
the framework of tunneling of electrons between two trap
sites separated by a distance rij. In weak B�, such that the
magnetic length �=�� /eB���, where � is the localization
length, the asymptotic form of the hydrogenic wave function
changes from ��r��exp�−r /�� to ��r��exp�−r /�
−r3� /24�4�. �Ref. 11�. This leads to a MR, 
�B��
=
0 exp�2rij /��exp�Ce2rij

3�B�
2 /12�2�, which implies


B = 
0 exp�2rij/�� and � = Ce2rij
3�/12�2. �1�

While 
B depends on the tunneling probability at B�=0, �
denotes the rate of change of this probability when B� is
switched on. Importantly, both parameters provide informa-
tion on the intersite distance rij, as well as � independently.
The parameter C�0.5–1 depends on the number of bonds at
percolation threshold in the random resistor network �we
shall subsequently assume C�1�. Since conventional hop-
ping sites are essentially impurity states, both � and 
B are
expected to be strongly disorder dependent. Note that, since
wave-function overlap plays a critical role in transport, a
direct source-to-drain tunneling is ruled out in our case.12

From the MR data we have evaluated � and 
B from the
slope and intercept of the ln�
�−B�

2 traces. Further details of
the analysis can be found elsewhere.10 In Fig. 3 we have
shown � as a function of ns for five different samples up to
the corresponding ns

*. Strikingly, the absolute magnitudes of
� from different samples are strongly correlated, and can be
described by a universal ns-dependent function over nearly
two orders of magnitude. At stronger disorder �e.g., A07�,
localization occurs at a higher ns resulting in a lower �,
while at lower disorder �e.g., C67� localization occurs at
lower ns yielding a larger magnitude of �. This indicates that
magnetotransport in such mesoscopic samples is not deter-
mined directly by disorder, but by ns in the localized regime.
Qualitatively, the decreasing behavior of � with increasing ns
itself is inconsistent with the single-particle localization in an
Anderson insulator.10,13

From the strong sample-to-sample correlation in the mag-
nitude of �, a disorder-associated origin of rij is clearly un-
likely. For example, taking rij��sp will lead to distinct sets
of � for wafers with different �sp. However, in the context of

a pinned CDW ground state, another relevant length scale is
ree. Indeed, in a case of tunneling events over a mean elec-
tron separation, i.e., rij�ree, we find that Eq. �1� describes
both absolute magnitude, as well as the ns dependence of �
quantitatively. Using rij�1/�ns, Eq. �1� leads to �ns

−3/2, as
indeed observed experimentally �solid line in the inset of
Fig. 3�. Allowing for sample-to-sample variation, we find �
= �1.7±0.5��1021/ns

3/2T−2 from which, using Eq. �1�, we get
�=9.0±2.6 nm, which is close to aB

* in GaAs ��10.5 nm�.
The analysis can be immediately checked for consistency

from the ree dependence of 
B. From Fig. 4, we find that 
B
increases strongly with increasing ree when ns�ns

*, as ex-
pected in the simple tunneling framework �Eq. �1��. In spite
of the scatter, the overall slopes of the ln�
B�−ree plots are
similar in different samples �solid lines� with � estimated to
be �13±4 nm, agreeing with that obtained from the analysis
of �. Note that the 
B deviates from the exponential depen-
dence and tends to saturate as ns→ns

*. While this is not com-
pletely understood at present, we note that the saturation in

B occurs within the range 
B�1–2�h /e2, irrespective of
sample details. Similar universality in the hopping pre-
exponential has been observed in the context of T depen-
dence of 
 in variable-range hopping,14 and has been sug-
gested to indicate an electron-electron interaction mediated
energy-transfer mechanism.

We now discuss the physical scenario which could lead to
the electron separation-dependent hopping transport. We
show that our observations can be explained in the theoreti-
cal framework of defect motion in a quantum solid that was
originally developed by Andreev and Lifshitz in the context
of solid He3 �Ref. 15�, and later adapted for a WS ground
state.16,17 In our case, transport in both the quantum and clas-
sical regime can be understood in terms of tunneling of lo-
calized defects in an interaction-induced pinned electron
solid phase as ns is reduced below the melting point ns

*. The
defects, which act as quasiparticles at low T, can arise from
regular interstitials, vacancies, dislocation loops, etc., as well
as from zero-point vibration of individual lattice sites.15 The
scale of zero-point fluctuation �h /ree

�m*UC�2� /�rs�1,
is indeed strong in our case over the experimental range of
ns, where UC�e2 /4��ree is the interatomic interaction en-
ergy scale.

In the quantum regime, the transport at higher T�TF�T
�T*� is predicted to be thermally activated nearest-neighbor

FIG. 3. Absolute magnitude of � obtained from the slope of
ln�
�−B�

2 traces for five different samples. The inset shows the
same data in a log-log scale. The slope of the solid line is −3/2.

FIG. 4. �Color online� The dependence of 
B on the average
electron separation ree in five different samples. The slope of the
solid lines gives an estimate of � �Eq. �1��.
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hopping of localized defects, while at lower T��T*� tunnel-
ing of such defects leads to a T-independent transport.15

While this clearly describes the weak T dependence of 

atlow temperatures �Fig. 1�d��, the strongest support of this
picture comes from the fact that the natural length scale of
tunneling is indeed the average electron separation ree. This
immediately explains the unusual ns �or ree� dependence of
both � and 
B, as well as the apparent insensitivity of these
parameters to local disorder. The negative MR at low B�

caused by destruction of interference is then expected to per-
sist up to a B� corresponding to �=nsh /eB��1 �one flux
quantum �0 within an area of ree

2 �, as indeed observed in our
experiments �Fig. 2�. The tunneling of a defect scenario also
allows an estimate of the crossover scale kBT*

=�3 / ln��pin /��� �Ref. 15�, where �� is the bandwidth. For a
pinned WS ground state, using the expression of �pin in Ref.
8, experimentally measured �3, and ���h2 /8m*ree

2 , we find
T*�O �1 K� over the experimental range of ns in A78a, giv-
ing good order-of-magnitude agreement to the observed
scale of T*. Finally, the behavior of 
�T−1 in the classical
regime �T�TF� �Fig. 1�c�� has also been recently observed,18

and interpreted in terms of transport mediated by defect-type

topological objects �Fermi-liquid droplets� in the WS
phase.16

In the presence of pinning, the MR data suggests the
asymptotic form of the wave function ��r��exp�r /��, where
��aB

* . However, the interplay of confinement arising from
the magnetic potential and disorder pinning is expected to be
critical in determining ��r�, with disorder pinning dominat-
ing at low B�. This is expected to result in the upper cutoff
Bc that decreases with decreasing disorder, as observed ex-
perimentally. The intricate interplay between disorder,
electron-electron interaction, and magnetic field is further il-
lustrated by the absence of a clear B�

2 dependence of the MR
in T46 �largest �sp�, which could be explained by a prohibi-
tively small Bc or the very instability of the solid phase at
sufficiently low disorder. On the other hand, devices with
�sp�10 nm showed inhomogeneity driven Coulomb-
blockade oscillations in the localized regime, making the in-
vestigation of such a charge-correlated state impossible. A
quantitative understanding of the scale of Bc, as well as the
specific spatial structure of the ground state in the interme-
diate disorder regime, will require further investigations,
which are presently in progress.

1 B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 �1989�; A.
G. Eguiluz, A. A. Maradudin, and R. J. Elliott, ibid. 27, 4933
�1983�; A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii,
Phys. Rev. Lett. 76, 499 �1996�.

2 J. S. Thakur and D. Neilson, Phys. Rev. B 54, 7674 �1996�; A. A.
Slutskin, V. V. Slavin, and H. A. Kovtun, ibid. 61, 14184
�2000�; G. Benenti, X. Waintal, and J.-L. Pichard, Phys. Rev.
Lett. 83, 1826 �1999�; R. Jamei, S. Kivelson, and B. Spivak,
ibid. 94, 056805 �2005�; S. T. Chui and B. Tanatar, ibid. 74,
458 �1995�.

3 H. W. Jiang, R. L. Willett, H. L. Stormer, D. C. Tsui, L. N.
Pfeiffer, and K. W. West, Phys. Rev. Lett. 65, 633 �1990�; V. J.
Goldman, M. Santos, M. Shayegan, and J. E. Cunningham, ibid.
65, 2189 �1990�; H. C. Manoharan, Y. W. Suen, M. B. Santos,
and M. Shayegan, ibid. 77, 1813 �1996�; J. Yoon, C. C. Li, D.
Shahar, D. C. Tsui, and M. Shayegan, ibid. 82, 1744 �1999�.

4 P. D. Ye, L. W. Engel, D. C. Tsui, R. M. Lewis, L. N. Pfeiffer, and
K. West, Phys. Rev. Lett. 89, 176802 �2002�; Y. Chen, R. M.
Lewis, L. W. Engel, D. C. Tsui, P. D. Ye, L. N. Pfeiffer, and K.
W. West, ibid. 91, 016801 �2003�.

5 A. A. Shashkin, V. T. Dolgopolov, G. V. Kravchenko, M. Wendel,
R. Schuster, J. P. Kotthaus, R. J. Haug, K. von Klitzing, K.
Ploog, H. Nickel, and W. Schlapp, Phys. Rev. Lett. 73, 3141
�1994�; Y. Meir, ibid. 83, 3506 �1999�; S. Das Sarma, M. P.
Lilly, E. H. Hwang, L. N. Pfeiffer, K. W. West, and J. L. Reno,
ibid. 94, 136401 �2005�.

6 A. L. Efros, Solid State Commun. 65, 1281 �1988�; A. L. Efros,
F. G. Pikus, and V. G. Burnett, Phys. Rev. B 47, 2233 �1993�.

7 I. M. Ruzin, S. Marianer, and B. I. Shklovskii, Phys. Rev. B 46,
3999 �1992�.

8 S. T. Chui, J. Phys.: Condens. Matter 5, L405 �1993�.
9 E. Buks, M. Heiblum, and H. Shtrikman, Phys. Rev. B 49, 14790

�1994�; M. Stopa, ibid. 53, 9595 �1996�.
10 A. Ghosh, M. Pepper, H. E. Beere, and D. A. Ritchie, Phys. Rev.

B 70, 233309 �2004�.
11 B. I. Shklovskii, Fiz. Tekh. Poluprovodn. �S.-Peterburg� 17, 2055

�1983� �Sov. Phys. Semicond. 17, 1311 �1983��; B. I. Shklovskii
and A. L. Efros, in Electronic Properties of Doped Semiconduc-
tors, Springer Series in Solid-State Sciences Vol. 45 �Springer,
Berlin, 1984�.

12 A. K. Savchenko, V. V. Kuznetsov, A. Woolfe, D. R. Mace, M.
Pepper, D. A. Ritchie, and G. A. C. Jones, Phys. Rev. B 52,
R17021 �1995�.

13 G. Timp and A. B. Fowler, Phys. Rev. B 33, 4392 �1986�.
14 S. I. Khondaker, I. S. Shlimak, J. T. Nicholls, M. Pepper, and D.

A. Ritchie, Phys. Rev. B 59, 4580 �1999�; W. Mason, S. V.
Kravchenko, G. E. Bowker, and J. E. Furneaux, ibid. 52, 7857
�1995�.

15 A. F. Andreev and I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 56, 2057
�1969� �Sov. Phys. JETP 29, 1107 �1969��.

16 B. Spivak, Phys. Rev. B 67, 125205 �2003�.
17 G. Katomeris, F. Selva, and J.-L. Pichard, Eur. Phys. J. B 31, 401

�2003�; 33, 87 �2003�.
18 H. Noh, M. P. Lilly, D. C. Tsui, J. A. Simmons, L. N. Pfeiffer,

and K. W. West, Phys. Rev. B 68, 241308�R� �2003�.

BAENNINGER et al. PHYSICAL REVIEW B 72, 241311�R� �2005�

RAPID COMMUNICATIONS

241311-4


