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A general transport equation for the center of mass motion is constructed to study transports of an electronic
system under uniform magnetic field and microwave radiation. The equation is applied to study the two-
dimensional �2D� electron system in the limit of weak disorder where negative resistance instability is observed
when the radiation field is strong enough. A solution of the transport equation with spontaneous ac is proposed
to explain the experimentally observed radiation-induced zero-resistance state.
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The discovery of the zero-resistance states �ZRS� in two
dimensional electron gas under uniform magnetic field1,2 and
microwave radiation has triggered a lot of theoretical3–9,12

and experimental activities10,11 to understand the origin of
this nontrivial state. Most of the theoretical work suggests
that the origin of the ZRS is closely related to a negative-
resistance instability that occurs in the system due to the
combined effect of quantized Landau levels and photon-
assisted scattering.3–7,12 It was proposed that the ZRS can be
explained if the current-dependent resistance of the system
which becomes negative at small current �for strong enough
microwave radiation� becomes positive again when the cur-
rent j� becomes large enough.3–7 The above physics was put
together phenomenologically into an equation

E� d = �H�j� � ẑ� + R��j���j�, �1�

where R�j� is a phenomenological current-dependent resis-
tance which is negative at j=0, increases as a function of j

and passes through zero at �j��= jo,7 E� d is the applied dc elec-
tric field and �H is the ordinary Hall resistivity. It was sug-
gested that Eq. �1� admits a time-independent, stripelike spa-
tially inhomogeneous solution which leads to zero
differential resistance for net dc current less than a threshold
value.7 An obvious theoretical question is whether Eq. �1�
with the required property of R�j� can be derived micro-
scopically. This is the subject of this paper.

Starting from first principles we shall derive in the follow-
ing a transport equation for the center of mass velocity v�
= j� /ne that treats the effect of radiation to all order with the
only expansion parameter in the problem being the strength
of disorder. Our approach is very similar to the approach
adopted by Lei et al.4 although the final result is different
because of the different approximations involved. We note
that a transport equation can also be derived from a quantum
Boltzmann equation approach.12 However, it is difficult to
obtain a clear analytical result in this approach because of the
intrinsic complexity of the Boltzmann equation formulation
itself and the equation of motion for the center of mass offers
a much simpler alternative.4 We find that the equation of
motion we derive differs from Eq. �1� in one important as-

pect which leads to an alternative solution which can also
explain the ZRS.

I. DERIVATION OF THE TRANSPORT EQUATION

Our approach to the transport equation begins from the
known observation that there exists an exact, one-to-one
mapping between the solution of the Schrödinger equation of
a �charged� many-particle system in the absence of the mi-
crowave radiation and in the presence of the radiation for a
class of Hamiltonian,4,8,9,12,13

H�t� = Ho − e�
i

r�i · E� �t� , �2�

where

Ho�r�i� = �
i

1

2m
�p� i −

e

c
A� �r�i��2

+
1

2�
i�j

V�r�i − r� j�

+
1

2�
i

r�i · KJ · r�i, �3�

where p� i=−ih̄�i is the canonical momentum for the ith par-

ticle in the system. A� �r��=−�1/2��r��B� � is the vector poten-
tial corresponding to a uniform, time-dependent magnetic

field, E� �t� is a time-dependent uniform electric field, and
V�r�� is the interaction potential between particles. The last
term represents an external harmonic potential acting on the
particles.

The physics of the exact mapping can be seen by perform-
ing a coordinate transformation to the center of mass �CM�
frame of the many-particle system. In the nonrelativistic
limit, the wave functions in the laboratory and CM frames
are related by

�lab�r�i;t� = �CM„r�i − R� �t�;t…ei��R� �t��,

where R� �t�= �1/N��i	r�i�t�
 is the center of mass coordinate

in the laboratory frame, N=number of particles, and ��R� �t��
is an overall phase that depends on R� �t� only. The corre-
sponding Hamiltonian in the CM frame is
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H��t� = �
i

1

2m
�p� i� − mR�̇ �t� −

e

c
A� CM� �r�i���2

+
1

2�
i�j

V�r�i� − r� j��

+
1

2�
i

�r�i� + R� �t�� · KJ · �r�i� + R� �t�� − e�
i

r�i� · E� ��t� ,

�4�

where r��=r�−R� �t�, p� i�=−ih̄��, and A� ��r���=−�1/2�r��

�B� � ·B� �=B� and E� ��t�=E� �t�+ �1/c�R�̇ �t��B� are the Galilean
transformed magnetic and electric fields in the CM frame
valid in the nonrelativistic limit. The Schrödinger equation in

the CM frame, i��̇CM =H��t��CM can be simplified by a per-
forming a gauge transformation �CM =�CMei��t�, where

���t�=�i�mR�̇ �t� ·r��− 1
2
tdt�R� �t�� ·KJR� �t���. With Eq. �4�, we

obtain

i�
�

�t
�CM�r��;t� = �Ho�r�i�� − �

i

r�i� · a��t���CM�r��;t� , �5�

where a��t�=e�E� �t�+ �1/c��R�̇ �t��B� ��−KJ ·R� �t�−mR�̈ �t�=0.

a��t� vanishes because it is the equation of motion for R� �t�
which can be derived directly from the corresponding
Heisenberg equation of motion. We thus arrive at the conclu-
sion that for the class of Hamiltonian �2�, there exist a one-
to-one mapping between the solution of the Schrödinger
equation in the presence of the microwave radiation ��r�i ; t�,
and in the absence of the radiation �CM�r�i� ; t�, where

��r�i ; t�=�CM(r�i−R� �t� ; t)ei��t�. Physically, for the particular
form of Hamiltonian we considered, the wave function of the
system follows the center of mass motion rigidity in the pres-
ence of the radiation field.

The above result suggests that for more general Hamilto-
nians of form HG�t�=H�t�+U, a perturbation scheme where
the microwave radiation is treated exactly to all order can be
set up by treating U as perturbation. The perturbation scheme
can be set up most easily in the center of mass frame. We
shall consider static impurity potential U=	�iu�r�i� in the
following. Notice that a static potential becomes time-
dependent in the CM frame and should be treated by time-
dependent perturbation theory.

To derive the transport equation we start from the exact
Heisenberg equation of motion for the center of mass coor-

dinate, i�R�̇ �t�= �R� �t� ,HG�t�� with KJ=04. We obtain after
some simple algebra

mR�̈ �t� = e�E� �t� +
1

c
�R�̇ �t� � B� �� −

	

N
� ddr��u�r���n�r�,t� ,

�6�

where n�r� , t�=�i	
�r�−r�i�
 is the time-dependent average
electron density. In the CM frame where n�r� , t�=nCM�r�
−R� �t� , t�, we obtain for small 	 from linear response theory

nCM�r��,t� = nCM
�0� �r��� + 	� ddr�dt���r�� − r��;t − t��

�u�r�� + R� �t��� ,

where ��r��−r�� ; t− t�� is the �equilibrium� retarded density-
density response function in CM frame given by the Hamil-
tonian Ho. Going back to the laboratory frame and perform-
ing the disorder-average 	u�r��
=0 and 	u�r��u�r���
= �u�2
�r�
−r���, we obtain to second order in 	, an impurity-averaged

equation of motion for R� �t� in laboratory frame,4

mR�̈ �t� = e�E� �t� +
1

c
�R�̇ �t� � B� �� + ��R� �t�

�� dt���R� �t� − R� �t��;t − t�� , �7�

where n̄=N /V and �=	2�u�2 / n̄. The equation is manifestly
gauge invariant and suggests that to second order in the im-
purity potential, the effects of particle statistics and interac-
tion are reflected only in the density-density response func-
tion. In the following we shall apply this equation to study
the ZRS in two-dimensional �2D� electron systems. We note
that the same equation has been obtained by Lei et al.,4

where they consider electric fields of form E� �t�=E� 1 cos�
t�
+E� 2 sin�
t�+E� d, where the first two terms represent micro-

wave radiation with frequency 
 and E� d is a small dc electric
field. To proceed further they consider approximate solutions
of form

R�̇ �t� = v�t + A� cos�
t� + B� sin�
t� ,

where v� , A� , B� are determined self-consistently from Eq. �7�.
We proceed differently by first dividing the center of mass

motion into “fast” and “slow” parts,

R� �t� = R� f�t� + R� s�t� � A� o cos�
t� + B� o sin�
t� + R� s�t� ,

�8�

where R� f�t� describes the center of mass motion induced by

the radiation field whereas R� s�T� describes the rest of the

motion either spontaneously generated or induced by E� d. We

shall eliminate R� f�t� to obtain an explicit equation of motion

for R� s�t�. The two kinds of motions are coupled by the im-

purity scattering term which is a nonlinear function of R� �t�.
We shall assume that the coupling between R� s�t� and R� f�t�
does not modify qualitatively the behavior of R� f�t� and the
main effect of coupling is to produce an effective equation of

motion for R� s�t�. Notice that we keep only the first harmonic

terms in R� f�t� in Eq. �8�. This is valid in the small E� o limit

when the size of the orbit Rc��A� o
2+B� o

2 is much less than the
magnetic length l= ��c /eB�1/2 and is justifiable under the ex-
perimental condition,1,2 where the magnetic field is weak and
the magnetic length is very long.

To treat the impurity scattering term we write
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�R� �t��
−�

t

dt��„R� �t� − R� �t��;t − t�… = −� q�ddq� �d
�/��Im ��q� ,
���
−�

t

dt�ei�q� ·�R� �t�−R� �t���−
��t−t���,

where ��q� ,
� is the Fourier transform of ��r� ; t�. To evaluate the integral over t� we make the local approximation R� s�t�
−R� s�t���v��t��t− t��+ �1/2�v�̇�t��t− t��2, and

�
−�

t

dt�ei�q� ·�R� �t�−R� �t���−
��t−t��� � �
−�

t

dt�ei�q� ·�R� f�t�−R� f�t���+�q� ·v��t�−
���t−t����1 + iq� · v�̇�t�
�t − t��2

2
�

valid for v��t+T��−v��t��v��t�, where T��2� /
B is the char-

acteristic time scale for the density response. The R� f�t�
−R� f�t�� term can be expanded in a series of A� o ,B� o using the
identity eix sin �=�mJm�x�eim�. We obtain after some algebra,

�R� �t��
−�

t

dt��„R� �t� − R� �t��;t − t�…

= �
m,m�

ei�m−m���
t+�� � q�ddqJm�z�q���Jm��z�q���

��1 − i
q� · v�̇�t�

2

�2

�
�2���q� ,
��
�=m
+q� ·v��t�, �9�

where z�q��=��q� ·A� o�2+ �q� ·B� o�2 and tan �=q� ·A� o /q� ·B� o.4 We

shall consider E� 2= ± ẑ�E� 1, corresponding to circularly po-

larized light. Neglecting the influence of R� s�t� on R� f�t� we

obtain B� o= ± ẑ�A� o, i.e., circular orbits and z�q��2=Rc
2q2 /2.

The effective force on R� s�t� is derived from the m=m�
terms in �9�. To order �Rc / l�2 we keep only m�m��=0,1
terms. Putting it back into the equation of motion �7�, we
obtain

�m + ��
,v�t���v�̇�t� = eE� d +
e

c
�v��t� � B� � − R�
,v�t��v��t� ,

�10�

where 
 is the frequency of the microwave radiation, v�t�
= �v��t��, and

R�
,v� �
�

v2 � q� · v�ddq��1 −
z�q��2

2
�Im ��q� ,q� · v��

+
z�q��2

4
Im ��q� ,
 + q� · v��� ,

��
,v� � −
�

4
� q2ddq

�2

�
�2��1 −
z�q��2

2
�Re ��q� ,
��
�=q� ·v�

+
z�q��2

4
Re ��q� ,
��
�=
+q� ·v�� . �11�

It is obvious that R�
 ,v� represents dissipative response
of the electron gas to external perturbations whereas ��
 ,v�
is an effective mass correction on the center of mass motion
coming from the corresponding reactive response. Negative
contributions to the resistance shows up in the second term
of R for density-density response functions with resonant
structure, ��q� ,
���n�gn�q�� /���−2
n / �
2−
n

2��, where 
n

�0 are resonant energy levels and gn�q�� is a positive definite
function. In this case, R��n�R1n
n+R2n�
n−
��, where R1n

and R2n are positive definite numbers. We see that negative
contributions to R2 exist for 
n�
. The physical origin of
the negative resistance has been discussed in several earlier
works3,4,6,7,12 and we shall not repeat them here. Correspond-
ingly, the effective mass contribution from level n is positive
�negative� when 
� ���
n. We note that the effective mass
correction is of order ��
 ,v��m� �1/
B���m in the
weak-disorder limit, where 
B=eM /mc is the cyclotron fre-
quency and ���g2d	2�u�2�−1 is the elastic lifetime. Equation
�10� differs from the phenomenological Eq. �1� mainly in the

presence of the inertial term mv�̇ which allows the system to
admit time-dependent solutions in the present case.

II. ANALYSIS OF THE TRANSPORT EQUATION

To see whether R�
 ,v� has the expected behavior we con-
sider the density response function of noninteracting gases
where4

��q� ,
� = �2�l2�−1�
m,n

�n2!/n1!��Q2/2�n1−n2e−�Q2/2�

��Ln2

n1−n2�Q2/2��2�nF�n
B� − nF�m
B�

 + �n − m�
B + i


� ,

where n1=max�n ,m�, n2=min�n ,m�, Lm
n �x� is the associated

Laguerre polynomials, nF��� is the Fermi distribution func-
tion, and Q2= �q� �2l2. To incorporate inelastic lifetime effects
we also introduce a phenomenological broadening ��T� to
the Landau levels, i.e., 
��−n
B�→ ���−1� / ���−n
B�2+�2�.
R�
 ,v� is evaluated numerically with these approximations.
In Fig. 1 we present numerical results for the normalized
resistance R�
 ,v� /R�0,0�, as a function of normalized ve-
locity vN=v / �l
B� for 
 /
B=0,0.85,1.0,1.1,1.2, taking
�Rc / l�2=0.1, EF�10
B, T=2
B, �=0.5, and keeping 20 lev-
els in the sum. We observe that R�
 ,v→0� is a function of
frequency and becomes negative when 
�
B, in agreement

TRANSPORT EQUATION FOR TWO-DIMENSIONAL… PHYSICAL REVIEW B 72, 235333 �2005�

235333-3



with previous results.12 For 
�
B R�
 ,v�’s increases and
cross zero at around voN�0.05. The effect of microwave
radiation decreases rapidly for vN�0.2. These qualitative be-
haviors of R�
 ,v� are in agreement with our expectation and
are not modified by changing T or �. We note that the same
conclusion was also obtained by Lei5 in an earlier numerical
analysis.

Equation �10� allows time-dependent solutions. In the ab-
sence of the dc field, a simple, spatially homogeneous solu-
tion which allows the system to stabilize itself around the
point vo= �l
B�voN is

v� �0��t� = Ro�cos�
st�x̂ + sin�
st�ŷ� , �12�

with Ro=vo /
s, where 
s=eB / �m+��
 ,vo��c�
B. The so-
lution represents a collective circular motion of the whole
fluid moving with speed vo. Notice that a time-independent,
spatially inhomogeneous solution corresponding to a pattern
of alternating current stripes9 may still exist. However, this
solution is energetically less favorable because it requires a
higher energy to create the charge inhomogeneity needed to
maintain the stripes of currents.

We shall now argue that a ZRS can also be generated
from the above solution when we consider the boundaries of
the droplet of electron fluid. For sharp boundaries the bound-
ary condition j�=0 has to be imposed where j� is the com-
ponent of current perpendicular to the boundary. As a result
an edge region with a time-independent current j� � jo must
form. The size of this region is determined by the micro-
scopic charge dynamics7 which is still undetermined. Never-
theless according to Eq. �10� an electric field perpendicular
to the boundary with magnitude �Ed=Bvo /c has to be
present in this region to maintain the steady current flow. A
similar edge region also exists at the opposite edge with a
current running in the opposite direction, rather similar to
edge states in quantum Hall effect.

Similar to the “stripe” solution a state with a small net
current flow can be created with minimal disturbance to the

system by shrinking the size of one edge region and enlarg-
ing the other. In this case, the net voltage drop across the
sample is given by

Vy =� E�y�dy =
B

c
� vx�y�dy =

B

ne2c
� jx�y�dy = �HIx,

corresponding to a resistance matrix with �xy =�H, i.e., the
ZRS.

III. COMMENTS AND CONCLUSION

Some comments about the validity of our theory is in
order. We note that the oscillatory solution is allowed be-

cause of the presence of the inertia term mv�̇�t�. In usual
transports with finite dissipation, a steady dc solution exists
and this term is irrelevant and can be neglected. However,
this term becomes important when dissipation vanishes and a
steady dc solution becomes unstable. Our analysis shows that
the correction to the inertia term is small ��m / �
B��� in the
limit of weak disorder and the local approximation we made
in deriving the equation of motion mainly affects R�
 ,v�. In
particular, our general description of the ZRS should remain
valid as long as the qualitative property of R�
 ,v� is correct.
Another simplification we employed in our analysis is the
assumption of isotropic responses. The response functions
��
 ,v� and R�
 ,v� become anisotropic tensors for plane-
polarized light5,12 and for circularly polarized light when the

effect of R� s�t� on R� f�t� are included. The effect of anisotropy
in � and R can be studied phenomenologically by adding
anisotropy terms in the equation of motion. For example, for
plane-polarized light, we may consider

�m + 
m�v̇x�t�x̂ + �m − 
m�v̇y�t�ŷ = eE� d +
e

c
�v��t� � B� �

− �R�v� + 
r�vx�t�x̂ − �R�v� − 
r�vy�t�ŷ ,

where we assume the microwave electric field to be along the
x̂-axis and R�v��R�v2−vo

2�. For small 
m and 
r the effect
of anisotropic terms can be analyzed in perturbation theory.
A linear stability analysis around the circular orbit �12� indi-
cates that in the limit 
B��1 these terms do not introduce
any singular perturbation and the circular orbit is only per-
turbed slightly.

Lastly we made a comment on the macroscopic nature of
the spontaneous current state we proposed. We note that in
general a spontaneous current state with �v��t��=vo is charac-
terized by a position and time dependent �2D� unit vector
field n̂�x� , t� representing the direction of the current. The
order parameter field n̂�x� , t� has the same symmetry as the
ordinary 2D x-y model, or superfluids. The main difference
between the ZRS state and superfluids is that the rigidity of
the order parameter is protected by repulsive interaction in

FIG. 1. �Color online� Normalized resistance as a function of
velocity for 
 /
B=0 �i� 0.85 �ii�, 1.0 �iii�, 1.1 �iv�, and 1.2 �v�.
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the case of superfluids, whereas it is protected by the prin-
ciple of least dissipation in the ZRS. The similarity between
the two systems suggests that the two systems may share
some common macroscopic features. For example, vortex-
like solitonic excitations may exist in the ZRS and may lead
to the residue resistance �Ro exp�−�To /T�� observed in the
ZRS state.1,2 The existence and nature of solitonic excitations

depends on the detailed charge and current dynamics of the
ZRS state and will be investigated in a coming paper.
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