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Kinetic lattice-gas model approach to collective diffusion in an ordered adsorbate
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A recently developed approach to microscopic kinetics of an interacting lattice gas is applied to derive an
algebraic expression for the coverage dependence of the collective diffusion coefficient in a two-dimensional
(2D) adsorbate populating a square lattice of adsorption sites with strong adatom-adatom repulsive nearest-
neighbor interactions. Results are valid below the critical temperature for coverages at which the adsorbate is
structurally ordered. Interactions between nonactivated particles as well as those between the activated one and
its nonactivated neighbors are accounted for. The starting point is Markovian master equations for the kinetics
of microscopic states of the system, controlled by jumps of adatoms between adsorption sites. The diffusion
coefficient is extracted in the long wavelength and the thermodynamic limits from the diffusive eigenvalue of
a microscopic rate matrix associated with the equations. The eigenvalue is evaluated using an Anzatz for the
left and the right eigenvectors of the matrix with the adsorbate ordering inscribed into their structure. The

results are validated by Monte Carlo simulations of the diffusion process.
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I. INTRODUCTION

The collective or chemical diffusion coefficient for an ad-
sorbate on a single-crystal surface depends on the adsorbate
density (coverage) due to lateral interactions between diffus-
ing particles.!”? Collective diffusion is a complicated many-
body problem encountering many mathematical difficulties
which, with a few exceptions, is usually studied using a va-
riety of Monte Carlo simulation methods. Early efforts were
summarized in a classical review by Gomer! and, more re-
cently, by Danani et al.’ and Ala-Nissila et al* Kreuzer’s
work>” stands here a bit apart in this respect that, using a
kinetic lattice gas model, it is mainly interested in the ad-
sorption and desorption kinetics in the presence of surface
diffusion. In this analytic approach the kinetics is described
by a hierarchy of kinetic equations for many-site correlation
functions with several truncation schemes being designed to
close the hierarchy. This is only one example of surface dif-
fusion being important for other surface processes. The ef-
fectiveness of the surface mobility in relation to that of ad-
sorption, desorption, chemical reactions, etc., determines
catalytic activity of the surface.®? Surface diffusion is of in-
terest in nanostructuring because cluster surface diffusion en-
abling them to form islands controls growth of nanostruc-
tures from beam deposited clusters.! The experimental
progress in this field is reviewed in Refs. 11-13.

Usually, one distinguishes between two types of interpar-
ticle interactions:? the interaction between nonactivated par-
ticles (ground state interactions) affecting thermodynamic
properties of the adsorbate, and the interaction of the acti-
vated particle with adjacent nonactivated ones which affect
the kinetics of diffusion only. One of the consequences of the
ground state interactions is a formation, below a critical tem-
perature, of ordered phases in the adsorbate. Relevant to this
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work is the simplest case of nearest-neighbor repulsive inter-
actions between particles adsorbed on a square lattice of ad-
sorption sites. Here, the system exhibits a continuous phase
transition from a disordered to a staggered checkerboard
c(2 X 2) structure [illustrated later in Eq. (6), see, e.g., Ref.
14 for an example of the relevant phase diagram]. The
ground state interactions—along with the interactions in the
activated state—affect also kinetics of diffusion directly. The
distinct role which kinetics and thermodynamics play in dif-
fusion is often emphasized by writing the collective diffusion
coefficient as a product,’-!
I ulkgT
(ulkp )) ’ (1)
T

of the jump rate diffusion coefficient D;(6), accounting for
the effective jump kinetics in the interacting system, and a
“thermodynamic factor” directly related to the equilibrium
mean square particle number fluctuation.

Diffusion on a lattice has a theoretical advantage over
diffusion in continuous systems in this respect that there ex-
ists a separation of time scales between the elementary tran-
sition processes (atomic jumps between lattice sites here) and
the time lapse between successive transitions, the sequence
of which leads to the observed diffusion phenomena: the
individual transitions take generally much less time than it
takes to wait for the next step. This allows one to treat one
atomic jump at a time, considering them to be statistically
independent invoking effectively the Markovian hypothesis
that the present state of the system is fully determined by its
state at one past time rather than by its entire past history. As
a consequence the kinetics of the microscopic states of the
system is described by a Markovian master equation which is
the starting point in our considerations. In our work we do
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not invoke the factorization embodied in Eq. (1) because, in
principle, with appropriate atomic jump rates determined by
instantaneous interactions of the hopping atom with its
neighbors (determined by an independent theoretical model-
ing) such an approach should result in a coverage dependent
diffusion coefficient which automatically accounts for both
factors in Eq. (1): the equilibrium properties of the system
(including possible structural order) and the coverage depen-
dent effective jump kinetics. In contrast to our work, how-
ever, a separate treatment of kinetic and equilibrium proper-
ties, embodied in Eq. (1), is the starting point in a majority of
theoretical approaches so far. Relevant in this context is the
work by Chumak and Uebing!® in which the coverage depen-
dence of the collective diffusion coefficient in the c(2X?2)
structure is derived for coverages around 6#=0.5 in an ap-
proach based on the factorization in Eq. (1). We will provide
in Sec. III C a detailed comparison of the results of our ap-
proach with those of Ref. 16.

Our goal is to apply an approximate analytic method al-
lowing us to derive the coverage dependent diffusion coeffi-
cient in a two-dimensional lattice gas of atoms strongly re-
pelling its neighbors adsorbed at nearest-neighbor sites. In
the method, designed and applied recently to one-
dimensional lattice gas,'” we avoid factorizing a priori the
diffusion coefficient into its kinetic and thermodynamic part
and avoid also introducing the multisite correlation func-
tions. Instead, we extract the diffusion coefficient directly
from the Markovian kinetics of the microscopic states of the
gas by evaluating the diffusive eigenvalue of the microscopic
master equation rate matrix. The eigenvalue is evaluated af-
ter variational forms of diffusive eigenvectors of this matrix
(the left and the right one) are postulated. Equilibrium cor-
relations and the structural phase of the adsorbate at a given
temperature and coverage are incorporated into the postu-
lated form of the vectors. For the ¢(2 X 2) phase below the
critical temperature an algebraic expression for the coverage
dependent collective diffusion coefficient is derived for cov-
erages both below and above 6=0.5 (i.e., down to and up to
but not at or across the phase transition line). A discontinuity
of D(6) at #=0.5 is predicted. The discontinuity is, in fact,
spurious and due to a partial neglect of thermal density fluc-
tuations at 6#=0.5 in the postulated form of the eigenvectors
but the analytic results agree very well with the results of
Monte Carlo simulations, which predict a sharp, almost dis-
continuous variation of D(6) across 6=0.5. Our results
complement the results of Ref. 16 obtained using an entirely
different approach.

The paper is organized as follows. The theoretical model
and the solution method are described in Sec. II. Detailed
application for the ¢(2 X 2) structure follows in Sec. IIT and
the results, discussion, and comparison with the simulation
results are given in Sec. IV. Section V is devoted to conclu-
sions and final remarks. Some material, not essential to fol-
low the main line of the paper, is relegated to two appen-
dixes.

II. THEORY

A. The system

We consider a square lattice of L X L adsorption sites. The
lattice constant is @ and periodic boundary conditions with a
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periodicity La are implied. The gas consists of N adsorbed
atoms which may hop between neighboring adsorption sites.
For an isolated adsorbed atom the potential energy landscape
has minima V, at the adsorption sites. If the potential energy
at bridge sites—halfway between the adsorption sites—is V,
then the transition rate for an atomic hopping between the
neighboring adsorption sites is W=, exp[-B(V,—V,)] to be
referred to as an isolated atom hopping rate. It is the same for
the hops in both directions between two such sites.

When N is of the same order as L? then the hopping rates
are modified due to the interactions between the hopping
atom and other adsorbed atoms in its neighborhood. In this
work we assume that only atoms at sites nearest to the ad-
sorption site from which the hopping occurs and nearest to
the bridge site over which the atom jumps affect the hopping
rate by modifying the potential energies V, and V, of the
hopping atom at these positions by J and J' per present
neighbor, respectively. J and J' contribute to the interaction
of the hopping atom in its ground and activated state, respec-
tively. The thermodynamic equilibrium properties are af-
fected by J only but the kinetics, i.e., the hopping rates are
modified by both types of interactions. The energy correc-
tions are assumed to be additive, for example, the correction
at the initial adsorption site is 2J if there are two occupied
adsorption sites nearest to the site from which the jump oc-
curs. The maximum energy correction is 3J and 4J’ for the
hopping atom in the ground and the activated state, respec-
tively. In the simplest case of the hopping atom interacting
with only one other adsorbed neighbor we have three possi-
bilities,

w

W?:—, for e e — o (2a)

Wo=Wo, for © ¢ — o, (2b)
Wao

W}:—, for o e — o (2¢)
Y

in which, respectively, only the energy at the initial adsorp-
tion site is modified by J [Eq. (2a)], only the energy at the
bridge site is modified by J' [Eq. (2b)], and both energies are
modified [Eq. (2¢)]. The factors

y=e P, o=, (3)

account for the modifications of the rates due to the extra
interaction energy at the adsorption and at the bridge site,
respectively. Note that W(l) is the rate of the jump from the
configuration shown in Eq. (2b) to the one shown in Eq. (2¢)
while the hopping in the reverse direction occurs at the rate
W|. The hopping in the direction opposite to that in Eq. (2a)
occurs at the rate W)=W. In general, the hopping rates in this
interaction model can be written as
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a"
wWi=W—, m=0,...,.4, n=0,...,3. (4)
,}/’l
We further restrict our model by assuming strong repul-
sive interactions between neighboring adsorbed atoms, i.e.,
J>0 so at sufficiently low temperatures we have
Wo _ Wo
= =r<lL (5)
wiW
Consequently, in equilibrium, the number of pairs of atoms
adsorbed at neighboring adsorption sites is minimized. At
half coverage (#=N/L?>=0.5) the lattice gas is organized into
a staggered “checkerboard” order in which the occupied and
the empty sites form two interpenetrating sublattices,

e O e o e O e (6)

L] o L] o L] o L]

] L] o L] ] L] o

each with a lattice constant \2a. We refer to these sublattices
as the F (filled, ¢) and the E (empty, ©) ones. Each of them
consists of L?/2 sites. The checkerboard configuration is
stable because the ratio of a hopping rate of an atom away
from its regular position to the rate of a return jump is
W3/ W3=1v’<1. The checkerboard configuration is the start-
ing point for our considerations of the coverage dependence
of diffusion in an adsorbate with the long range staggered
order. The equilibrium properties are not affected by the ac-
tivated atom interactions with its neighbors so, formally,
there is no restriction on J' (i.e., o) and this is assumed
throughout our work. Physically, however, the most likely
case is that of o<y because it is expected that the repulsion
is stronger at shorter distances.

B. The method

The hopping rates appear in the microscopic Markovian
master equations®’-!8 for the probability P({c},?) that a mi-
crostate {c} of a lattice gas occurs at time ¢

%P({C},t) =2 [W{ch{c'HP(c' )0 - Wde LAcH P(c0)].
e}
)

Here W({c},{c’}) denotes a transition probability per unit
time that the microstate {c¢’'} changes into {c} due to an
atomic jump of an atom from an occupied site to an unoccu-
pied neighboring site—a particular W({c},{c'}) is equal to
one of the hopping rates described above (or is equal to zero
if {c} and {c’} cannot be connected to each other by a hop-
ping of a single atom). Effectively, the sum over {c'} runs
over all such microstates from which the microstate {c} can
be reached [the first term on the right-hand side of Eq. (7)] or
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which can be reached from {c} (the second term).
For a system of N atoms distributed among L? sites we
identify a microstate {c} as follows:!’

{c}=[Ximymy, ....my ] = [X:{m}] (8)

where X is a position of one of the atoms, referred to as the
reference atom, and m; is a set of two integers which identify
a position, in multiples of the two fundamental lattice trans-
lation vectors, of the ith atom with respect to the reference
atom. The set {m}=[m,,m,,...,my_,] is referred to as a
configuration—it accounts for the relative geometrical ar-
rangement of atoms in a given microstate. The transition rate
does not depend on the positions of the reference atom in
both configurations but only on the local environment of the
jumping atom so W({c},{c"})=Wuy {m’}- This allows one to
take the lattice Fourier transform

fk) = 2 e™Xf(X) (9)
X

of the rate equations. Arranging lattice Fourier transforms
Pimy(k, 1) of the probabilities P({c},?) = P,y(X.1) into a
one-column array P(k,r) we get the k-space rate equations
which can be collectively written in a matrix form:

%P(k,t) =M(k) - P(k,?), (10)

where M(K), referred to as a rate matrix, is non-Hermitian
due to the fact that the hopping rate from {c} to {¢’} is not
necessarily equal to that in the opposite direction. Its matrix
elements are

M 07y (3) = F a3 Woan) 'y = S fony 2 Wi fm)-
fm"}

(11)

The first term is nonzero only when the configuration {m}
=m;,m,,...,my_; is obtained from {m'}=mj,m;, ..., my_,
as a result of a jump of a single atom by a. When the
jumping atom is the reference atom, then all vectors in both
sets differ by d=a/a:{m’'}={m+4a}=m,+4,...,m;+a+---
+my_;+a and then

Fim) m'y(k) = exp(ik - a). (12a)

When, however, the jumping atom is not the reference atom
but, say, the one with the label €, then {m’}=m,,...,m,
+4,...,my_; and

F{m},{m'}(k) =1. (12b)
The diffusion coefficient is evaluated as
Nk
D(0) = limg, (13)
k—0 k

where —\(Kk) is the diffusive eigenvalue of the k-space rate
matrix M(k). The diffusive eigenvalue is, by definition, the
eigenvalue that vanishes in the k— 0 limit. Formally, it can
be evaluated from!”
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&) - M(k) - [Pe’(k)] _ (k)
ek)-[P9ef(k)] Nk’

where €(k) is the left eigenvector of M(k) corresponding to
the eigenvalue \(k). The right eigenvector is'”!° [P%9&’(k)]
where P4 is the right eigenvector of M(0) corresponding to
the eigenvalue \(0)=0. [P®%&"] denotes a one-column array
with components being products of the corresponding com-
ponents of P and &'. Physically, the {m}-th component of
P is (up to a common to all multiplicative factors) equal to
the probability with which the configuration {m} occurs in
the lattice gas in equilibrium.

Equation (14) for the diffusive eigenvalue is exact and in
our approach it is approximated!” by doing “variational” sub-
stitutions

—A(K) =

(14)

Pd — PV’

&'(k) — DV(k), (15)

in it. Before doing this, one can use Eq. (11) and the detailed
balance condition

eq _
Wit tm Pianry = Wime, ) Pty (16)

to transform the numerator in Eq. (14) to a more convenient
form from which the variational substitutions yield

no rep

ME) = 2 Wiy w1 Py
(b fm")

X | F iy fmry () Py (K) = DL (R (17)

Here “no rep” above = means that each configuration pair
{m},{m'} for which Wy, 3 #0 appears in the sum only
once: Eq. (17) automatically accounts for atomic jumps both
from {m}’ to {m} and back. With the variational substitutions
the denominator in Eq. (14) becomes

N(K) = 2 Py bl (K] (18)
{m}

In principle, the dependence on coverage #=N/L? is ob-
tained by evaluating \(k) for N atoms distributed among L?
sites of the square lattice respecting restrictions imposed on
k due to the periodic boundary conditions and taking the
thermodynamic limit (L — o, N — o ,N/L*= §=const) only at
the end.

1. Variational substitutions

The choice of P¥ and ®Y(k), the variational candidates for
P4 and &'(k) respectively, must be dictated by physical con-
siderations and opens the possibility of accounting for diffu-
sion in adsorbates with long range order. Considerations con-
cerning the choice of PV are simpler because they are based
on equilibrium properties (embodied in the detailed balance
conditions) only. Consequently, components of P¥ may de-
pend on J (i.e., y) but not on J'. Low temperature structural
ordering of the adsorbate should be incorporated into the
structure of P"’s.
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Considerations leading to the choice of ®V(k) are less
intuitive. In principle, both types of interactions, J and J',
should appear in it. An important formal requirement'” is that
for k— 0 the components of ®"(k) should differ from each
other only by terms linear in k in order to assure that the
evaluated approximate —\ (k) vanishes like & in this limit—
the condition which the diffusive eigenvalue must satisfy.
Considerations may start with the “noninteracting” lattice
gas in which rates of all atomic jumps, except those disal-
lowed by the site blocking, are the same. The rate matrix in
such a case is Hermitian and its diffusive eigenvectors are
known:!” the left and the right eigenvectors are &(k)
=®7(k) and ®(k), respectively, with the latter being a one—
column array with components

N-1
Doy, (K) = Ppy(k) = 1+ X e*mi (19

i=1

Each component is a sum of phase terms due to all occupied
sites (the first term corresponds to the site occupied by the
reference atom). In fact, in all our applications!”-?* so far, in
which the structural ordering of the adsorbate did not occur,
either because the gases considered were one-dimensional or
because the temperature was high, we have used ®(k) given
in Eq. (19) as a variational candidate ®"(k) in Egs. (17) and
(18) together with components of P¥ suggested by the de-
tailed balance conditions.

In the present case of a two-dimensional (2d) structurally
ordered lattice gas at low temperature, Eq. (19) no longer
provides an appropriate candidate for ®"(k). In short, for the
ordered phase, different occupation patterns around the hop-
ping atom lead to a hierarchy of configurations: from the
“primary” ones having the largest equilibrium probability,
through less probable “secondary” ones to the “marginal”
ones with negligibly small equilibrium probabilities (details
are provided in the following section). While the marginal
configurations may be ignored and Eq. (19) is an adequate
anzatz for the components of ®Y(k) corresponding to the
primary configurations, the components corresponding to the
secondary configurations, which also need to be accounted
for, must be chosen taking into account their transient char-
acter [cf. Egs. (24) and (26)]. Effectively, ®"(k) used in this
work for the low temperature structurally ordered 2D adsor-
bate is essentially different from that used in a nonordered
case, it does depend on both J and J' and leads to a predic-
tion of the behavior of D(6) around 6#=0.5 which is con-
firmed by independent theoretical considerations. This would
not be possible for an anzatz which does not distinguish
between transient and quasistationary configurations.

II1. APPLICATION
A. 6>0.5

In order to explain the procedure used to evaluate the
numerator (k) and the denominator (k) in Eq. (14) we
consider first the case of §>0.5. The case of #<<0.5 is then
treated in an analogous manner, as we shall argue later. The
number of atoms is N=L?/2+ 8N and the extra SN atoms are
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adsorbed at the sites of the E sublattice. Any configuration
obtained in this way is referred to as a “primary configura-
tion”: in it, all L2/2 sites of the F sublattice and SN sites of
the E sublattice are filled. The only unoccupied sites are in
the E sublattice. The equilibrium probabilities of the primary
configurations are equal to each other because extra atoms in
the E sublattice interact only with the nearest neighbors in
the F sublattice but do not interact among themselves. Com-
ponents of P corresponding to the primary configurations
are set to be equal to 1. Another class of configurations,
referred to as “secondary,” consist of such configurations,
which are obtained from the primary ones by moving one of
the L?/2 atoms from its regular position in the F sublattice to
the neighboring empty site in the E sublattice. Here, L?/2
—1 (all but one) sites of the F sublattice and SN+1 sites of
the E sublattice are filled. The equilibrium probabilities of
the secondary configurations are determined using the de-
tailed balance condition: the secondary configuration compo-
nents of PV are equal to the ratio of the primary-to-secondary
configuration jump rate to the jump rate in the opposite di-
rection. Further jumps may result either in a configuration of
a primary type or a configuration in which all but two (or
more) sites in the F sublattice and SN+2 (or more) sites in
the E sublattice are filled. Such configurations are referred to
as “marginal.”

To be specific we list now all possible types of atomic
jumps between the primary and the secondary configura-
tions. For each of them we show in the diagrams to follow
both configurations, a primary and a secondary one, in-
volved. We show only a fragment of the lattice around the
atom, which hops between two sites in a central row. An
occupation state of the remainder of the lattice is the same
for both members of each pair and has all sites of the F
sublattice and up to ON sites of the E sublattice filled with
the remaining sites of the E sublattice unoccupied. The lat-
tice sites (in either sublattice) which are filled by atoms are
represented by ’s. We label the primary (at the left-hand
side) and the secondary (at the right-hand side) configura-
tions by A, and A:, respectively, where n is the number of
extra atoms, represented also by *’s, occupying these sites of
the E sublattice that are close enough to the hopping atom
(easy to identify by comparing A, with A;) to influence its
jump rates. We use a prime (') to distinguish between geo-
metrically inequivalent configurations corresponding to the
same n. The sites of the E sublattice, which must remain
unoccupied in the configurations shown are represented by
o’s while ®’s represent more distant sites of the E sublattice
whose occupation state does not affect the jump rate of the
hopping atom: they are either empty or filled by some of the
extra atoms. The jump rates are fully determined by the oc-
cupation state of the sites which in A, in Eq. (20a) are rep-
resented by ©’s. These four sites form the “active cell,” which
will be used later on. n of these four sites are filled in the
primary configurations A,,. The ® sites can be filled by some
of the remaining SN—n extra atoms or be empty. The jump
rates in each direction are listed between the configurations
shown. They satisfy the detailed balance conditions involv-
ing components of P¥ which are given below the configura-
tions (they are equal to 1 for all primary configurations). The
jump of the hopping atom, which transforms the primary
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configuration A,, into the secondary one, Ai, will be referred
to as the “primary jump.”

Thus when all the 6N extra atoms are far enough from the
hopping atom then we have n=0 and the transition rates are
determined only by the nearest atoms residing in the F sub-
lattice. We have

A A,
R e ® e WS R o ® e
e o o ® N e o o ®
o o o o o e e (20a)
e o0 o ® e 0o e ®
R o ® e = R o ®
1 w3 ¥
For n=1 we have two generic cases
Ay AL
R o & ° W2 X e X .
e o0 e ® 1 e o ®
=
e o o e e o e e (20b)
e 0o o ® e o0 o ®
® o ® e <=2 ® o Q@ e
1 W3 ¥
and
Al Al
R o & o W? R ¢ ® o
e e o ® . e e e ®
o e o e o o e e (20¢)
e 0o e ® e 0o e ®
R o ® e <=3 R & ® e
1 Ws ¥

with the nearest extra atom in the E sublattice situated, re-
spectively, on or off the line along which the atomic jump
occurs. In the configurations A; and A]” the extra atom is
placed above the line along which the atomic jump occurs
and one has to consider also configurations with the atom
placed below this line. Similarly, the generic cases for n=2
are

Ay A,
® * & ° R o R .
w3
. ° ° X . . ° &
=
o e o . o o ° o, (20d)
. 0 . X . . ° [
R o & ° = R e °
1 W;‘ b

and
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Al A
® e ® + ., ® - © -
. . . 4 2 . . . [

=

e e o© . e o 0 o (20@)
. o ° X ° o ° [
®+® + T @+ ® -

1 LE y

plus configurations in which one of the extra atoms is below
the jump line. For n=3 the primary and the secondary con-
figurations are equally probable:

A3 A3
Q@ o ® e Q@ ¢ Q& -
w3
° . ° X . ° ° X
=
. . [ . . [ . . (Zof)
. . . (02 . . . [
® « ® o+ T @ ¢ @ o
1 Wg 1

Note that the configurations Az and A; occur with the same
probability because the jump rates in both directions are the
same. In fact, the configuration Aj is as primary as A; and
this is an important point which will be ignored here. We will
return to this in Sec. IV where the results of our approach are
confronted with the results of computer simulations. Return-
ing to Eq. (20) we note that only diagrams for the primary
jumps in the horizontal direction from left to right are shown.
Similar diagrams have to be considered for the leftward, up-
ward, and downward primary jumps. There are 32 cases in
total. In what follows we will introduce a label « having 32
values: AO,AI,Ai, etc. to refer to all types of pairs of the
primary and secondary configurations. Then, W, denotes the
corresponding transition rate for the primary jump [there are
only six different W,’s, as listed in Egs. (20)].

Note that the diagrams in Eq. (20) list all possible atomic
jumps between primary and secondary configurations. One
might argue that, for example, a jump of the third atom in the
second row (counting from the top or bottom) in the configu-
ration Aj to the right and back is another possible transition
between a primary and a secondary configuration, not con-
sidered in Eq. (20). This is not the case: it belongs to the
A, <:>AT class listed in Eq. (20b). The two extra atoms
present in the Ay diagram do not affect the rate of this jump
in either direction and their presence is accounted for in the
environmental factor (to be defined shortly) associated with
the A; configuration.

Summations in (k) and 91(k), Egs. (17) and (18), re-
spectively, are weighted by their probabilities specified in P".
For y<<1 the contributions due to the secondary and the
marginal configurations can be ignored in DM(k), effectively
reducing it to the expression analogous to that considered in
Ref. 17—we will return to it later.

The summation in 9M(K) in Eq. (17) runs over pairs of
configurations connected by a jump of one atom in either
direction. Therefore we have contributions due to the
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primary-secondary configurations (i.e., the primary jumps
and back), the contributions due to transitions in either direc-
tion between the secondary and the marginal configurations
with dN+2 sites in the E sublattice filled, the contributions
due to transitions between these marginal configurations and
the marginal configurations with 6N+3 in the E sublattice
filled, and so on. For y<<1 the contributions due to the
primary-secondary configuration pairs dominate over contri-
butions due to configuration pairs involving one or two mar-
ginal configurations. For example, one can easily check that
contributions due to the transitions between any A; configu-
ration and all possible marginal configurations reached from
them are y ™2 or even > times smaller than contributions
due to the Ay A, transitions. For A|",A;,A;", and A; the
contributions due to the transitions to marginal configura-
tions are from y~! to y3 times smaller than those involving
transitions to and from the primary configurations. Conse-
quently, only contributions due to pairs of configurations
listed in Eq. (20) are kept in (k) from now on.

To avoid double counting of the pairs involved in the
summation we associate {m’} and {m} in Eq. (17) with the
primary and the secondary configurations, respectively, so
me},= 1. Note that the set {m}, specifying a particular con-

figuration, is a set of vectors m; identifying positions of all
N-1 atoms with respect to the reference atom. Consider-
ations similar to those presented in Ref. 17—in which an
important role is played by the fact that |F{m}’{mr}®{vm,}
—<I)¥m}| is the same function of k for all pairs of configura-
tions with identical local environments of the hopping atom
no matter whether this atom is the reference atom [in which
case F is given in Eq. (12a)] or any other atom (in which
case F=1)—allow one to cast M(k) into the following form:

MEK) =- >, W,0,C,K). (21)

Here the summation is over all primary-secondary configu-
ration pair types (32 in this case)—the original summation in
Eq. (17) containing a macroscopic number of terms is re-
duced to a summation containing relatively few terms be-
cause, as explained in what follows, a macroscopic number
of terms in the original summation contribute equally to it.
W, is the corresponding transition rate from the primary to
the secondary configuration, and

(k)|
(22)

Calk) = |0}, (K) = Dfpy (k)| = | D

a,prm

(k) — @,

a,sec

A use in the second line of Eq. (22) is made of the fact that
C,(K) can be evaluated using a typical primary-secondary
configuration pair [{m'},{m}] corresponding to the transition
rate W,. Which particular pair is used to evaluate C,(Kk) is
not relevant as long as the reference atom is not selected as
the hopping atom in such a pair. Otherwise, Fipy my would
not be equal to 1 and would have to appear in Eq. (22)
explicitly [cf. Eq. (12)].2!
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In fact, arriving at Eq. (21) another property of CID{Vm}’s is
used from which it follows that only the truly local environ-
ment of the hopping atom, i.e., the geometrical arrangement
of the n extra atoms occupying the sites of the E sublattice
nearest to it, determines C,(K): it is identical for any two
configuration pairs [{m},{m’}] sharing the same local envi-
ronment of the hopping atom even if they differ in the way in
which the remaining dN—n distant atoms added to the sys-
tem are arranged. This is why the summation in Eq. (21) has
only a few terms (32 in our case) in contrast to the original
summation in Eq. (17) where the number of terms is macro-
scopically large. Instead, ® , is a macroscopically large num-
ber. This reduction in the number of summation terms is
possible because the contributions due to the SN—n distant
extra atoms cancel out in the difference of ®’s in Eq. (22).
Consequently, ® ,’s corresponding to a given rate W, in Eq.
(17) are identical. The cancellation is a quite obvious prop-
erty of ®¥(k)=®(k) [cf. Eq. (19)] but it is one of the prop-
erties that any candidate for ®"(k) should have.

The factor ®© ,, referred to as the environmental factor, is
equal to the total number of the configuration pairs of type «
in the gas. To evaluate it we divide the entire lattice into two
sublattices: the active cell and the environment. The active
cell contains the site within the F sublattice filled by the
hopping atom and /=4 adjacent sites of the E sublattice
around it [shown as o in the configuration A, in Eq. (20a)].
The hopping atom is referred to as a “participant.” One of the
E sites within the cell must be empty (in the primary con-
figuration) to allow for the jump of the participant atom. The
remaining three E sites are filled by n=0, 1, 2, or 3 atoms
from the pool of the SN extra ones. The jump rates of the
participant in either direction are affected only by the occu-
pation state of these three sites within the cell, and they do
not depend on the occupation state of the E sites within the
environment (the ones shown as ®). The environmental fac-
tor is then equal to

L
D,=9(L,n;L*/2,6N) = N ! ( 2 l), (23)

SN—n

with n=0, 1, 2, 3, and /=4 in our case. Here, the factor oN!
is due to the fact that all configurations differing only by a
permutation of the extra atoms among the sites which they
occupy are legitimate while the remaining factor counts all
distinct configurations of the environment in which N-n
atoms fill L?/2—1 available sites of the E sublattice.

Further progress requires specification of the variational
candidates for the components of ®"(k) corresponding to the
primary and the secondary configurations, to be used in Eq.
(22). As already discussed in Sec. II B 1, the choice is dic-
tated by intuition rather than hard rules and for the primary
quasistationary configurations we choose

q)zm'},prm(k) = cI){m’}(k)’ (24)

with @y, n(k) given in Eq. (19). Such an anzatz should be
adequate for components corresponding to the most prob-
able, quasistationary configurations. Each such component is
a sum of phase terms exp(—iak'm;) due to all sites j occu-
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pied in the configuration {m’}, exactly as in the case of a
lattice gas without interactions. With Eq. (24) we can evalu-
ate (k) defined in Eq. (18) because, as argued in the third
paragraph following Eq. (20f), only the primary configura-
tions contribute significantly to it. The resulting expression
for 91(Kk) is very similar to the one dealt with in Appendix C
of Ref. 17. The result is

L
N(K) = D(2,1:L2/2,5N) = N | ( 27 ) (25)
ON-1

It does not depend on k due to the periodic boundary condi-
tions. Note that the factors SN! in Egs. (23) and (25) cancel
out in the ratio 9t/N. We note here that the result in Eq. (25)
does not account for a contribution 91(k) due to configura-
tions A;, which in this work are treated as if they were sec-
ondary ones while, in fact, their equilibrium probability is
the same as that of the primary ones. Such omission in 91(k)
is necessary for consistency because also in the numerator
M(K) the same assumption is used: atomic jumps initiated
from A; are ignored in Eq. (21) (cf. Sec. IV for further dis-
cussion).

For the components of ®'(k) corresponding to the sec-
ondary configurations {m} in Eq. (22) we use an anzatz re-
flecting the transient character of these configurations. We
propose

prm

DYy see) = 20 Clang ey Py (26)
'

where the sum is over all primary configurations {m"} (in-
cluding the original {m’}) from which the secondary con-
figuration {m} can be reached as a result of a jump of a
single atom. The coefficients Ciyy 7 add up to 1 and are
proportional to the rates of transitions Wiy iy from the con-
figuration {m"} to the configuration {m}. Consequently, the
phase terms exp(—iak-m;) are not contributed in Eq. (26) by
the sites which are occupied in the secondary (transient) con-
figuration {m} itself but by the sites which are occupied in all
primary quasistationary configurations which can be con-
verted into the configuration {m} by a jump of one atom.
These contributions are weighted by the appropriate jump
rates. Note that the “variational” choice made in Eq. (26) can
only be justified using plausibility arguments. It is argued in
Appendix A, using an example of a random walk of a par-
ticle along the 1D chain of sites with alternating potential
well depths, that any secondary configuration (corresponding
to a particle trapped in the shallow well) component of the
left eigenvector € of M(k) corresponding to the diffusive
eigenvalue is expected to be an average of the phase terms
associated with both primary configurations (a particle
trapped in a deep well) from which the particular secondary
configuration (shallow well) can be reached. Physically, the
secondary configuration components of the density fluctua-
tion, not necessarily present at =0, are populated from the
primary ones by fast transients long before diffusion sets in
and restores the overall equilibrium. See the end of Appendix
A for further clarifications of this point. Note that in contrast
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to @y m(K)’s given in Eq. (24) the components @y, . (K)
do depend on interactions J and J' between adatoms.

Before continuing with a detailed evaluation of all contri-
butions to Mi(k) we note that both Cbgm}(k) and @Im,}(k) in
Eq. (22) can be multiplied by the same phase factor
exp(iX-Kk) without affecting the result for C(k). Effectively,
this multiplies ®y,(k) and all ®g,m(k)’s in Egs. (24) and
(26), respectively, by the same factor having, as seen from
Eq. (19), an effect of merely shifting position of the refer-
ence atom by X. Consequently, using ®,y(k)’s in Egs. (24)
and (26) we can treat m;’s in {m} as absolute atomic posi-
tions of occupied sites with respect to a conveniently chosen
fixed origin. To simplify the notation we introduce

fn,m = eia(kyn+kxm) s (27)

where (n,m) labels lattice positions within the active cell as
follows:

e (1,0) o
0,1) (0,0) (0,1), (28)
. (1_,0) .

Here, 1 means —1. The hopping atom resides at (0, 0) in the
primary configurations. The remaining four labeled sites may
be filled with up to three extra atoms or remain unoccupied:
compare the diagram in Eq. (28) with the left-hand side dia-
grams in Eq. (20).

First of all, C,(k)=0 for configurations a=A because the
secondary configuration A; in Eq. (20a) can only be obtained
from one only primary configuration, A,. Consequently, ac-
cording to Egs. (24) and (26), @Xo’pm‘:@XO,WC This takes
care of the first four (due to four possible jump directions)
out of the total of 32 terms in the sum in Eq. (21).

For a=A,, the secondary configuration A in Eq. (20b)
can be obtained either from the primary configuration A,
shown there or from another primary configuration, denoted

Al, which differs from A; by having the extra atom at the
position (0, 1) rather than at (0,1). The rates from both pri-
mary configurations to the secondary AT are the same (W%)
so, according to Egs. (22) and (26) we get

1
q)Al,sec = 5((I)A1 + (I)‘&l)’

1 1
Ca, (k)= Z|¢Al(k) -®; (k)= Z|fo,f—fo,1|2- (29)

Equation (29) accounts for the situations in which the hop-
ping atom jumps away from the extra atom in the direction to
the right [as shown in Eq. (20b)]. The jumps to the left are
accounted for by adding a term with the roles of the configu-
rations A; with A, interchanged (effectively multiplying CA]
by 2). The jumps in the vertical direction are accounted for
by then adding a term with the order of subscripts of f’s
reversed. In this way we get C;(k)—the sum of all four C,’s

corresponding to n=1 which in Eq. (21) will eventually be
multiplied by W and by D(4,1;L%/2, 6N):
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1
Ci(k)= 5(|f0,f—f0,1|2 +fio —f1,0|2)

=2(sin%(k,a) + sinz(kya)) — 2(ka)>. (30)

The limit is obtained for ka <1 with k>=kZ+k’.

All the remaining cases are treated similarly and this is
done in detail in Appendix B. Each of the diagrams in Eq.
(20) allows one to evaluate several contributions to Eq. (21)
for which the rate of the primary jump is the same. We have
seen that four contributions corresponding to n=0 are strictly
zero and that C; in Eq. (30) evaluated from the diagram in
Eq. (20b) accounts for four n=1 cases. The remaining eight
n=1 cases are incorporated in C evaluated in Eq. (B2) using
the diagram in Eq. (20c). The n=2 diagrams in Egs. (20d)
and (20e) result in C, [Eq. (B4)] and C; [Eq. (B6)], respec-
tively, which account for four cases with the primary jump
rate Wg and for eight cases with the rate W%, respectively. In
both cases the same secondary configuration can be obtained
from different primary ones through transitions with different
jump rates. This makes @, . and Oy [Egs. (B3) and
(B5), respectively] somewhat more complicated than @y ..
or @A;,SQC. This is the reason why C, and C} contain o ac-
counting for the bridge site interactions. Finally, the n=3
diagram in Eq. (20f) allows one to evaluate C; [Eq. (B8)],
which accounts for four cases in which the primary jump rate
is Wg Here, the secondary configuration A; is as probable as
Ajz so Eq. (24) rather than Eq. (26) is used to evaluate ®_ ..

We can now get M(k) immediately from Eq. (21). To get
N\(k) and the collective diffusion coefficient it is necessary to
divide by M(k), take the thermodynamic limit N> 1,L?
> 1, and divide by & [cf. Eq. (13)]. With Egs. (23) and (25)
and the definition

=20-1= oV (31)
P= VTN
we get the thermodynamic limit of the ratios

D(4,n;L%2,6N) '
n— 1- 3—n, 32
oe.ney PP (32)

for n=1, 2, 3. For 0.5<6=<1 we have O0<p=<1 but our
approach breaks down considerably below #=1 at a cover-
age where the system loses its staggered order. The result for
the diffusion coefficient is

D(0) = k{[C,(K)W] + C{(K)W}](1 - p)* + [Co(K) W3
+CH(K)W31p(1 - p) + C3(k) Wip?}. (33)

With Egs. (30), (31), (B2), (B4), (B6), and (BS8), and the
rates taken from Eq. (4) it becomes

D(6) =2Wa2£{4(1 +o)(1-6>*+ SILT
Y 2+0

2
xZ(1-60)26-1)+ (g) (26- 1)2] (34)
y y

The contribution proportional to (1—6)? is due to the a=A,
and a=A] [cf. Egs. (30) and (B2), respectively] contributions
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Eq. (21), both corresponding to n=+1. It dominates for cov-
erages close to #=0.5 for which the microstates with extra
atoms being well apart are most common. As the coverage
increases, the microstates with extra atoms being so close to
each other that two or even three of them affect the jump
rates simultaneously become relatively more common. They
are responsible for contributions proportional to (1—6)(26
—1) (i.e., n=+2) and to (26-1)? (i.e., n=+3), respectively.
For o> v the relative importance of these two contributions
is increased by the extra factors o/ and (o/ )%

B. 6<0.5

The procedure used in Sec. IIT A can be adopted for 6
< (0.5 with minimal modifications. Now, the number of at-
oms in the system is N=L%/2-6N, i.e., SN atoms are re-
moved from the F sublattice. Treating the vacant sites as
sites filled with holes we have SN sites of the F sublattice
and all L?/2 sites of the E sublattice filled with holes while
the L?/2— 6N sites of the F sublattice, occupied by atoms,
are considered empty—they are not filled with holes. From
now on all considerations made in the previous section
apply—the role of atoms is played now by holes.

The environmental factors are still given in Eq. (23). This
is obvious from their interpretation: they count the number of
configurations of the environment containing SN—n extra
holes (in the F sublattice) while the active cell has n of them
at fixed positions (times SN!). The denominator is also the
same as for 6>0.5, i.e., it is given in Eq. (25). It should not
be surprising because, after all, the denominator is deter-
mined by geometry only. Detailed evaluation'” shows that
the exponentials exp(—ik-m;) in Eq. (19) can be tied with
atoms at positions m; with respect to the reference atom (as
done in this paper) or, as well, can be tied to the positions of
holes with respect to the reference hole. The result for the
denominator I is the same in both calculations provided the
restrictions on k’s due to the periodic boundary conditions
are accounted for. In effect the result in Eq. (33) can be
easily adapted when two modifications are made in it.

The first modification is easy. The net coverage is now
6=(L*/2—6N)/L? so p, defined by the first equality in Eq.
(31), is now equal to p=—8N/(L*/2). Consequently, one has
to change p to —p on the right-hand side of Eq. (32) and in
Eq. (33).

The other modifications necessary in Eq. (33) are due to
the fact that the jump rates of “holes” are different than the
jump rates of atoms—with some atoms removed, the jump-
ing atoms have less chance to interact with their neighbors.
With a proper redefinition of the symbols we can still use our
diagrams in Eq. (20) to identify the jump rates. The holes are
represented by ¢’s. The active cell is still formed by the sites
represented by ©’s in A, in Eq. (20a) but these sites have no
holes now, i.e., they are occupied by atoms. Some of them
contain holes in other configurations and are then shown as e.
The sites represented by ® also do not have holes at §=0.5
but in the system where n extra holes are created some of
these sites are filled by SN—n holes. As before, the occupa-
tion state of these sites is irrelevant for the jump rate. Iden-
tifying these rates, which replace the ones listed in Eq. (20),
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we must be aware that the interacting objects are the atoms,
not holes. Consequently, the jump rates present in Eq. (33)
must be changed as follows:

WaWs = Wo=W,
Wi.W; — Wy=Wo,

Wi — Wi = Wo?. (35)

Note that none of the rates contain vy because the interactions
do not modify the energy of the hopping atom in its initial
site in primary configurations. It is convenient to label con-
figurations with n=1, 2, 3 holes in the active cell using nega-
tive integers, i.e., the corresponding labels are n=—1,-2,
-3 [these are labels only, so positive integer n should still be
used in the modified Eq. (32)].

The modification of the jump rates also affect expressions
for C,(k) and Cj(k). Namely, before using them in Eq. (33)
one must replace o with 1/¢ in Egs. (B4) and (B6). With all
these changes we obtain

D(6) = 2Wa2{40(1 +0)& + 8021 i

T 6(1-26)
o+ 1

+(1 —20)2}, (36)

applicable for 0= #=<0.5. This time, however, our approach
breaks down for coverages below that at which the system
loses its staggered order. The contribution proportional to 6
is due to microstates in which positions of missing atoms
(from the configuration at §=0.5) are well apart so configu-
rations corresponding to active cells with one missing atom
(i.e., one hole) (n=-1) dominate the process. The other two
terms, proportional to (1-6)(26—1) and to (20-1)?, gain
importance as the coverage goes down and atomic jumps
occurring in the neighborhood of, respectively, two or three
atoms missing from the F sublattice become more common.
In such a case the active cells corresponding to n=-2 and
n=-3 cannot be ignored. In contrast to the case of #>0.5
the diffusion coefficient does not explicitly depend on v, as
already noted below Eq. (35). The implicit dependence is
here, of course, because Eq. (36) is valid only when y<<1.

C. 0=0.5 discontinuity

Before confronting theoretical predictions with the nu-
merical simulation data we note that, except for o=, the
diffusion coefficient predicted by Egs. (34) and (36) is a
discontinuous function of # at #=0.5. Such discontinuity was
already noticed by Chumak and Uebing.'® A persistent pres-
ence of such discontinuities in unpublished numerical simu-
lations by one of the authors (M.Z.K.) was, in fact, one of
primary motivations for developing the present analytic ap-
proach to diffusion. The discontinuity can be easily under-
stood: when an atom is added to a perfect checkerboard
structure (an extra atom in the E sublattice) at #=0.5, the
jump rates controlling the atomic migration are W% and Wf,
as listed in, respectively, Egs. (20b) and (20c) (the return
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rates in these equations are automatically obtained using the
detailed balance condition incorporated in the appropriate
components of PY), while for an atom removed from this
configuration the appropriate rates (corresponding to the mi-
gration of a hole in the F sublattice) are W3 and W,. In fact,
the diffusion coefficient on both sides of =0.5 can be evalu-
ated exactly using the procedure applied by the authors to
investigate oxygen migration on the Ru(001) surface.?? This
method, requiring considering seven different geometrical
configurations of the extra atom/hole in the checkerboard
structure, leads to a set of seven master equations from
which the following expression for the diffusion coefficient
is obtained:

1, for #=0.5"
,(I+0)o

D=2Wa—2
56y |2, for 9=05".
y

(37)

It agrees, for y<<1, with the results in Egs. (34) and (36) for
0=0.5. We stress here that the result in Eq. (37) is an inde-
pendent one, obtained using an approach unrelated to the
variational method being the subject of this work. This ap-
proach, developed in Ref. 22, allows one to investigate low
temperature collective diffusion at a particular coverage at
which the system is perfectly ordered. The ability of repro-
ducing this result by our variational approach is an indepen-
dent consistency check confirming correctness of our varia-
tional choice, Egs. (24) and (26), of the left eigenvector of
the rate matrix. This agreement would not be achieved were
we to choose, for example, ®y,,(k) [Eq. (19)] to represent

both @y .\ (k) and @\ (k).

{m'},sec

In real systems, however, no true discontinuity at #=0.5 is
expected, except for T=0, because even for 6 slightly above
0.5, for example, some holes in the F sublattice are present
due to thermal fluctuations. They affect somewhat the atomic
migration which is, however, controlled primarily by the ki-
netics of extra atoms in the E sublattice. What is expected,
therefore, is a rapid variation of the diffusion coefficient over
a relatively small coverage interval spanning 6=0.5.

It is worthwhile at this point to compare our results with
the results of an analytic approach by Chumak and Uebing'®
to diffusion in the interacting lattice gas on a square lattice
for strongly repulsive interactions. They concentrate on cov-
erages in the vicinity of #=0.5 at which the adsorbate forms
the ¢(2 X 2) structure, ignore the interactions of the activated
particles (which corresponds to J' =0, i.e., o=1), and base
their approach on the factorization (1) of the diffusion coef-
ficient considering the thermodynamics and the migration of
defects separately. For the latter they consider the “white”
and “black defects” corresponding roughly to one hole or
atom, and the “white” and “black dimers,” i.e., two holes or
atoms close enough to the hopping atom to affect its hopping
rate. White or black triads are not considered.

The entire philosophy of the approach in Ref. 16 is dif-
ferent from ours and it is rather difficult to make a compari-
son of their complete result with ours. Relative merits of
both approaches can, however, be fully appreciated by com-
paring the results of Ref. 16 with ours for the case when the
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defect dimers are ignored. In this case, Eq. (34) in Ref. 16—
transcribed into our notation—reads:

) 1 1 6-0.5
Y \v V(6-0.5)%+9*
5 2, for 6<0.5
=2Wa (38)
2/y, for 6>0.5,

where the second line is obtained in the strong repulsion
limit, y<<1. Effectively, with defect dimers ignored, the dif-
fusion coefficient does not depend in Ref. 16 on coverage
except for the discontinuity at #=0.5 agreeing for o=1 with
that in Eq. (37). The weak dependence on 6 on both sides of
the discontinuity, formally present in the first line of Eq. (38)
is due to the thermal fluctuations discussed in the paragraph
following Eq. (37) and can be completely ignored for any
coverage except when |6—0.5|< y*<1. According to Chu-
mak and Uebing, defect dimers are necessary to get a genu-
ine @ dependence of D on both sides of #=0.5. The result in
Eq. (38) can be compared and contrasted with our results in
Egs. (34) and (36) in which we set =1 and ignore the
second and the third terms in the square brackets (corre-
sponding, respectively, to dimers and triads):

867, for < 0.5

39
8(1 - 6)*y, for 6>0.5. (39)

D(6) = 2Wa2{
Here, the discontinuity is not smoothed out but a marked
dependence on @ appears on both sides of it already when
single defects (holes or extra atoms) are accounted for. This
dependence is further modified by accounting for particle or
hole dimers or triads.

IV. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1 theoretical dependence D(6) is plotted using
Eqgs. (34) and (36) for several values of the bridge site inter-
action parameters J' [cf. Eq. (3)] and compared with the
results of the Monte Carlo simulations.?® The adsorption site
interaction parameter J is set at 10kzT/3 (y=0.036). For
J=0 (the topmost curve) the height of the potential barrier at
the bridge site is unaffected by the interatomic interactions.
Increasing J (i.e., lowering o) raises the height of the poten-
tial barrier leading, as seen in Fig. 1, to less efficient diffu-
sion. The data are shown only for the coverage interval
0.35= 6=<0.65 within which the lattice gas is in a structur-
ally staggered phase well below the critical temperature. At
coverages near the limits of the interval our analytic ap-
proach is not valid because the system undergoes, according
to the simulations, a structural phase transformation.

We see that the agreement between theory and simula-
tions is good but there are deviations, most pronounced for
J' =0 for high coverges (0>0.5) and for J'=2J for low cov-
erages (6#<0.5). Theory overestimates the diffusion effi-
ciency in both cases. The discrepancy can be traced back to
the oversimplified treatment of the process shown in the dia-
gram in Eq. (20f) between configurations A5 and A} for n=
+3 (three close to each other extra atoms in the E sublattice)
for 6>0.5 and the analogous process for #<<0.5 for n=-3
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4
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¥=0.038 (J/kT = 10/3)

D(6) / Wa?

0.35 0.4 0.45 0.5 0.55 0.6 0.6

FIG. 1. Coverage dependence of the diffusion coefficient for
several sets of interaction parameters. Solid line: theoretical results
from Eqgs. (34) and (36); dashed line : theoretical results without
contributions proportional to (1-26)? due to three extra atoms (for
6>0.5) or holes (for <0.5) in the active cell; and points: results
of Monte Carlo simulations.

(three close to each other holes in the F sublattice). Before
discussing this in detail in the following paragraph, we pause
to consider the case 6> 0.5 and concentrate on the diagram
in Eq. (20f) corresponding to n=+3. One may argue that
transitions between the configurations Az and A; should not
contribute directly to a long range mass transport because the
jumping atom is trapped in a cage formed by occupied sites
surrounding it. A similar argument might apply to the transi-
tions corresponding to n=-3 for 6<<0.5. The error due to
this effect is expected to be the largest when o/y>1 for 6
well above 0.5 and when o<<1 for 8 well below 0.5 because
for these parameters the contributions due to n=+3 and n
=-3 diagrams to Egs. (34) and (36) respectively, dominate.
This is evident in Fig. 1: J'=0 corresponds to o/ y=28 while
J'=2J corresponds to o=1/784. Ignoring, ad hoc, the n
==+3 contributions in D(6) leads to the results shown by
dashes in Fig. 1—the agreement gets improved in the vicin-
ity of #=0.5 but further away the efficiency of diffusion is
underestimated this time.

Certainly [returning, to be specific, to n=+3 and the dia-
gram in Eq. (20f)], transitions between configurations A5 and
A do influence diffusion. In contrast to n= +1 or +2 cases,
however local conﬁguratlons Aj and A are equally probable
so designating A5 as a secondary one is not correct. Note that
evaluating the environmental factor for an active cell with n
extra atoms, we allow the SN—n extra atoms within the en-
vironment to be distributed among the sites of the E sublat-
tice only while keeping filled all sites of the F sublattice. In
other words, counting configurations of the environment, we
admit within it all local arrangements resembling prlmary
configurations A, but exclude the secondary ones A on a
basis that they are much less probable. This is not correct
however, for local arrangements of the A; type which, being
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as probable as As, should be accounted for when the configu-
rations of the environment are counted—one should admit
some F sites within the environment to be vacated by an
atom transferred to a neighboring FE site if three other E sites
surrounding this pair of sites are also ﬁlled by extra atoms.
Missing the local configurations of the A type from the en-
vironment factors in the numerator Em(k) is partially com-
pensated by their simultaneous omission in the denominator
N(k), as already mentioned below Eq. (25).

Globally, local arrangements of the A; type become im-
portant only when 6N becomes a significant fraction of N,
i.e., for coverages substantially higher than 0.5 because only
then simultaneous filling of three neighboring E sites is
likely. In effect, one expects that accounting correctly for the
role played by the A; configurations would result in the first
two terms within the square bracket in Eq. (34) to be multi-
plied by coverage dependent factors equal to 1 for §=0.5 and
deviating from it with increasing coverage. Such a correction
would entirely replace the third term. The same arguments
apply, of course, to the #<<0.5 case modifying Eq. (36) in the
same way. Unfortunately, the only possibility for fully con-
sistent treatment of local arrangements with three neighbor-
ing extra atoms (n=+3) or holes (n=-3) seems to be repeat-
ing the entire calculations using active cells with many more
sites than the four shown in Eq. (28). This has not been done
yet because our recent investigations of diffusion in a one-
dimensional interacting lattice gas®* direct us to an approach
to the evaluation of both 9i(k) and 9i(k) allowing one to
treat a wider class of atom-atom interactions.

One of the features of our analytic result is that the diffu-
sion coefficient in Eq. (36) for a rarefied gas (0<<0.5) does
not depend on 7, i.e., it is independent on the adsorption-site
interatomic interaction energy J. Naively, one might expect
that this implies that in the case of no bridge-site interatomic
interactions, J'=0,0=1, one should expect the coverage in-
dependent diffusion coefficient for #<<0.5. This, of course, is
not the case in Eq. (36) despite the fact that all relevant
primary-to-secondary configuration transition rates, listed in
Eq. (35), are, indeed, all the same in this case. The depen-
dence on @ is due to the fact that the J interactions still
matter: rates of the return jumps, from the secondary to the
primary configurations, do depend on y—they are at least
1/ times faster than those in Eq. (35). y does not appear in
the final result for D(6) only because y<<1. To check this
point we compare, in Figs. 2 and 3, our analytic results with
the results of simulations for 0=0.082 and o=1, respec-
tively. In both cases the independence of D(6) on J is con-
firmed by numerical simulations. In fact, agreement between
theory and simulations for #<<0.5 is in Fig. 2 better than
expected in view of the fact that we have o<1 here. For 6
>(0.5 the agreement is also reasonably good even if we have
o/y>1 for all presented curves in both figures.

V. CONCLUSIONS

We have applied in this paper a recently designed!” ana-
lytic approach to collective diffusion in an interacting lattice
gas to a two-dimensional adsorbate ordered below the criti-
cal temperature by strongly repulsive interatomic interac-
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FIG. 2. Coverage dependence of the diffusion coefficient for
several sets of interaction parameters J and 0=0.082<1.

tions. We have allowed for interactions of a hopping atom
with other atoms adsorbed at sites nearest to the site from
which hopping occurs and nearest to the bridge site over
which the atom jumps. An algebraic expression for a cover-
age dependent diffusion coefficient is extracted by evaluating
a long wavelength limit of the diffusive eigenvalue of a mas-
ter equation describing a random walk kinetics of micro-
scopic states of the adsorbate. A variational approach is used
in which plausible candidates for the left and right diffusive
eigenvectors of the master equation rate matrix are proposed
and then used to evaluate the eigenvalue. Equilibrium corre-
lations, organization of the adsorbate into a structural c(2
X 2) staggered phase are accounted for by appropriately de-
signing the eigenvectors.
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FIG. 3. Coverage dependence of the diffusion coefficient for
several sets of adsorption-site interactions parameters J and J'
=0(o=1) corresponding to no bridge-site interatomic interactions.
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Analytic results for the coverage dependence of the
chemical diffusion coefficient were compared with the re-
sults of Monte Carlo simulations of diffusion for the lattice
gas with the same interatomic interactions. In general, the
agreement is very good and a source of observed discrepan-
cies is well understood. Improvements of the model are pos-
sible at a cost of more complicated and tedious combinator-
ics. Rather than following this path we intend to generalize
the approach in the same manner as it was done recently for
a one-dimensional lattice gas with arbitrary repulsive/
attractive interactions.?%*

Advantages of our approach, as we see them, are (i) It is
free of uncertainties usually associated with various trunca-
tion schemes of the hierarchy of equations for correlations.
In our approach the diffusion coefficient is extracted directly
from the microscopic kinetics of the system. (ii) The diffu-
sion coefficient is not a priori factorized into the kinematic
and the thermodynamic factors, which are usually treated
independently of each other using often mutually incompat-
ible approximation schemes. Even if it would be tempting to
associate the numerator and the denominator [cf. Egs. (14),
(17), and (18)] with the kinematic and the static factors, re-
spectively (which at this point we are not ready to do), both
factors are evaluated in our approach using the same ap-
proximation schemes. (iii) By confronting results of our ap-
proach with the results of Monte Carlo simulations one is
able to test which types of microscopic configurations of the
system, affecting the kinetics of the random walk, are essen-
tial for the long range mass transport. This is so because
proposing variational candidates for the eigenvectors one
must either account for or ignore some classes of configura-
tions. The variational anzatz made in this work takes advan-
tage of the fact that for the low temperature structurally or-
dered phase one can classify the relevant mass transport
microscopic configurations of the gas into the primary ones
(having relatively large equilibrium probability) and the sec-
ondary (transient) ones. These two classes of configurations
have to be treated differently.

A disadvantage of our approach, on the other hand, is
analogous to that of the variational method in quantum me-
chanics: the result is only as accurate as allowed by the ac-
curacy of the variational guess for the left (and right) eigen-
vector of the rate matrix. This point requires further
investigation into the formal properties of such eigenvectors.

On a technical side, the combinatorics associated with our
approach may become intimidatingly complicated because
the number of particles in the system as well as its size must
be kept fixed throughout the calculation. This difficulty
might be overcome by opening the system and introducing a
Lagrange multiplier akin to the chemical potential which
would assure that the size of the system matches the actual
one on average. A step in this direction was actually made in
our investigation of collective diffusion in a one-dimensional
interacting lattice gas,’*>*
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APPENDIX A

We provide here considerations which justify the choice
of CI){Vm}’prm(k) and @y, . (k) in Egs. (24) and (26), respec-
tively. To this end we consider a random walk of a single
atom in one dimension along a periodic chain of adsorption
sites. There are two types of sites: strongly binding type 1
site (represented by <) followed along the chain by a
weakly binding type 2 (represented by °)followed by type 1
again, etc., as shown in the diagram below

OO OO0 o]0 e].... (A1)
Vertical lines denote the boundaries of the lattice elementary
cells and the lattice constant is a. We also assume that the
height of the potential barrier separating a given site from a
neighboring site to its right is different than that to its left—
here it means that the barrier height within each cell is dif-
ferent from that for barriers at the cell boundaries. There are
four jump rates: the rates out of the deeper ¢ sites are de-
noted W; and W,, for the leftward and rightward jumps, re-
spectively, and the rates out of the shallow ° sites are, respec-
tively, V, and V,. The rates of jumps in the opposite
directions between a given pair of sites are related to each
other through the detailed balance condition

W, W,
—f=—l=a, (A2)
v, v,

where « is the ratio of the equilibrium occupation probability
at the shallow o site to that at the deep < site. We assume
that a<<1. If the atom is adsorbed at any deep < site then
the system is in a primary configuration. Otherwise, it is in a
secondary one.

It is now easy to write the rate equations for the nonequi-
librium occupation probabilities of both sites in a lattice el-
ementary cell €. After taking the lattice Fourier transform [cf.
Eq. (9)] one gets the set of two equations for P;(k,t) and
P,(k,t) which can be written in the same form as Eq. (10)
with the rate matrix being

—(W+W,), (W,+We*)a

. . A3
W, + Wek (W, +W,)a ) (A3)

M(k) = (

We are interested in the diffusive eigenvalue —A(k) of this
matrix and corresponding to it the left eigenvector €(k). This
can be done exactly but for our purpose the expressions for
a<<1 are easier to interpret. The approximate expression for
the eigenvalue is

4W,w k
4sinz(—a), (A4)

W+ W, 2

and the Hermitian conjugate of the corresponding left eigen-
vector is
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k0
k) = W, ok Wi ik | (A5)
W+ W, W+ W,

where we have written explicitly exp(—ik0) instead of 1.

This form justifies the forms of the primary and secondary
components of ®¥(k) proposed in Egs. (24) and (26). The
first component of &'(k), corresponding to the primary
configuration—the atom adsorbed at the deep < site in
the €=0 elementary cell—is equal to the phase factor
exp(—ik0)=1 associated with this site. For a many-atom sys-
tem a single phase factor is replaced with a sum of phase
factors, i.e., with @, (k) defined in Eq. (19). This is the
result proposed in Eq. (24) for the primary configuration
components @E’m}’prm(k).

The second component in Eq. (A5), corresponding to the
secondary configuration—the atom adsorbed at the shallow °
site in the €=0 cell-is equal to the average of the phase
factors exp(—ik0) and exp(—ika), contributed by the neigh-
boring deep ¢ sites (i.e., neighboring primary configura-
tions), weighted by the jump rates from these primary con-
figurations to the secondary configuration under
consideration. The < site to the left of the © in question is in
the same €=0 cell as the o and the jump rate from it is W,, so
its contribution is «W,exp(—ik0). The < site to the right of
the © is in the €=+1 cell, the jump rate from this site is W,
so its contribution is o W,exp(—ika). This is exactly the struc-
ture of Oy (k) in Eq. (26) after the phase factors corre-
sponding to the two primary configurations are replaced with
their generalizations [Eq. (19)] appropriate for the many-
atom system.

We can now clarify the statement made in the last sen-
tence in the paragraph containing Eq. (26). Beside the diffu-
sive eigenvalue —\ (k) given in Eq. (A4) the rate matrix M(k),
given in Eq. (A3), also has another eigenvalue, which does
not vanish when ka—0 and is responsible for a transient
time evolution that terminates well before the diffusion sets
in. The result of these transients is to populate the secondary
configuration, i.e., to populate the shallow adsorption sites ©,
even if they were not populated at r=0. The second compo-
nent of &'(k) sets the phase factors appropriate for these con-
figurations.

APPENDIX B

We use here the diagrams in Eq. (20) to evaluate the fac-
tors C,(k) in Eq. (21) which are not, evaluated in the main
text. For a=A| the considerations are similar to these leading
to Eq. (30). The secondary configuration A{y can either be
obtained from the primary configuration A| [as shown in Eq.
(20¢)] in which the extra atom is at (1, 0) and the hopping
atom jumps from (0, 0) to (0, 1) to get A{*, or from another
primary configuration A{ in which the extra atom is at the
site (0, 1) and the hopping atom jumps from (0, 0) to (1, 0).
The jump rate is W? in both cases so, according to Egs. (22)
and (26),
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1
(DA{,sec = E(q)Ai + (DA;)?

1 1
Car(k) = Z‘(DA{(k) -0 (k)= Z|f0,1 ~fiol?. (B
This accounts for the arrangement shown in Eq. (20c) where
the primary jump is from left to right. The leftward primary
jump is accounted for by adding a contribution in which f
is replaced with f, 1 and similar contributions must be added
for two possible primary jump directions for each of the
remaining three possible placements of the extra atom within
the cell. The sum of all eight C,’s in this case, which in Eq.
(21) are multiplied by the primary jump rate W and the

environmental factor ©(4,1;L%/2,8N), is

1
Ci(k) = E(|fo,1 = frol* + o1 =frol* +for = fiol* + for
~ fiof?) = 4{sin2(;—l(kx + ky)> + sin2<§(kx - @))]
— 2(ka)*. (B2)

For a=A,, Eq. (20d), a new element appears because the
secondary configuration A; can be reached from three pri-
mary ones. Besides A, from which the transition rate is W‘Z‘,
we have Az in which the extra atoms occupy the sites (0,1)
and (1,0) and the hopping atom jumps from (0, 0) to (1, 0)
to get A;, and 52 with the extra atoms at (1, 0) at (1,0) and
the hopping atom jumps to (1,0). The transition rate from

either one of these two primary configurations to AZ is W%.
From Egs. (22) and (26) we get

(0@, + @i + D7),

A,sec=
2 2+ 0

1
CAz(k) - —)2|2¢A2 - (D"&Z B q)gz|2

2+0

|f10+f10 2foal, (B3)

(2+ o)’
where o is defined in Eq. (3). This accounts only for the
rightward primary jump shown in Eq. (20d). Contributions
due to the leftward primary jump and two primary jump
directions for the horizontal placement of the two extra at-
oms must be added, resulting in

Co(k) = (|f1,0 +f10=2foa* + | fro+fro—2f0i]

1
2+ 0)?
+ |fo,1 +foi— 2f1,0|2 + |fo,1 +foi— 2ff,0|2)

-5 fa)z {4 sin2<§(kx+ ky)) +4 sin2<§(kx— ky)>

—sin®(k,a) — sinz(kya)}

(ka)?, (B4)

8
N
2+ 0)?
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which must be multiplied by the primary jump rate Wg and
D(4,2;L%/2,5N) to account for four n=2 contributions to
Eq. (21).

For a=A) the procedure is the same. The primary con-
figurations from which transitions to the secondary A2 are
possible are A5 and similar to it A2 in which the two extra
atoms are (1, 0) and (0, 1) [the hopping atom jumps from (O,
0) to (0,1) in the latter]. The jump rate from each of them is
Wg. The third possible primary configuration is gé with the

extra atoms at (0, 1) and (0,1) and the hopping atom jump-
ing to (1, 0) at the rate W3. We get

D1 e = m[(ﬂbgé + Oy + D],
L - ~ |2
Cay(k) = m|(1 + )Py - Bis - 0P|
(2+ )2|(fm = fo) +olfio- f01)| (B5)

Accounting for four possible ways the two extra atoms can
be placed around the hopping atom and for two directions of
the primary jump for each case requires adding eight terms
of this type. The result, which in Eq. (21) gets multiplied by
the primary jump rate W; and the environmental factor
D(4,2;1%/2,5N), is

Cy(k) = 2+ (|(f()1 —fo) +o(fio- f01)| |(fl,0_fl_,0)
+ O'(fo,l_—fl_,o)| + |(fo,1 ~foi) + O'(f],o_fo,l_)|2
+ |(f1,o —ff,o) + UUOJ —ff,o)|2)
= ﬁ{(l + 0)[sin2(kxa) + sinz(kya)]
+ a'z[sin2<g(kx+ ky)) + sin2<§(kx— @))H
8
- o 0)2(02 +20+2)(ka)?. (B6)

The case a=Aj; is somewhat different because the A; con-
figuration is as probable as A;. Consequently, we should use
Eq. (24) rather than Eq. (26) to get Py, sec- Therefore

CAS(k) = ‘q)A3(k) - (I)A;(k)‘z =foo —fo,1|2- (B7)

Adding three similar contributions for the remaining primary
jump directions we get

Ci(k) = |fo,o =foa |2 + |fo,o _fl_,0|2 + |fo,o —f0,1_|2 + |fo,o —f1,0|2

k k,
= 8{sin2<%) + sinz(—;—aﬂ — 2(ka)*,

which, after being multiplied by the primary jump rate W§
and the environmental factor ©(4,3;L?/2, 8N) accounts for
four n=3 contributions to Eq. (21).

(B8)
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