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We extend our previous work on shot noise for entangled and spin polarized electrons in a beam-splitter
geometry with spin-orbit �SO� interaction in one of the incoming leads �lead 1�. In addition to accounting for
both the Dresselhaus and the Rashba spin-orbit terms, we present general formulas for the shot noise of singlet
and triplets states derived within the scattering approach. We determine the full scattering matrix of the system
for the case of leads with two orbital channels coupled via weak SO interactions inducing channel anticross-
ings. We show that this interband coupling coherently transfers electrons between the channels and gives rise
to an additional modulation angle—dependent on both the Rashba and Dresselhaus interaction strengths—
which allows for further independent coherent control of the electrons traversing the incoming leads. We derive
explicit shot noise formulas for a variety of correlated pairs �e.g., Bell states� and lead spin polarizations.
Interestingly, the singlet and each of the triplets defined along the quantization axis perpendicular to lead 1
�with the local SO interaction� and in the plane of the beam splitter display distinctive shot noise for injection
energies near the channel anticrossings; hence, one can tell apart all the triplets, in addition to the singlet,
through noise measurements. We also find that spin-orbit induced backscattering within lead 1 reduces the
visibility of the noise oscillations, due to the additional partition noise in this lead. Finally, we consider
injection of two-particle wavepackets into leads with multiple discrete states and find that two-particle en-
tanglement can still be observed via noise bunching and antibunching.
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I. INTRODUCTION

Spin-related effects underlie promising possibilities in the
emerging field of semiconductor spintronics and spin-based
quantum computing.1,2 Spin-entangled electron pairs in un-
conventional geometries, e.g., electron beam splitters,3 offer
a unique setting in which to investigate fundamental nonlo-
cal electron correlations in solids.4 Several schemes for cre-
ating and injecting entangled pairs in mesoscopic systems
have recently been proposed involving quantum dots, super-
conductors, and interference in the electron flow.5–25 Detec-
tion, coherent manipulation, and transfer of spin entangle-
ment �“flying qubits”� in nanostructures are crucial
ingredients for quantum-information processing and commu-
nication. Nonequilibrium noise, shot noise, is a useful probe
for detecting entanglement.6,26

More recently, the Rashba spin-orbit interaction present in
confined electron systems lacking structural inversion
symmetry27 has been proposed as a convenient means to spin
rotate entangled pairs.28 Interestingly, it was found that a
local Rashba spin-orbit interaction acting upon a nonlocal
portion of spatially separated entangled electron pairs in-
jected into a beam splitter gives rise to sizable modulation of
the shot noise in the outgoing leads.28 The use of the Rashba
interaction to controllably rotate the electron spin was first
proposed by Datta and Das.29 Motivated by this earlier pro-
posal and its potential impact on semiconductor spintronics,
many researchers are actively investigating spin-orbit-
related physics in a variety of semiconductor
nanostructures.30,31,34–45

Here we extend our previous investigation on the coherent
SO control of entangled and spin-polarized electrons and

their shot noise for transport in a beam-splitter configuration
�Fig. 1� with local spin-orbit interactions, i.e., interactions
acting within only a finite region of one of the two one-
dimensional incoming leads.28 We include both the Rashba27

and the Dresselhaus46 spin-orbit terms.47 Since the Rashba
part of the SO coupling is gate tunable,48 one can controlla-
bly spin rotate the incoming correlated spinor pairs thus
changing the degree of symmetry of the spin part of pair
wave function. The stringent requirement of antisymmetry
for fermions—the Pauli principle—intrinsically links the
spin and the orbital �charge� degrees of freedom.5 Thus the
spin-orbit induced spin rotation affects the spatial charge dis-
tribution of the pair which can be probed via current-
fluctuation measurements: charge shot noise.

We consider a beam splitter with quasi-one-dimensional
incoming leads with one and two channels. �i� For single-
moded leads and within the scattering approach we general-
ize our previous results28 by deriving general expressions for
the shot noise of singlet and triplet pairs injected into the
beam splitter. We present explicit formulas for the particular
beam-splitter scattering matrix of the experiment in Ref. 3
and a variety of incoming electron pairs: singlet and en-
tangled and unentangled triplet states defined along distinct
quantization axes. �ii� The case with two channels is particu-
larly interesting as the SO terms give rise to interchannel
coupling which results in anticrossings of the bands. For in-
coming energies near these avoided crossings, we find simi-
larly to Ref. 28 an additional spin phase due to the coherent
transfer of carriers between the SO coupled bands. Here,
however, this modulation angle depends on both the Rashba
and the Dresselhaus coupling strengths. Interestingly, for sin-
glet and triplets defined along the y quantization axis �Fig. 1�
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and injected into only one of the two channels of the incom-
ing leads, we find that each of the triplet �besides the singlet�
pairs displays distinctive noise modulations. This provides a
way of distinguishing all of these triplet pairs via noise mea-
surements. The interband coupling controlling the extra
phase can, in principle, be varied via independent side gates
which change the width of the incoming channels;28 this pro-
vides an additional mechanism for electric spin control.
Moreover, for tuned SO couplings �i.e., equal strengths� the
Rashba and Dresselhaus terms partially cancel themselves
out, thus giving rise to parabolic-band crossings for arbitrary
strength of the SO interaction,49 Fig. 1�b�. This allows for the
propagation of electron spins protected against nonmagnetic
scattering, i.e., robust entangled or unentangled spin pairs.

We also consider spin-polarized injection50,51 into the
beamsplitter. Here we find that noise measurement can probe
the spin polarization of the Fermi-liquid leads along distinct
quantization directions. We also discuss the effects of back-
scattering in the incoming leads, due to, e.g., the potential
discontinuities at the entrance and exit of the SO active re-
gion in lead 1 �see Appendix B for an explicit evaluation of
the transmission coefficient for electrons crossing a 1D lead
with SO interaction�. Backscattering reduces the visibility of
the shot noise oscillations, because of the additional partition
noise in the incoming leads. Finally, we investigate transport
of injected two-particle wave packets into leads with mul-
tiple discrete states but without SO interaction. Similarly to
our previous results6 with ordinary two-particle pairs �i.e.,
“plane waves”�, we find that two-particle entanglement can

also be detected via noise measurements �bunching and an-
tibunching� even with incoming wave packets.

This paper is organized as follows. In Sec. II we introduce
the spin-orbit Hamiltonian in one-dimensional �1D� chan-
nels. We consider both the Rashba and the Dresselhaus SO
terms. We present exact and approximate solutions for wires
with, respectively, equal and unequal �Rashba and Dressel-
haus� SO coupling strengths. The full SO transfer matrix for
wires with one and two �coupled� channels is also derived.
The boundary conditions for the two coupled channel case
are discussed in detail. In Sec. III we present the basics of the
scattering formalism for current and shot noise of spin-
entangled electron pairs and spin-polarized electrons. We de-
rive general formulas for the shot noise of singlet and triplet
pairs injected into a beam splitter with an arbitrary scattering
matrix �Sec. III B�. The effect of backscattering is also dis-
cussed �Sec. III C� for electron pairs in single-moded incom-
ing leads. We present many specific formulas for the noise of
Bell pairs, electron pairs defined along distinct quantization
axes for both single- and double-moded wires. Noise for
spin-polarized injection is discussed in �Sec. III D�. We also
consider �Sec. III E� the injection of entangled and unen-
tangled wavepackets into leads with multiple energy levels.
We summarize our results and conclusions in Sec. IV. Many
technical details of our calculation are discussed in the Ap-
pendixes A–E.

II. SPIN-ORBIT COUPLING IN 1D CHANNELS:
RASHBA AND DRESSELHAUS

Quantum wires can be defined from two-dimensional
electron gases by further constraining the electron motion to
one spatial direction via, for instance, gate electrodes. When
the underlying 2DEG has spin-orbit interactions of the
Dresselhaus46 and Rashba27 types, due to bulk inversion
asymmetry �BIA� and structural inversion asymmetry �SIA�,
respectively, the 1D channel so formed will also present such
interaction terms.52 The Hamiltonian of a 2DEG with spin
orbit interaction and an additional gate-induced confining po-
tential V�y� reads

H = −
�2

2m
� �2

�x2 +
�2

�y2� + V�y�

+ i���y�x − �x�y� + i���y�y − �x�x� , �1�

where �i�� /�i, i=x ,y and the third and fourth terms are the
usual Rashba �strength �� and the linearized Dresselhaus
�strength �� SO terms, respectively.

A. Exact solution: �=� case

Similarly to the two-dimensional case treated in Ref. 49,
the SO wire problem here is exactly solvable for tuned cou-
plings ���=�. Let us first consider the general case of a two-
dimensional electron gas with an arbitrary scalar potential
V�r�� which can, e.g, describe static nonmagnetic impurities,
or further confinements creating a quantum wire or a quan-
tum dot. At the symmetry points �= ±� the operator �
= ��x��y� /�2 provides an additional conserved quantity,

FIG. 1. �Color online� �a� Spin-entangled electrons injected into
a beam-splitter setup with spin-orbit interactions, Rashba and
Dresselhaus, within a finite region L of lead 1. The strength � of the
Rashba interaction can, in principle, be controlled via a top gate so
as to be equal or unequal to the Dresselhaus coupling �. For two
orbital channels in lead 1 and �=�, no SO-induced band mixing
occurs, right panel �b�. For ��� �or when either �=0 or �=0� the
bands anti cross, left panel �b�. Only a single spin rotation 	SO

=2m��2+�2L /�2 is present for �=�, while an additional “mixing”
spin rotation 	d modulates the electron transport in lead 1 for �
�� and impinging energies near the crossing 
�
c. This modula-
tion appears in the current fluctuations �shot noise� measured in lead
3. In particular, each of the triplets—for a quantization axis along
the y direction—exhibits a distinctive noise as a function of
�	SO,	d�.
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and a general eigenstate of H and � reads �for �=−��

�±�r�� =
1
�2

� 1

±ei�/4 �
�r��e�i�2�m�x−y�/�2
�2�

in the �z basis. The function 
�r�� fulfills the usual spin-
independent Schrödinger equation

�−
�2

2m
�2 + V�r���
�r�� = �
 +

2�2m

�2 �
�r�� , �3�

and 
 is the energy eigenvalue of the wave function �±�r��
with �= ±1. Now consider a quantum wire along the x di-
rection, i.e., V�r��=V�y�. At �=−� the wave functions are of
the form �2� with 
n�r��=�n�y�exp	i�k±�2�m /�2�x
 /�Lx, Lx

is a normalizing length, such that the full wave function
reads

�n,±�r�� =
1
�2

� 1

±ei�/4 � eikx

�Lx

�n�y�e±i�2�my/�2
, �4�

where �n�y� obeys the usual Schrödinger equation for the
transverse variable y with quantized eigenvalues 
̃n. The
eigenstates �4� are characterized by the subband index n and
the wave number k, and the corresponding eigenenergies are
given by 
n

±�k�= 
̃n+ ��2 /2m��k±�2�m /�2�2−2�2m /�2.
Note that, similarly to the two-dimensional case discussed
earlier,49 the wire energy dispersions here are also
parabolic—for any strength of the ���=� coupling, see Fig.
1�b�.

B. Approximate solutions: �Å� case

For unequal couplings we first solve the quantum wire
problem in the absence of spin orbit coupling and then use

this solution as a basis to write down the Hamiltonian matrix
with the SO terms. Here we neglect any additional SO terms
arising from the further confinement30 V�y�.

1. Quantum wire eigenstates

The solution to Eq. �1� without the SO terms is


k,n,�z
�x,y� =

eikx

�Lx

�n�y���z� , �5�

where ��z�� ��↑ �z�↓ �z
 is the electron spin state in the �z

basis, with eigenvalues


k,n,�z
=

�2k2

2m
+ �n, �6�

and n=a ,b , . . ., denoting the transverse modes with energies
�n �note that 
̃n=�n in the absence of SO�. The transverse
confining eigenfunctions �n�y� obey the 1D Schödinger
equation

−
�2

2m

d2�n�y�
dy2 + V�y��n�y� = �n�n�y� . �7�

The confining potential in Eq. �7� is arbitrary. Later on we
consider an explicit form �obtained for hard-wall confine-
ment� so as to obtain simple estimates.

2. Rashba-Dresselhaus wire

We can derive a reduced Hamiltonian for our quantum
wire with SO by expanding the solution of Eq. �1� in the
basis of the wire without SO, �
k,a,↑ ,
k,a,↓ ,
k,b,↑ ,
k,b,↓
.
Here we consider only two wire modes. We then find

H = �
�2k2

2m
+ �a �i� + ��k 0 �− i� + ��dab

�− i� + ��k
�2k2

2m
+ �a �− i� − ��dab 0

0 �i� − ��dab
* �2k2

2m
+ �b �i� + ��k

�i� + ��dab
* 0 �− i� + ��k

�2k2

2m
+ �b

� . �8�

The matrix element

dab = − dba
* � ��a��/�y��b� �9�

in Eq. �8� defines the SO induced interband mixing between
the wire modes arising from the SO terms proportional to py
in Eq. �1�. For hard-wall confinement dab=8/3w, where w is
the wire width. It is convenient to rewrite the above matrix in
the basis of the eigenstates corresponding to dab=0. For null

interband coupling the Hamiltonian decouples into two sets
of SO bands


n
s�k� =

�2k2

2m
+ �n − sk��2 + �2, �10�

where n=a ,b and s=±, and eigenvectors
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k,n,s�x,y� =
eikx

�Lx

�n�y��s� , �11�

with

�s� =
1
�2

� 1

− s�
� =

1
�2

��↑�z − s��↓�z� , �12�

where

� = ��2 + �2/�i� + �� . �13�

We define the transformed Hamiltonian matrix as H̄
=U†HU, with

U =
1
�2�

1 1 0 0

− � � 0 0

0 0 1 1

0 0 − � �
� . �14�

We find

H̄ =�

a

+ 0 2idab
��

��2 + �2
− dab

�2 − �2

��2 + �2

0 
a
− dab

�2 − �2

��2 + �2
− 2idab

��

��2 + �2

− 2idab
* ��

��2 + �2
dab

* �2 − �2

��2 + �2 
b
+ 0

− dab
* �2 − �2

��2 + �2
2idab

* ��

��2 + �2
0 
b

−

� . �15�

The diagonalization of Eq. �15� is straightforward; the eigenenergies are


s,s��k� =
�2k2

2m
+

1

2
��b + �a� + s

1

2
���b − �a�2 + 4��dab�2 + k2���2 + �2� + s�4k���2 + �2���b − �a�2 + 16�dab�2�2�2, �16�

where s ,s�=±. The corresponding eigenfunctions are too
lengthy to be shown here. Figure 1�b� shows the above en-
ergy dispersions for ��� and �=� for nonzero interband
coupling dab. In general, the energy dispersions present
avoided crossings for ���. In contrast, the SO tuned �=�
case has eigenvalues which are quadratic in k with no
avoided crossings. This k dependence is easily seen by set-
ting �=� in Eq. �16�


s,s��k� =
�2k2

2m
+

1

2
��b + �a� + s�2k�

+ s�
1

2
���b − �a�2 + 8�2�dab�2. �17�

In what follows we discuss in more detail the cases dab

=0 and dab�0 corresponding to the uncoupled and
interband-coupled channels, respectively. We emphasize
again that the interband coupling described by the matrix
element dab is purely induced by the SO. As we will see
below, the uncoupled case gives rise to a single spin-rotation
modulation. The interband coupled case, on the other hand,
will have two independent modulation angles for injected
electrons with energies near the band crossings.

C. Uncoupled 1D channels „dab=0…: Single spin rotation �R

Here we have in mind a two-terminal geometry with the
source and drain connected by a Rashba-Dresselhaus wire.
For simplicity, we neglect the band offsets between the vari-
ous interfaces. That is, we assume a unity transmission
through the SO region.53 Finite offsets give rise to Fabry-
Perot-type oscillations which further modulate the transport
properties31 of the system. The uncoupled case �dab=0� con-
sidered here should be a good approximation also for finite
dab, provided that ��dab� be much smaller than the interband
energy separation ���dab���b−�a�. The solution for dab=0 is
straightforward �see Ref. 31 for the case where only the
Rashba coupling is active�. From Eq. �15�, which is diagonal
for dab=0, we immediately obtain the two sets of SO bands
	Eq. �10�
 which we rewrite as


a,b
�s� �k� =

�2

2m
�k − skSO�2 + �a,b −

�2kSO
2

2m
, s = ± , �18�

where

kSO � m��2 + �2/�2 �19�

is the SO wave vector. The corresponding eigenvectors are
given in Eqs. �11� and �12�. For dab=0 the SO bands cross at
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kc =
�b − �a

2��2 + �2
, �20�

which is obtained by setting 
a
−�kc�=
b

+�kc� �see thin solid
line in the inset of Fig. 2�; a symmetric crossing also occurs
for at k=−kc.

As first pointed out by Datta and Das,29 injected electrons
moving down the 1D channel will spin precess due to the
action of the SO interaction. Here the spin rotation is due to
the combined effects of the Rashba and Dresselhaus terms.
In analogy to the case discussed by Datta and Das, here we
find that a spin-up electron, say in channel a, crossing the
length L of the SO active region will emerge in the state

�↑�z → cos�	SO/2��↑�z − sin�	SO/2��↓�z, �21�

where

	SO = 2m��2 + �2L/�2 �22�

is the spin rotation angle about the y axis. Similarly, a spin
down electron evolves into

�↓�z → sin�	SO/2��↑�z + cos�	SO/2��↓�z. �23�

The same reasoning applies to impinging electrons in chan-
nel b. Hence, we can described the SO region in the absence
of SO induced channel coupling �uncoupled channels� by the
4�4 “transfer” matrix USO

u

USO
u = �USO

a 0

0 USO
b � , �24�

where

USO
a = USO

b = � cos�	SO/2� sin�	SO/2�
− sin�	SO/2� cos�	SO/2�

� , �25�

defines the single-channel transfer matrix for the uncoupled
channels a and b. Later on we introduce the scattering matrix
approach to calculate current and noise in a beam-splitter
geometry. The SO rotation matrix above �and its generaliza-
tion for two channels� will prove very convenient in account-
ing for SO effects on the transport properties of the beam
splitter within the scattering approach. Note that only the
Rashba coupling constant appearing in the rotation angle 	SO

can be varied externally via a gate electrode, while the
Dresselhaus coupling � is a material property. As a final
point, we note that the above SO rotated states satisfy the
proper boundary conditions for the wave function at x=0 and
x=L. This is discussed in some detail in Appendix A for both
the one- and two-channel cases.

D. Coupled 1D channels „dabÅ0…: Additional spin rotation �d

for �Å�

For nonzero SO induced interband coupling dab, the sub-
bands anticross for distinct coupling strengths ���. Simi-
larly to the one-channel case, here we also have to find out
how incoming spin up �or down� electrons emerge after tra-
versing the SO active region of length L. Here we have in
mind incoming electrons with energies near the dab=0 cross-
ing of the bands at kc, i.e., 
�
a

−�kc�=
b
+�kc�. This is the

relevant energy range where SO induced interband crossing
should play a role �unless �=��. In what follows we present
a simple analysis of this injection problem by using a pertur-
bative approach �“near free electron model”54� to describe
the SO states near the crossings.

For injection energies near the dab=0 crossings, we can
approximate the Hamiltonian in Eq. �15� by

Happ =�

a

− 0 0 0

0 
a
+ dab

�2 − �2

��2 + �2
0

0 dab
* �2 − �2

��2 + �2 
b
− 0

0 0 0 
b
+

� , �26�

i.e., we drop all the off-diagonal matrix elements except
those directly coupling the states near the crossing. From the
form of Happ it is obvious that the crossing states 	middle
block of Eq. �26�
 will split due to the dab coupling. The new
eigenvalues are


±�k� =
�2k2

2m
+

1

2
��b + �a� ± �dab�

�2 − �2

��2 + �2
�1 + x , �27�

where

x =
	��b − �a� − 2��2 + �2k
2

4��dab�
�2 − �2

��2 + �2�2 �28�

can be viewed as an expansion parameter near kc 	Eq. �20�
.
Expanding 
±�k� near kc 	we should keep only the lowest
order in x since the third term of Eq. �27� is already propor-
tional to dab
, we find to zeroth order in x


±�k� =
�2k2

2m
+

1

2
��b + �a� ± �dab�

�2 − �2

��2 + �2
. �29�

The corresponding eigenvectors are

FIG. 2. Schematic of the quantum wire energy dispersions

s,s��k� 	Eq. �16�
 for ���. The blowup shows the band anticross-
ing for d�0 in more detail. The crossing thin solid lines represent
the uncoupled case dab=0. The curves with circles are obtained
from Eq. �29� 	
±�k�
 and are good approximation for the actual
dispersions near crossing point kc

0. The wave vectors kc1, kc2, and
k2, used to expand an incoming plane wave within the SO region
	Eq. �35�
, are also shown in the inset.
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��±� =
1
�2

��− �a ± � + �b� , �30�

where �−�a→
k,a,−�x ,y� and �+ �b→
k,b,+�x ,y� are the eigen-
states in Eq. �11�. The new eigenstates ��±� are zeroth-order
linear combinations of the crossing states �remember that the
energies are linear in �dab�. More explicitly,

��±� = �1

2
�1

�
��a�y� ±

1

2
� 1

− �
��b�y�� eikx

�Lx

. �31�

In a “four-vector notation” we can write

��±� =
1

2�
1

�

±1

��
� eikx

�Lx

. �32�

As Fig. 2 clearly shows, 
±�k� 	Eq. �29�
 approximate well
the exact energy dispersions 
s,s��k� 	Eq. �16�
 of the prob-
lem near kc. By using Eq. �29� we can analytically determine
the wave vectors kc1 and kc2 relevant for the spin injection
problem. This is easily done by imposing 
F=
+�kc1�
=
−�kc2� which yields

�2kc2
2

2m
−

�2kc1
2

2m
= 2�dab�

�2 − �2

��2 + �2
. �33�

For small SO induced interband coupling we look for sym-
metric solutions around kc 	Eq. �20�
: kc1=kc−� /2 and kc2
=kc+� /2. Equation �33� then gives

� =
2m�dab�

kc�
2

�2 − �2

��2 + �2
. �34�

Having determined the wave vectors kc1 and kc2, we can now
solve the injection problem. The idea is to expand the incom-
ing electron state, say spin up in channel a, in terms of the
eigenstates of the SO region. The expansion has to satisfy the
boundary conditions �continuity of the wavefunction and flux
conservation� at both the entrance and the exit of the SO
region.

1. Boundary conditions

Here we show that spin injection with energies near the
band anticrossing is possible in our system, provided that the
SO interband coupling be small compared to the Fermi en-
ergy. Details are given in Appendix A.

a. Continuity of the wave function. A spin-up electron in
channel a entering the SO region at x=0 with an energy 
F

�
+�kc1�=
−�kc2� has to satisfy

�
1

0

0

0
��eikx�x→0− = � 1

4�
1

�

1

− �
�eikc1x +

1

4�
1

�

− 1

�
�eikc2x

+
1

2�
1

− �

0

0
�eik2x�

x→0+

. �35�

The above condition is clearly fulfilled; a similar condition
holds at x=L �see Appendix A�.

b. Continuity of the current flow. The continuity of the
�non-diagonal� velocity operator55 acting on the wave func-
tion at x=0 which assures current conservation yields

�
�kF

m

0

0

0
��eikx�x→0− =� 1

4�
�

m
�kc − �/2 + kSO�

�
�

m
�kc − �/2 + kSO�

�

m
�kc − �/2 − kSO�

− �
�

m
�kc − �/2 − kSO�

�eikc1x

+
1

4�
�

m
�kc + �/2 + kSO�

�
�

m
�kc + �/2 + kSO�

−
�

m
�kc + �/2 − kSO�

�
�

m
�kc + �/2 − kSO�

�eikc2x

+
1

2�
1

− �

0

0
� �

m
�k2 − kSO�eik2x�

x→0+

,

�36�

which simplifies to
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�
�kF

m

0

0

0
� =

1

2�
�

m
�kc + k2�

�
�

m
�kc − k2 − 2kSO�

−
�

m
�/2

�
�

m
�/2

� =
�kF

m �
�kc + k2�

2kF

0

−
�

4kF

�
�

4kF

� ,

�37�

where we have used k2−kc=2kSO 	Eq. �18�
. From Eq. �37�
we see that the matching of the derivative is fulfilled pro-
vided that ��4kF. As we show later on, this is the case for
realistic parameters. The velocity operator matching at x=L
holds similarly �see Appendix A�.

2. General spin-rotated state at x=L

After traversing the SO region a, say, spin-up electron in
channel a is described by the state

�↑,a =
1

4�
1

�

1

− �
�eikc1L +

1

4�
1

�

− 1

�
�eikc2L +

1

2�
1

− �

0

0
�eik2L.

�38�

Straightforward manipulations lead to

�↑,a =
1

2
ei�kc+kSO�L�

cos�	d/2�e−i	SO/2 + ei	SO/2

�	cos�	d/2�e−i	SO/2 − ei	SO/2

− i sin�	d/2�e−i	SO/2

i� sin�	d/2�e−i	SO/2
� ,

�39�

where we have introduced the additional modulation angle

	d = �L = ��dab�/kc�	SO��2 − �2�/��2 + �2� �40�

due to SO induced interband mixing. We show in the Appen-
dix A that for x�L, the state

��x,y� = � cos�	d/2�e−i	SO/2 + ei	SO/2

�	cos�	d/2�e−i	SO/2 − ei	SO/2

�1

2
ei�kc+kSO�x�a�y�

+ �− i sin�	d/2�e−i	SO/2

i� sin�	d/2�e−i	SO/2 �1

2
ei�kc−kSO�x�b�y� , �41�

satisfies the proper boundary condition for the velocity op-
erator 	note that setting x=L in Eq. �41� gives Eq. �39�, thus
fulfilling the continuity of the wave function at this inter-
face
. Equation �41� shows that upon traversing the SO ac-
tive region of length L, a spin-up electron in the incoming
channel a, acquires a spin-down component in the same
channel and, more importantly, coherently transfers into
channel b. This coherent transfer from channel a to channel
b is solely due to the SO induced interband coupling near kc,
described by the mixing angle 	d. Hence, a weak SO-induced
interchannel mixing—rather than being detrimental to
transport—offers a unique possibility for further spin modu-
lating the electron flow.

3. SO transfer matrix: Coupled channels

Similarly to the uncoupled-channel case, here we can also
define a SO transfer matrix USO

c describing the effect of the
SO interaction on electrons impinging near the band crossing
at kc. This transfer matrix is readily contructed in terms of
the column vectors similar to the one in Eq. �39�, which
describes how a spin up electron in channel a evolves upon
crossing the SO region. We obtain

USO
cc =

1

2
eikcL�

cos�	d/2� + ei	SO �*	cos�	d/2� − ei	SO
 − i sin�	d/2� i�* sin�	d/2�
�	cos�	d/2� − ei	SO
 cos�	d/2� + ei	SO − i� sin�	d/2� i sin�	d/2�

− i sin�	d/2� − i�* sin�	d/2� cos�	d/2� + e−i	SO − �*	cos�	d/2� − e−i	SO

i� sin�	d/2� i sin�	d/2� − �	cos�	d/2� − e−ik	SO
 cos�	d/2� + e−i	SO

� , �42�

where the modulation angles 	SO and 	d are given in Eqs.
�22� and �40�, respectively. We should keep in mind that Eq.
�42� describes electrons traversing the SO region with ener-
gies near the crossing energy. As we discuss later on, the SO
transfer matrix above is also useful for spin-rotating en-
tangled and/or unentangled electron pairs injected into a
four-terminal geometry �beam splitter�. The idea is that Ucc

operates on the member of the pair traversing the SO region.

Note that the transfer matrix in Eq. �42� reduces to that of the
uncoupled case, Eq. �24�, for �=� �	d=0�. Next we estimate
the magnitude of the spin rotations we have described here.

E. Single spin rotation �SO for coupled channels „dabÅ0… with
�=�

Here the calculation is simpler since the bands do not
anticross even for nonzero dab as we discussed earlier. The
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crossing wave vector k̄c for �=� is determined from Eq.
�17�. For instance, the k�0 crossing is obtained by setting


+,−�k̄c�=
−,+�k̄c� which gives

k̄c =
1

2�2�
���b − �a�2 + 8�2�dab�2. �43�

For dab=0 and �=� the above wave vector reduces to kc
defined in Eq. �20�.

By expanding the incoming electron states into the exact
eigenstates derived in Sec. II A we can obtain the modulation
angle 	SO=2�2mL /�2. Note that 	d=0 for �=�. Interest-
ingly, the matching of the boundary conditions here and the
general state at x=L can be straightforwardly obtained from
the ��� case by setting �=0 �or equivalently, 	d=0�. How-
ever, it is important to note that the crossing wave vector is

now k̄c �not kc� and that k2− k̄c=2kSO, where kSO is calculated
for �=�. Note also that only one modulation angle 	SO is
present for the tuned-coupling case �=�. Hence, this case is
similar to the uncoupled channel problem treated by Datta
and Das,29 even though here dab�0. The identical coupling
strengths makes the problem similar to that of the uncoupled
channels; however, the rotation angle is now renormalized.

F. Estimates for the modulating angles �SO and �d

Simple estimates for the spin-rotation angle 	SO and the
mixing angle 	d can be obtained by assuming a hard-wall
transverse confinement of width w. Using the well-known
analytical results for the wire problem, we find dab=8/3w
for the interband mixing and �b=3�2�2 /2mw2 �assuming
�a�0�. The quantity �SO��2kSO

2 /2m=m��2+�2� /2�2 sets
an energy scale in our problem. For the sake of concreteness,
let us choose �b=16�SO which leads to ��2+�2

= ��3/2� /4��2 /mw=2.44�10−2 eV nm �and �SO

�0.2 meV� for m=0.05m0 �see Ref. 48� and w=60 nm. The
energy at the band crossing points is then 
a

−�kc�=24�SO

�4.8 meV; note that for Fermi energies close to this value,
SO induced channel-mixing effects are important. From Eq.
�20� we find kc=8�SO/��2+�2. Assuming an active SO re-
gion of length L=69 nm we can estimate the spin-rotation
angles; we find 	SO=�. To obtain 	d= �dab /kc�	SO��2

−�2� / ��2+�2� we need an estimate for �. To estimate the
Dresselhaus coefficient in a quantum well geometry we use
�= �̃�kz

2�, where �kz
2� denotes the expectation value of the

wave vector component along the growth direction. For the
lowest infinite-well eigenstate we find �kz

2�= �� /w�2. The co-
efficient �̃ is typically �25 eV Å3 �Refs. 56–58� which
yields ��10−5 eV nm. Hence, for such III-V materials we
can neglect � and use 	d= �dab /kc�	SO, which gives 	d

=� /2 since dab /kc=2/ �3kSOw��0.5.
In order to obtain comparable Rashba and Dresselhaus

coupling strengths, we could use a setup with wider wires
and materials with a larger effective mass.49 In addition, we
could consider an inhomogeneous beam splitter with a dif-
ferent material with larger Dresselhaus coupling in one of the
incoming arms. Note that the possibility of tuned couplings
�=� is very attractive since in this case the spin of the

electron propagating in the SO coupled channels is insensi-
tive to nonmagnetic impurity scattering �Sec. II A�, i.e., the
spinor is k independent for �=�.

We stress that the modulation angles 	SO and 	d can, in
principle, be tuned independently via a proper gating struc-
ture. This could involve, for instance, both side �top� and
back gates to induce changes in the channel width w �con-
fining potential� and the Rashba constant. The above conser-
vative estimates suggests that the spin rotations we are con-
sidering here are sizable. Finally, we note that for the above
parameters � /4kF�0.05�1, which justifies the approxima-
tion made in the velocity operator matching 	Eq. �37�
.

III. TRANSPORT PROPERTIES: CURRENT AND NOISE

In what follows we calculate the current and its dynamic
fluctuations �shot noise� for electrons traversing a beam split-
ter. We use the scattering approach of Landauer and
Büttiker.59 We consider injection of �i� electron pairs �singlet
and triplets� from an “entangler” tunnel-coupled to the in-
coming leads of the beam splitter and �ii� spin-polarized
electrons from Fermi-liquid leads which are assumed to be
thermal reservoirs each held at a given chemical potential.
For a calculation of shot noise for entangled electrons in a
beam-splitter where a Berry phase provides an additional
modulation, see Ref. 60.

A. Scattering approach: basics

Here we briefly outline the scattering-matrix formulation
for current and noise.59

1. Current

Within the Landauer-Büttiker approach, the transport
properties of a mesoscopic system are expressed in terms of
the scattering matrix s�� connecting the many incoming and
outgoing attached leads. The current operator in lead � is

Î��t� =
e

h�
�

�����
�


�

A�,�
�,����;
,
��ei�
−
��t/�a��

† �
�a����
�� ,

�44�

with

A�,�
�,����;
,
�� = ��,����,���,� − �

��

s��;���
* �
�s��;�����
�� ,

�45�

where �= ↑ ,↓ is the relevant spin component along a proper
quantization direction �“x, y, or z”�. We have introduced the
creation �annihilation� fermionic operator a��

† �
�	a���
�
 for
an electron with energy 
 in lead �, which satisfy the anti-
commutation relation �a��

† �
� ,a�����
��
=���������

� We
have considered beam splitter leads with discrete longitudi-
nal energy levels 
 ,
�. This yields the factor �
= �Lx /2����m /2EF in Eq. �44�, which actually is the 1D
density of states for only forward propagating states �positive
momenta�. In the standard expression for the current with
continuous energies,59 this factor cancels with the density of
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states appearing when transforming discrete states into con-
tinuous ones. For a study of noise in a beam splitter with
continuous energies, see Refs. 61 and 62. We discuss in more
details the transition from the discrete case to the continuous
one in Sec. III E.

2. Shot noise

At a time t, the current fluctuation about its average in

lead � is �Î��t�= Î��t�− �Î��. In a multiple-lead configuration,
the shot noise between leads � and � is defined as the Fou-
rier transform of the symmetrized current-current autocorre-
lation function

S����� =
1

2
� ��Î��t��Î��t�� + �Î��t���Î��t��ei�tdt . �46�

The angle brackets in Eq. �46� stand for either �i� a quantum
mechanical expectation value between two-particle states or
�ii� a standard ensemble average �thermal reservoirs�. Note
that the nonequilibrium current noise defined above arises
physically from the discrete nature of the charge flow in the
system. This is strictly true only at zero temperatures; at
finite temperatures Eq. �46� contains also thermal noise.

3. Beam-splitter scattering matrix

To calculate the noise from Eq. �46� we need to specify
the beam splitter scattering matrix. For a symmetric beam
splitter without SO interaction and single-mode channels, we
have the scattering matrix3

s =�
0 0 s13 s14

0 0 s23 s24

s31 s32 0 0

s41 s42 0 0
� =�

0 0 r t

0 0 t r

r t 0 0

t r 0 0
� , �47�

that is, the beam splitter transmits electrons between leads 1
and 3 and leads 2 and 4 with amplitude r and between leads
2 and 3 and leads 2 and 4 with amplitude t. Note that back-
scattering is neglected in s; see Sec. III C and Appendix C 1
for a beamsplitter including backscattering effects. If the in-
coming or outgoing leads have more than one mode �i.e.,
many quantized channels� we can, in a first approximation,
assume that the beamsplitter does not mix the orbital chan-
nels so that Eq. �47� holds true for each of the modes sepa-
rately.

Interestingly, in the presence of SO interaction in lead 1,
Fig. 1, we can define an extended beam-splitter scattering
matrix to incorporate the spin rotation described by the SO
transfer matrix USO. Since an electron in lead 1 undergoes a
spin rotation described by USO, we can redefine the matrix
elements s13=s31 and s14=s41 as 4�4 matrices

s13
SO = s31

SO = s13USO, �48�

and

s14
SO = s41

SO = s14USO, �49�

to incorporate the effects of the SO interaction. Note that
USO is given by Eqs. �24� and �42� for the uncoupled and the

coupled two-channel cases, respectively. The other elements
in s remain unaltered except that they are now 4�4 matri-
ces, e.g., s24=s42=s141, where 1 denotes the 4�4 unit ma-
trix. Note that the new beam splitter scattering matrix sSO

incorporating the SO effects in lead 1 as defined above is a
16�16 object as opposed to the 4�4 matrix in Eq. �47�.

B. Shot noise for electron pairs: Singlet and triplet
states

We assume that an entangler5–25 is placed just before leads
1 and 2, Fig. 1�a�.63 Below we calculate the noise for the
states

� �S�
�Tei

� � =
1
�2

	a1↑
† �
1�a2↓

† �
2� � a1↓
† �
1�a2↑

† �
2�
�0� ,

�Tu�,i
� = a1�

† �
1�a2�
† �
2��0�, � = ↑,↓ , �50�

where �0� denotes the ground state �filled� Fermi sea of the
leads and i=x ,y ,z any particular quantization axis. The
states �S� and �Tei

� are entangled singlet and triplet, respec-
tively, while �Tu↑,i

� and �Tu↓,i
� are unentangled triplets. Here

we consider zero temperatures, zero applied voltages, and
zero frequencies. In this limit the Fermi sea is completely
inert �noiseless� and the noise in the system is solely due to
the injected pairs above the Fermi surface.6 To determine the
shot noise we essentially evaluate matrix elements of the
general form

�0�a�,��
�
��a�,��

�
��a�,�
† �
�a�,���
��

� a��,��
† �
��a��,���
��a�,��

† �
��a�,��

† �
���0� , �51�

appearing in the noise definition �46�. This is most system-
atically done via Wick’s theorem since the object in Eq. �48�
resembles a four-particle Green function �see Appendix D for
details�.

1. General noise formulas: Single-channel case

For the injected singlet and the triplets in Eq. �50� we find
the following expressions for the zero-frequency noise be-
tween leads � and �:
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S
��

S/Tei =
e2

2h�� �
�=1,2,�=1...4,��,�

A�,�
�,����;
�,
��A�,�

��,���;
�,
�� + �
���=1,2,�

	±A�,�
�,���;
�,
��A�,�

−�,−���;
�,
��

− A�,�
�,−���;
�,
��A�,�

−�,���;
�,
��
�
�,
�
� �

���=1,2;�
A�,�

�,−���;
�,
��A�,�
−�,���;
��

+
1

2 �
���=1,2;�

A�,�
�,���;
�,
��A�,�

−�,−���;
�,
�� −
1

2 �
�,�=1,2;�

A�,�
�,���;
�,
��A�,�

�,���;
��

−
1

2 �
�=1,2;�

A�,�
�,���;
�,
��A�,�

−�,−���;
�,
��� �52�

and

S
��

Tu�,i =
e2

h�� �
�=1,2,�=1...4,��

A�,�
�,����;
�,
��A�,�

��,���;
�,
��

− �
�,�=1,2

A�,�
�,���;
�,
��A�,�

�,���;
�,
���
�,
�� . �53�

Note that Eqs. �52� and �53� do not depend on the particular
form �47� of the beam-splitter scattering matrix and the
quantization axis chosen. In what follows we present explicit
formulas for the noise derived from Eqs. �52� and �53�. We
also determine the noise for entangled and unentangled states
defined along distinct quantization axes �i=x, y, and z� and
for the Bell states. Later on we present similar results for the
two-channel case as well.

2. Specific formulas: Uncoupled-channel case

In the absence of SO induced interband coupling
�uncoupled-channel case�, the channels a and b are indepen-
dent within lead 1. That is, if electrons are injected only in
the channel a of lead 1, they will remain in that channel
while propagating through the length L of the SO region in
that lead. If fact, the channel index remains unaltered as the
electrons traverse the beam splitter since we assume the the
beamsplitter does not mix the channels. We present below
results for electron pairs injected only in channel a of the
incoming leads. The case with two pairs injected into chan-
nels a and b is straighforward �factor of 2� since no SO
interband mixing is considered here. However, as we discuss
later on, in the coupled-channel case injection into just one
of the channels is significantly different from injection into
both channels �not just a factor of 2 as here�. Below we detail
the calculation of the noise from Eqs. �52� and �53�. To cal-
culate the noise in lead 3, i.e., S33

S/Tei and S33
Tu�,i, we first have

to determine the relevant elements A�,�
�,���3;
� ,
��

	Eq. �45�
 appearing in these quantities. Since our scattering
matrix is assumed to be independent of the energy, so is

A�,�
�,���3;
� ,
��=A�,�

�,���3�.
a. Quantization axis along z. For the specific forms

s13
SO = � r cos�	SO/2� r sin�	SO/2�

− r sin�	SO/2� r cos�	SO/2�
� �54�

and

s14
SO = � t cos�	SO/2� t sin�	SO/2�

− t sin�	SO/2� t cos�	SO/2�
� , �55�

the only nonzero A�,�
�,���3�’s are

A1,2
↑,↑�3� = − s31;↓↑

* s32;↓↑ − s31;↑↑
* s32;↑↑ = − r*t cos�	SO/2�

= A1,2
↓,↓�3� , �56�

A1,2
↑,↓�3� = − s31;↓↑

* s32;↓↓ − s31;↑↑
* s32;↑↓ = r*t sin�	SO/2�

= − A1,2
↑,↓�3� , �57�

A2,2
↑,↑�3� = − s32;↓↑

* s32;↓↑ − s32;↑↑
* s32;↑↑ = − �t�2 = A2,2

↓,↓�3� .

�58�

Note that in the above we have chosen the � index in sSO to
be that of the z component of the spin �→�z= ↑ ,↓, i.e., we
have set the quantization axis to be z, Fig. 1. Hence, the
entangled and non-entangled triplet states here refer to this
basis: S33

Tez and S33
Tu�,z; the noise for the singlet state S33

S is the
same for all quantization axes. Plugging in the above

A�,�
�,���3�’s into Eq. �52� we find

S33
S/Tez�	SO� =

2e2RT

h�
	1 ± cos�	SO/2�cos�	SO/2��
1,
2

− sin�	SO/2�sin�	SO/2��
1,
2

 , �59�

where we have defined the transmission and reflection prob-
abilities T= �t�2 and R= �r�2, respectively. Since R+T=1, fur-
ther simplifications lead to

S33
S �	SO� =

2e2

h�
T�1 − T�	1 + cos�	SO��
1,
2


 , �60�

S33
Tez�	SO� =

2e2

h�
T�1 − T��1 − �
1,
2

� . �61�

Similarly, we find
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S33
Tu↑,z�	SO� = S33

Tu↓,z�	SO� =
2e2

h�
T�1 − T�	1 − cos2�	SO/2��
1,
2


 ,

�62�

for the unentangled triplets with spin polarization along z.
The above formulas have been derived for the case where

the injected electrons in arm 1 and 2 have the infinitely sharp
energies 
1 and 
2. In Sec. III E we consider the case where
the injected electrons are described by Lorentzian wave
packets of width � centered on 
1 and 
2. We then find, in the
continuous limit, that �
1,
2

in Eqs. �60�–�62� is replaced by
the function H���=�2 / ��2 /4+�2� where �=
1−
2. This
function, which interpolates between H=1 when ��� and
H=0 when ���, corresponds to the one appearing in Eq.
�28� of Ref. 61.

b. Quantization axis along y. To obtain the corresponding
noise expressions for injected electron pairs with spin polar-
ization defined along the y we have to first rewrite sSO in the
basis of �y: �↑ �y = ��↑ �z+ i�↓ �z� /�2, �↓ �y = ��↑ �z− i�↓ �z� /�2.
For instance, s13

SO becomes

s13,y
SO = �r exp�i	SO/2� 0

0 r exp�− i	SO/2�
� . �63�

Now the only nonzero elements are A1,2
↑,↑�3�

=−r*t exp�−i	SO/2�= 	A2,1
↓,↓�3�
* and A2,1

↑,↑�3�
=−rt* exp�−i	SO/2�= 	A1,2

↓,↓�3�
*. Substituting these terms into
the general Eqs. �52� and �53�, we find

S33
S/Tey�	SO� =

2e2

h�
T�1 − T�	1 ± cos�	SO��
1,
2


 �64�

and

S33
Tu↑,y�	SO� = S

33

Tu↓y�	SO� =
2e2

h�
T�1 − T��1 − �
1,
2

� . �65�

c. Bell states. For completeness we also calculate the
noise for injected Bell pairs64 �maximally entangled states�
described by

��0� = �S� , �66�

��1� = �Tei
� , �67�

��2� =
1
�2

��Tu↑,i� + �Tu↓,i�� , �68�

��3� =
1
�2

��Tu↑,i� − �Tu↓,i�� . �69�

The Bell states above are defined with respect to an arbitrary
quantization axis. The noise expressions for the first two Bell
states are the same as those of the singlet and the entangled
triplet derived above. The noise for the states ��2� and ��3�
can be easily determined in terms of the results for the un-
entangled triplet states for particular quantization axes. Let
us consider the quantization axis along z, for concreteness.

The procedure is straightforward.
�i� After traversing the SO region, the injected unen-

tangled triplet state �Tu↑,z
� becomes �Tu↑,z

�L=USO
a �Tu↑,z

� and
can be decomposed as

�Tu↑,z
�L = 	cos�	SO/2��↑�1a,z − sin�	SO/2��↓�1a,z
 � �↑�2a,z

�70�

or

�Tu↑,z
�L = cos�	SO/2��↑↑�aa,z − sin�	SO/2��↓↑�aa,z, �71�

where we have used the shorthand notation �↑ ↑ �aa,z

= �↑ �1a,z � �↑ �2a,z= �Tu↑,z
�, to denote the tensor product state

with one electron injected into the channel a of lead 1 and
another in the channel a of lead 2. Similarly,

�Tu↓z
�L = sin�	SO/2��↑↓�aa,z + cos�	SO/2��↓↓�aa,z. �72�

�ii� Now, we rewrite the rotated Bell state ��2�L explicitly

��2�L = cos�	SO/2�
1
�2

��↑↑�aa,z + �↓↓�aa,z�

+ sin�	SO/2�
1
�2

��↑↓�aa,z − �↓↑�aa,z� . �73�

�iii� The noise in lead 3 corresponding to ��2�L is deter-
mined from the expectation value of Eq. �46� in this state.
Since the beam-splitter scattering matrix does not include
spin-flip processes, this expectation value can be expressed
in terms of the shot noise for the unrotated singlet
��↑ ↓ �aa,z− �↓ ↑ �aa,z� /2 and unentangled triplets �↑ ↑ �aa,z,
�↓ ↓ �aa,z

S33
�2�	SO� =

1

2
cos2�	SO/2�	S̃33;aa

Tu↑,z + S̃33;aa
Tu↓,z 
 + sin2�	SO/2�S̃33;aa

S ,

�74�

where

S̃33;aa
S =

2e2

h�
T�1 − T��1 + �
1,
2

� �75�

and

S̃33;aa
Tu↑,z = S̃33;aa

Tu↓,z =
2e2

h�
T�1 − T��1 − �
1,
2

� . �76�

Note that S̃33;aa
S and S̃33;aa

Tu�,z denote the shot noise for the bare
singlet and triplet states, respectively.6 Equations �75� and
�76� represent the noise expectation value for the bare singlet
and triplet states6 and follows from Eqs. �61� and �62� with
	SO=0. Substituting the Eqs. �75� and �76� into �74�, we find

S33
�2�	SO� =

2e2

h�
T�1 − T�	1 − cos�	SO��
1,
2


 . �77�

Similarly,
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S33
�3�	SO� =

2e2

h�
T�1 − T��1 − �
1,
2

� . �78�

It is interesting to note that S33
�2 =S33

Tey and S33
�3 =S33

Tu↑y =S33
Tu↓y.

This follows from �Tey
�= �1/�2���↑ ↓ �y − �↓ ↑ �y� being equal

to ��2� and ��3�= �Tu↑y
� for the quantization axis along z.

d. Local Zeeman and spin-orbit-induced rotations. It is
interesting to note that the shot noise modulation induced by
the local SO interaction in the uncoupled-channel case dis-
cussed above is formally identical to that due to a local Zee-
man interaction in lead 1 �e.g., due to a local magnetic field
or a distinct g factors in lead 1�. For a local Zeeman interac-
tion, 	SO should be equal to g�BBL /v, i.e., the phase ac-
quired by the electron upon traversing, with velocity v, the
length L of the Zeeman-active region. Note, however, that
this formal correspondence between local Zeeman and SO
interactions holds only for the uncoupled-channel case �or in
a strictly single-channel lead� and when magnetic-field-
induced orbital effects are neglected.

e. Shot noise for electron pairs: physical picture. Before
moving over to the more elaborate case with coupled chan-
nels, we provide here a simple picture for the shot noise
results we obtained for the singlet and triplets. Let us first
consider the case with no spin orbit �	SO=0� and one orbital
channel. Our formulas yield bunching for singlet and anti-
bunching for the triplets, as previously found in Ref. 6. This
bunching and antibunching behavior for the singlet and trip-
lets pairs can be readily understood if we write out the pair
wave functions in the outgoing leads �3,4� similarly to Ref.
65. The injected singlet and entangled triplets states �S /Tez

�
= �a1,↑

† a2,↓
† �a1,↓

† a2,↑
† ��0� /�2 and �Tu�,i

�=a1�
† a2�

† �0� after tra-
versing the beam splitter evolve into

�S� → �2rtb3,↑
† b3,↓

† �0� + �2rtb4,↑
† b4,↓

† �0�

+
1
�2

�r2 + t2��b3,↑
† b4,↓

† − b3,↓
† b4,↑

† ��0� , �79�

�Tez
� →

1
�2

�r2 − t2��b3,↑
† b4,↓

† + b3,↓
† b4,↑

† ��0� , �80�

and

�Tu�,z
� → �t2 − r2�b4,�

† b3,�
† , �81�

where the bi,�
† ’s �i=3,4� represent the creation operators in

the outgoing leads, directly related to the ai,�
† ’s via the beam-

splitter scattering matrix s �note that here the particular quan-
tization axis is irrelevant; this is not true in the presence of
the spin-orbit interaction as described below�. Interestingly,
the incoming electrons in the triplet states in leads 1 and 2
have zero probability of emerging in the same outgoing lead
�note that �r2− t2�=1 due to s†s=1�. This is the �full� anti-
bunching we mentioned above and it results in zero shot
noise for the injected triplet pairs. Physically, this vanishing
of the shot noise means that there is no randomness in the
electron flow in the outgoing leads: each electron of the in-
coming triplet pairs goes—with unity probability—to dis-

tinct outgoing leads. For the singlet pairs, on the other hand,
the probability for the two electrons to emerge in the same
outgoing arm is not zero as for the triplets. This probability is
larger by a factor of two than the classical value �r�2�t�2.
Hence the incoming electrons in a singlet pair tend to bunch,
i.e., to go to the same outgoing leads. Full bunching occurs
only for the particular case of a 50:50 beam splitter. In this
case we have r= ± it and opposite spins have a 1/2 probabil-
ity to emerge in one of the leads 3 or 4. This randomness in
the electron flow in the outgoing leads increases the shot
noise as compared to both the triplet and the classical case.

Note that the bunching and antibunching behaviors de-
scribed above follow from the stringent requirement for an-
tisymmetry �Pauli’s principle� of the total wave function of
the electron pair. In an unentangled triplet, for instance, the
spin part of the wave function is symmetric thus forcing its
spatial component to be antisymmetric which results in a
strong correlation between the electrons in the triplet pair,
i.e., they avoid each other by always going into distinct out-
going leads. The same is true for the entangled triplet pair.
This correlation reduces the shot noise, in agreement with
the classical notion of shot noise suppression which occurs
when the “discreteness” of the electron flow is reduced. For
the singlet, on the other hand, the spin part of the pair wave
function is antisymmetric which makes the spatial part sym-
metric. The electrons in a singlet pair can overlap freely in
space and hence are less correlated than the triplet case thus
giving rise to nonzero shot noise. Interestingly, the shot noise
for the singlet is even larger than the classical analog �i.e., a
distinguishable pair injected into leads 1 and 2�. This also
agrees with the classical notion of shot noise as due to the
discreteness of the charge flow: because the spatial part of
the singlet pair is maximally “uncorrelated” �“negative cor-
relation”� the discreteness of the electron charge is larger
than the classical case �the singlet electrons can lie com-
pletely on top of each other in real space� thus yielding a
larger shot noise.

In the presence of spin-orbit coupling, the above ideas can
be straightforwardly generalized. In this case the singlet and
triplets injected into single-channel leads evolve into

�S� → �2rt cos�	SO/2�b3,↑
† b3,↓

† �0� + �2tr cos�	SO/2�b4,↑
† b4,↓

† �0�

+ �t2 + r2�cos�	SO/2�
1
�2

�b3,↑
† b4,↓

† − b3,↓
† b4,↑

† ��0� + �t2

− r2�sin�	SO/2�
1
�2

�b3,↓
† b4,↓

† + b3,↑
† b4,↑

† ��0� , �82�

�Tez
� → �r2 − t2�cos�	SO/2�

1
�2

�b3,↑
† b4,↓

† + b3,↓
† b4,↑

† ��0�

+ �t2 − r2�sin�	SO/2�
1
�2

�b3,↓
† b4,↓

† − b3,↑
† b4,↑

† ��0� ,

�83�

and
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�Tu↑,z� → cos�	SO/2��t2 − r2�b4,↑
† b3,↑

† �0�

+ sin�	SO/2�rt�b3,↑
† b3,↓

† + b4,↑
† b4,↓

† ��0�

+ sin�	SO/2�t2b3,↑
† b4,↓

† �0� − sin�	SO/2�r2b3,↓
† b4,↑

† �0� .

�84�

The unentangled triplet �Tu↓,z
� evolves similarly to �Tu↑,z�.

Due to the continuous spin rotation induced by the SO cou-
pling, intermediate degrees of bunching and antibunching are
possible as the modulation angle 	SO is varied. Note that a
variety of entangled and unentangled electron pairs �along
distinct quantization axes as well� can be generated accord-
ing to the above states by sending electron pairs through a
SO active region. See also Ref. 66 for entanglement genera-
tion using a Mach-Zehnder interferometer.

3. Coupled-channel case

Here we assume that electron pairs are injected into chan-
nel a of leads 1 and 2 with energies near the crossing of the
bands at kc, Figs. 1�b� and 2. The case with injection into
both channels a and b is discussed at the end of this section.
General expressions similar to Eqs. �52� and �53� can, in
principle, be derived for this case. Here, however, we gener-
alize the approach outlined at the end of the previous section
to the the case of two SO-coupled channels, which is both
simpler and more intuitive. An additional heuristic derivation
of the noise properties using simple number operators is
given in the Appendix C 1.

a. Quantization axis along z. The idea is essentially the
same as before: for instance, an injected unentangled spin-up
triplet along the z direction, with one electron in channel a of
lead 1 an the other in channel a of lead 2 evolves into 	Eq.
�39�


�Tu↑,z
�L =

1

2
	cos�	d/2�e−i	SO/2 + ei	SO/2
�↑↑�aa,z

+
1

2
�	cos�	d/2�e−i	SO/2 − ei	SO/2
�↓↑�aa,z

−
1

2
i sin�	d/2�e−i	SO/2�↑↑�ba,z

+
1

2
i� sin�	d/2�e−i	SO/2�↓↑�ba,z, �85�

upon traversing the SO region in lead 1 �we dropped an
overall phase ei�kc+kSO�L�. Similarly to the uncoupled-channel
case, we note that only the portion of the electron pair going
through lead 1 is subject to the SO effect. Note that the SO
induced interband coupling in lead 1 makes the injected
states initially in channel a leak into channel b. The expec-
tation value of the noise in the state �Tu↑,z

�L is

S33
Tu↑,z�	SO,	d� =

1

4
�cos�	d/2�e−i	SO/2 + ei	SO/2�2S̃33;aa

Tu↑,z

+
���2

4
�cos�	d/2�e−i	SO/2 − ei	SO/2�2S̃33;aa

↓↑,z

+
1

4
sin2�	d/2�S̃33;ba

Tu↑,z +
1

4
sin2�	d/2�S̃33;ba

↓↑,z ,

�86�

where S̃33;ba
↓↑,z denotes the noise expectation value, Eq. �46�,

for a pair with a spin-down electron in channel b of lead 1
and a spin-up electron in channel a of lead 2, �↓ ↑ �ba,z. Simi-

larly, S̃33;aa
↓↑,z corresponds to the two opposite spin electrons in

the channel a of the respective lead. The noise contribution
of the pair state �↓ ↑ �aa,z can be determined from Eq. �62� by
setting 	SO=� which makes �Tu↑,z

�L=−�↓ ↑ �aa,z, see Eq. �71�,

S̃33;aa
↓↑,z =

2e2

h�
T�1 − T� . �87�

Note that the pair state �↓ ↑ �aa,z is distinguishable �spin down
in lead 1 and spin up in lead 2, both in channel a�, and
therefore yields the classical shot noise. Similarly, for the

distinguishable state �↓ ↑ �ba,z we should have S̃33;ba
↓↑,z = S̃33;aa

↓↑,z .
Hence we find

S33
Tu↑,z�	SO,	d� =

e2

h�
T�1 − T�	1 + sin2�	d/2�/2�
1,
2

− cos�	d/2�cos�	SO��
1,
2

 �88�

and, similarly, S33
Tu↓,z�	SO,	d�=S33

Tu↑,z�	SO,	d�. The noise for the
entangled triplet and the singlet are, respectively,

S33
Tez�	SO,	d� =

2e2

h�
T�1 − T��1 −

1

2
	cos2�	d/2� + 1
�
1,
2

�
�89�

and

S33
S �	SO,	d� =

2e2

h�
T�1 − T�	1 + cos�	d/2�cos�	SO��
1,
2


 .

�90�

b. Quantization axis along y. We can again straightfor-
wardly find all the shot noise expressions for the quantization
axis along y by following the same procedure as above.
However, here a spin up �along the y direction� electron in-
jected into the channel a of lead 1 evolves into

�↑�a,y
L =

1

2�2
�	�1 + i�*�cos�	d/2�e−i	SO/2 + �1 − i�*�ei	SO/2
�↑�a,z

+ 	�� + i�cos�	d/2�e−i	SO/2 + �i − ��ei	SO/2
�↓�a,z

+ ��* − i�sin�	d/2�e−i	SO/2�↑�b,z

+ �i� − 1�sin�	d/2�e−i	SO/2�↓�b,z
 , �91�
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upon traversing the SO region in lead 1, while a spin down
electron �along the y� evolves according to

�↓�a,y
L =

1

2�2
�	�1 − i�*�cos�	d/2�e−i	SO/2 + �1 + i�*�ei	SO/2
�↑�a,z

+ 	�� − i�cos�	d/2�e−i	SO/2

− �i + ��ei	SO/2
�↓�a,z − �i + �*�sin�	d/2�e−i	SO/2�↑�b,z

+ �i� + 1�sin�	d/2�e−i	SO/2�↓�b,z
 . �92�

For simplicity, we consider below the case with only the
Rashba coupling, i.e., ��0 and �=0. In this case, the above
equations simplify to

�↑�a,y
L = exp�i	R/2��↑�a,y �93�

and

�↓�a,y
L = exp�− i	R/2�	cos�	d/2��↓�a,y − i sin�	d/2��↑�b,y
 ,

�94�

where 	SO→	R=2m�L /�2 and �↑ �a,y and �↓ �a,y are the
eigenspinors of �y in channel a �similar definitions hold for
channel b�. Note that the spin-up and spin-down states in
channel a of lead 1 evolve quite differently. In particular, the
spin-up state remains in channel a and only picks up a overal
phase, while the spin-down one acquires a spin-up compo-
nent in channel b. This distinct evolution of �↑ �a,y

L and �↓ �a,y
L

can be understood if we recall that the incoming electron
state �↑ �a,y is essentially an eigenstate of the system at x=0
�far away from any level crossing� and hence evolves as
such, as the electron traverses the SO region. In contrast, the
state �↓ �a,y

L results from the incoming spin-down state in
channel a being injected at the level crossing corresponding
to the states �↓ �a,y and �↑ �b,y and thus evolves as a coherent
superposition of these two states along lead 1. Hence, �↑ �a,y

L

is an eigenstate of our Hamiltonian in the approximation we
considered in Eq. �26�, while �↓ �a,y

L is not, due to the weak
coupling between channels a and b at the crossing.

From the states �93� and �94� we can construct the elec-
tron pairs �entangled or not� that we are interested in, e.g.,
the singlet and the triplet states along the y direction. Let us
consider a pair injected into only the channel a of leads 1 and
2. For the spin-up triplet we find

�Tu↑,y
�L = exp�i	R/2��↑↑�aa,y , �95�

while for the spin down

�Tu↓,y
�L = exp�− i	R/2�	cos�	d/2��↓↓�aa,y − i sin�	d/2��↑↓�ba,y
 .

�96�

The entangled triplet and singlet are found to be

�S/Tey
�L =

1
�2

	exp�i	R/2��↑↓�aa,y � exp�− i	R/2�cos�	d/2�

��↓↑�ba,y
 ±
1
�2

i exp�− i	R/2��↑↑�ba,y , �97�

where the upper �lower� sign corresponds to the singlet �trip-
let� state. The noise expression corresponding to the above
states are

S33
Tu↑,y�	d� =

2e2

h�
T�1 − T��1 − �
1,
2

� , �98�

S33
Tu↓,y�	d� =

2e2

h�
T�1 − T�	1 − cos2�	d/2��
1,
2


 , �99�

and

S33
S/Tey�	R,	d� =

2e2

h�
T�1 − T�	1 ± cos�	d/2�cos�	R��
1,
2


 .

�100�

Interestingly, the above results show that by measuring
the noise in lead 3 along the y quantization axis one can
distinguish all the electron pairs as they display distinct noise
for non-zero SO induced interchannel mixing angles �	d

�0�. Figure 3 shows the reduced Fano factor f
=S33/ 	2e2T�1−T� /h�
 for the singlet and triplets along the y
axis as a function of 	SO and 	d. It clearly shows that the
singlet and triplets display distinct shot noise in a wide range
of angles. Note that this result holds only for incoming elec-
tron pairs injected initially into channel a and with energies
near the crossing.

C. Effect of backscattering in the Rashba lead

Here we examine how the presence of backscattering in
the lead containing the spin-orbit interaction �lead 1� affects
our results for the current fluctuations. A small backscatter-
ing can indeed be produced by the small band offset between
the regions of the lead with and without the Rashba interac-
tion; see Appendix B where we calculate explicitly the trans-
mission and reflection coefficients for a model quantum wire
with spin-orbit interaction of both the Dresselhaus and
Rahsba types. The situation is depicted in Fig. 4�a�.

We emphasize that here the “left” leads �1,3� and “right”
leads �2,4� are not equivalent anymore because of the pres-
ence of the spin-orbit region in lead 1. This, as we shall see
below, yields that S33�S44. The case in which backscattering
is present in both leads 1 and 2 was first addressed in Ref.
67, and is discussed in the Appendix C 1 within a simple
heuristic picture 	see Fig. 4�b�
. For simplicity, we consider
here only the case of uncoupled bands �Sec. II C�.

We take into account the backscattering by adding a tun-
nel barrier with reflection amplitude a to lead 1, described by
the scattering matrix
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sback = �a b

b a
� . �101�

In order to combine sback with the beam-splitter scattering
matrix s 	Eq. �47�
, we match the coefficients of the wave
function going out of sback with the corresponding ones going
in s, and solve the resulting system of equations eliminating
the intermediate coefficients.68 We obtain the modified scat-
tering matrix

s� =�
a 0 br bt

0 0 t r

br t ar2 art

bt r art at2
� . �102�

The probability A= �a�2 of backscattering in lead 1 renormal-
izes the transmission probabilities R= �r�2 and T= �t�2 by the
factor �b�2=1−A. It is interesting to note that the constraints
of unitarity introduce some backscattering in the leads 3 and
4. These correspond to the possibility for particles injected
into leads 3 or 4 to scatter back into leads 3 and 4 after being
reflected by the tunnel barrier in lead 1. We note that the
probabilities R and T are the ones of the original beam split-
ter, and as such satisfy the normalization condition R=1−T.

We proceed as before and introduce the spin rotation due
to the Rashba coupling by multiplying s13 and s14 by USO,
Eqs. �48� and �49�. The spin rotation has no effect on s11
even if the backscattering occurs after the Rashba region,
because the spin of a particle with reversed momentum ro-
tates in the reversed direction. We can now use the general
formulas Eqs. �52� and �53� to evaluate the autocorrelation
noise in lead 3. Introducing the renormalized probability
R�=R�1−A�, we find

S33
S �	SO� =

e2

h�
	TR + R��1 − R�� + 2TR� cos�	SO���1,�2


 ,

�103�

S33
Tez =

e2

h�
	TR + R��1 − R�� − 2TR���1,�2


 , �104�

S33
Tu↑,z�	SO� =

e2

h�
	TR + R��1 − R�� − 2TR� cos2�	SO/2���1,�2


 ,

�105�

with the average current in lead 3

I3 = V
e2

h
�1 − AR� . �106�

FIG. 3. �Color online� Fano factors as a function of 	R and 	d

for triplet �a� and singlet �b� pairs �defined along the y axis� with
injection energies near the channel anticrossings. We assume the
injected pairs to be initially in channel a of the non-Rashba region
in lead 1. In addition to the usual Rashba-induced spin rotation 	R,
the spin-orbit interaction induces a further modulation on the Fano
factors via the coherent transfer of electrons between the channels
�mixing angle 	d�. Interestingly, the triplets display distinct Rashba
SO modulations: the unentangled spin-up pair Tu↑y is not sensitive
to spin-orbit effects and shows full antibunching, the unentangled
spin-down triplet Tu↓y depends on only 	d and oscillates between
the full anti-bunching and the classical value for distinguishable
pairs, the entangled triplet Tey

displays sizable oscillations between
full bunching and antibunching as 	d and 	R are varied. For the sake
of clarity, we have omitted in �a� the 	R dependence of Fano factors
corresponding to Tu↑y and Tu↓y.

FIG. 4. �Color online� Two cases for a beam splitter with back-
scattering. �a� Backscattering in arm 1 only, induced by the SO
region, with a the backscattering amplitude, and r and t the original
amplitudes of the beam splitter. �b� Backscattering present in all
leads �amplitude a�, with also cross-backscattering �c�. Here r and t
are the modified amplitudes satisfying the normalization �a�2+ �c�2
+ �r�2+ �t�2=1. This case will be discussed in the Appendix C 1.
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The factor 2TR found in the previous case without back-
scattering, Eqs. �60�–�62�, splits into two contributions, TR
+R��1−R�� with the renormalized probability R�. The back-
scattering adds a contribution related to the partition noise
created by the tunneling barrier. Partition noise �shot noise�
corresponds to fluctuations arising from the fact the barrier
splits randomly the incident electron flow into transmitted
and backscattered flows. On the other hand, the backscatter-
ing reduces the transmission probability R� for electrons in-
jected in lead 1, and therefore can decrease the “beam-
splitter noise” proportional to R�1−R�. For instance, the
noise for entangled triplets with same energies is increased
from zero �in the absence of backscattering� to a finite value.
Similarly, the noise for electrons with different energies is
increased in the range 0�A�max�2−1/T ,0
, with a maxi-
mal increase of �T−1/2�2�e2 /h��. However, the maximal
value for the noise �obtained in the case of singlets with �1
=�2 and 	SO=2n�, n�Z� is not changed, as it corresponds to
the maximal value reached in the case of bunching of

bosonic-like particles. In the case of spin pairs injected along
the Oy axis, the result for the singlet remains the same, while
S33

Tu,y =S33
Te,z and S33

Te,y�	�=S33
S ��−	SO�.

Figure 5 shows the autocorrelation noise S33 in the pres-
ence of backscattering in lead 1, of the singlet S and for the
unentangled triplet Tu,z in the case of equal energies �1=�2.
We recall that the noise of the entangled triplet Te,z is inde-
pendent of 	SO, as are S and Tu,z for different energies. We
see that the backscattering can either increase or decrease the
noise, depending on the rotation angle 	SO as well as the
beam-splitter properties �defined by R�. However, in all cases
the backscattering reduces the visibility �amplitude� of the
	SO oscillations. In the absence of backscattering �A=0�, the
bunching of singlets for 	SO=0 is maximal �S33=e2 /h�� for a
symmetric beam splitter �i.e., T=R=0.5�; this comes from
the fact that the randomness is maximal in this configuration.
In the presence of backscattering, the effective transmission
is decreased via R→R��1−A�, so that as one moves away
from this symmetric point, the randomness of the beam-

FIG. 5. �Color online� Noise in
the presence of backscattering in
the lead with SO interaction, for
backscattering probabilities given
by A=0, 0.1, and 0.4. The trans-
mission probabilities are R=1−T
=0.5 �a�, �b�; R=0.9 �c�, �d�; and
R=0.1 �e�, �f�. The left �right� col-
umn shows the case of the singlet
S �unentangled triplet Tu,z� with
�1=�2.
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splitter is reduced, and the noise is suppressed. Similarly, the
perfect antibunching seen at 	SO=� �and at 	SO=0 for the
triplets� no longer happens because of the residual partition
noise related to the backscattering and the noise is given by
S33

S �	SO=��=S33
Tu↑,z�	SO=0�=S33

Tez��1=�2�= �e2 /h��AR�1−AR�
�see Appendix C, where we present a heuristic derivation of
these results via simple calculations of expectation values of
number operators�.

In the case of an asymmetric beam-splitter with a large
value of R�3/ �4−A� �e.g., R=0.9�, the noise for the singlets
is increased by the backscattering for all 	SO. For 	SO=0, one
can understand this by noting that the backscattering reduces
the value of R� which therefore gets closer to the symmetric
value of 0.5 related to the maximal noise. On the other, in the
case of small R �e.g., R=0.1�, the reduction of R� moves
even further away from the maximal 0.5 value, and the noise
is reduced for small 	SO. Around 	SO=� it increases from
zero, because of the additional partition noise. For the triplet,
the maximal value is reached at 	=�, where electrons reach
the beam splitter with opposite spins, and hence behave clas-
sically. The value S33=0.5e2 /h� at 	SO=� for A=0 is modi-
fied in the presence of backscattering; it is then increased
when R�1/ �2−A�.

For the cross correlations of the noise between leads 3 and
4, we find

S34
S �	� = −

e2

h�
	TR + T�R� + 2TR� cos�	���1,�2


 , �107�

S34
Tez = −

e2

h�
	TR + T�R� − 2TR���1,�2


 , �108�

S34
Tu↑,z�	� = −

e2

h�
	TR + T�R� − 2TR� cos2�	/2���1,�2


 , �109�

with T�=T�1−A�. These expressions are very similar to the
ones for the autocorrelations �103�–�105�. The main differ-
ence is the negative sign of these correlations, which comes
from the fact that S33+S34=0 when A=0. The other differ-
ence is that the term R��1−R�� is replaced by R�T�, which is
easily understandable since the cross-correlation involves
�n3��n4�=R�T� for a particle injected in lead 1, while the
autocorrelation involves �n3��1− �n3��=R��1−R��, see Ap-
pendix C.

D. Spin-polarized case

We now turn to the case of injection from a spin-polarized
Fermi liquid lead with a continuous energy spectrum. We
start from the standard expression for the noise,59 which cor-
responds to the continuous version of Eqs. �44�–�46�

S�� =
e2

h
Re � d� �

��uv
A��

uv��,�,��A��
vu��,�,��

�f�u���	1 − f�v���
 , �110�

where f�u���= �a�u
† a�u� and u= �� ,n�. Here, again, �= ↑ ,↓

denotes the spin components and n=a ,b the band index. At

zero temperature, for the scattering matrix of the beamsplit-
ter with a two-band spin-orbit active region in one of its
incoming arms �lead 1�, Eqs. �48� and �49�, we obtain for the
shot noise in the outgoing leads �say, lead 3�,

S33 =
e2

h
� d�T�1 − T� �

���nm

�U�n,��m
cc �2�f1�n�
�	1 − f2��m�
�


+ f2�n�
�	1 − f1��m�
�

 , �111�

where U�n,��m
cc denote the matrix elements of USO

cc given in
Eq. �42�.

1. Injection into one subband

We consider a �nonequilibrium� spin-polarized injection
into leads 1 and 2 in subband a only, which we model with

�1↑a = �2↑a = 
F + eV , �112�

�1↓a = �2↓a = 
F +
1 − p

1 + p
eV , �113�

�1�b = �2�b = 
F �� = ↑,↓� , �114�

�3�n = �4�n = 
F �� = ↑,↓;n = a,b� . �115�

The degree of spin polarization is controlled by the param-
eter 0� p�1. For full polarization p=1 there is no voltage
drop for spin-down electrons in Eq. �113�, which therefore
do not contribute to transport. Note that here we only inject
electrons in channel a, see Eqs. �114� and �115�. We then
obtain for the current in the outgoing leads

I3 = I4 =
e2

h
V

2

1 + p
, �116�

which gets halved for full polarization, p=1, as compared to
the unpolarized case p=0. For the autocorrelation noise we
find

S33 =
2e2

h
T�1 − T�� 2p

1 + p
�U↑a;↓a

cc �2 + �U↑a;↓b
cc �2 + �U↑a;↑b

cc �2

+
1 − p

1 + p
��U↓a;↑b

cc �2 + �U↓a;↓b
cc �2��eV . �117�

Note that S33=S44=−S34. We define the reduced Fano factor
fp�F /T�1−T��S33/2eI3T�1−T�, and using Eq. �42� and
���2=1 we find

fp =
p

4
�cos2 	d

2
+ 1 − 2 cos

	d

2
cos 	SO� +

1

2
sin2 	d

2
.

�118�

This agrees with Ref. 69 for �=0 and p=1. Notice, however,
that if p�1 there is an additional correction, i.e., the last
term in Eq. �118�, which is independent of p and thus there is
a small noise power even for the unpolarized case p=0. This
is related to the presence of the additional empty channel b,
which allows for fluctations in the outgoing leads in the case
of finite SO-induced interband coupling, 	d�0. In the
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strictly 1D case �i.e., single channel�, this effect disappears
as 	d=0 and Eq. �118� reduces to the expression

fp =
p

2
�1 − cos 	SO� = p sin2 	SO

2
. �119�

This effect also vanishes in the case where both bands are
occupied, studied in the next section.

2. Injection into both leads

We now consider the more realistic case of injection into
both subbands a and b and model it with

�1↑ = �2↑ = 
F + eV , �120�

�1↓ = �2↓ = 
F +
1 − p

1 + p
eV , �121�

�3� = �4� = 
F �� = ↑,↓� , �122�

where �i,�,a=�i,�,b=�i,�. We obtain the current

I3 = I4 =
2e2

h
V

2

1 + p
, �123�

which is twice the current in the case of injection into a
single channel given by Eq. �116�. The Fano factor reads

F = T�1 − T�
p

2 �
n,m=a,b

�U↑n,↓m
cc �2. �124�

Using Eq. �42�, we obtain the reduced Fano factor fp
�F /T�1−T�,

fp =
p

2
�1 − cos

	d

2
cos 	SO� . �125�

This vanishes in the case of unpolarized injection p=0,
showing that the interband coupling in lead 1 in itself does
not give rise to additional noise for two filled channels. For
an uncoupled channel �	d=0�, fp yields the usual form valid
for single channels, i.e., Eq. �119�. The above results were
derived for a quantization axis along the z direction. For
other directions, one can derive similar but distinct formulas.
Finally, we note that measuring such Fano factors enables
one to quantify the degree of spin polarization p of the res-
ervoirs along different quantization axis.

E. Coherent injection into multiple discrete states

Here we generalize our previous results by studying the
injection of electrons into leads with a discrete spectrum. We
show that even in the case of injection into many different
discrete states of the lead, we can observe two-particle co-
herence, e.g., bunching and antibunching, and thus detect
entangled states. We will identify six asymptotic regimes
separated by the relative magnitude of the level spacing � in
the leads, the energy mismatch � of the injected electrons,
and the energy broadening � of the injected electrons. It
turns out that in four of the six regimes, we obtain �asymp-
totically� full two-particle interference. Only in two regimes,

namely when the energy mismatch � exceeds both � and �,
we obtain no two-particle interference.

Electron injection into leads 1 and 2 is assumed to be
coherent but with a finite width � in energy, such that several
energy levels of the lead can be filled. This represents a
generalization of both the injection into single discrete levels
as discussed in this paper and in earlier works6,28 and of
recent investigations of the problem in the continuum limit61

which will be a special case of the following discussion.
We assume here injection into leads with equidistant lev-

els 
n=n�+q�, where n=0, ±1, ±2, . . . and 0�q�1 is a
fixed fractional offset �see Fig. 6�. The assumption of equi-
distance simplifies our calculations because it allows us to
perform the discrete sums explicitly �Appendix E�. Also, we
choose our discrete index n to run from − to + , this is
done for convenience and merely means that the spectrum is
well described within an energy band a few times � wide.
We do not expect our results and conclusions to be signifi-
cantly altered in cases of nonequidistant energy levels in the
leads.

Injection of an electron with spin �= ↑ ,↓ into lead � and
centered about the energy 
 is described by the creation op-
erator

c��
† �
� = �

n=− 

 

g�
,
n�a��
† �
n� , �126�

where a��
† �
n� creates an electron with the sharp energy 
n,

see Eq. �44� and below. The weight function g will be as-
sumed to have the Breit-Wigner form

g�
,
�� =
g0�
�


 − 
� + i�
, �127�

with the normalization condition �n=− 
 �g�
 ,
���2=1. Unlike

for the case of weak tunneling from, e.g., a quantum dot,8 we
assume here that the single-electron states are filled with
probability 1, but with uncertain energy. This can be
achieved with time-dependent tunnel barriers. Note that for
widely spaced levels ��� and away from symmetric injec-
tion into two adjacent levels �q=1/2�, injection thus takes
place into the nearest level with probability �1. The two-

FIG. 6. �Color online� Injection of electrons into equidistant
discrete lead states n=0, ±1, ±2, . . ., with spacing � at center ener-
gies 
1,2 separated by �=
2−
1 with distributions g�
1,2 ,
� of
width �. The distributions g�
1,2 ,
� are not drawn to scale, as their
normalizations depend on q.
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particle injected states we are interested in are

� �S�
�Tei

� � =
1
�2

	c1↑
† �
1�c2↓

† �
2� � c1↓
† �
1�c2↑

† �
2�
 , �128�

the singlet and entangled triplet states with single-particle
energies centered around 
1 and 
2 and smeared over a width
�. Using Eq. �126�, these states can be expressed in terms of
the states with sharp energies �50� as �S ,Tei

�
=�
1�,
2�

g�
1 ,
1��g�
2 ,
2���S ,Tei
�
1�,
2�

. Using the normalization
condition, we find that the average current in the outgoing
leads of the beamsplitter is unaffected by the spread in en-
ergy, i.e., I3= I4=−e /h�. For the Fano factor F=S33/2eI3, we
find

FS,Te
= T�1 − T�	1 ± �h�
1,
2��2
 . �129�

The discrete overlap function h is given by

h�
1,
2� = �



g�
2,
�*g�
1,
� . �130�

The discrete summations required to evaluate the function h
are carried out in Appendix E and lead to the main result of
this section ���
2−
1�,

�h�2 =
�2

��/2�2 + �2

cosh2�2��/�� − cos2���/��
sinh2�2��/��

. �131�

Note that �h�2 appears in Eq. �129� for the Fano factor and
generalizes the Kronecker delta for the case of injection into
a single level. The function 0� �h�� ,� ,���2�1 determines
the amount of two-particle interference that can be observed
�see Fig. 7�. Note that as a consequence of the normalization
of g�
 ,
n�, the overlap function �h�2 is independent of the
energy offset q �see Appendix E�. For �h�2=1, full bunching
and antibunching of singlets and entangled triplets can be
expected which is ideal for the purpose of discriminating
these entangled states from unentangled two-particle states.
If �h�2→0, then no interference, i.e., no bunching or anti-
bunching will be observed because the two wavepackets cen-
tered around 
1 and 
2 have no overlap in energy space.

Since �h�� ,� ,���2 depends on three parameters with the
dimension of an energy, there are 3!=6 different asymptotic
regimes. We will now discuss all six cases, grouped into
three sections with �, �, and � as the smallest energy, re-
spectively. We also note that since �h�2 is a dimensionless
number, it is in fact only a function of two dimensionless
energy ratios, e.g., � /� and � /�, �see Fig. 7� as can easily be
seen from Eq. �131�.

1. Matching energies �1=�2 „�™� ,�…

If �=
1−
2=0, then �h�2=1 for arbitrary values of the
other three parameters �, �, and q. In other words, if the two
electrons are injected with energy distributions whose cen-
ters coincide, then the interference is always maximal. This
result persists for finite � as long as ��� ,�; in this case, the
correction is O��2�. For �����, we find �h�2�1
−�2�2 /3�2. In the case �����, the correction is �h�2�1
−�2 /4�2.

2. Sharp energies �™� ,�

In the limit of sharp energies, ��� ,�, we obtain

�h�2 =
�2

�2�2 sin2 �
�

�
+ O��2� �132�

from Eq. �131�. The limit ����� describes the situation
where the two electrons are injected into two different dis-
crete states and thus �h�2→0. In the other limit, �����,
the two electrons are injected into the same discrete level and
�h�2=1−�2�2 /3�2+O��4 /�4 ,�2�. The limit ��� ,� dis-
cussed here describes injection into single discrete levels dis-
cussed throughout this paper and in earlier works,6,28,67

where 
1,2 are multiples of � and �h�2→�
1,
2
is given by a

Kronecker delta.

3. Continuum limit �™� ,�

In the continuum limit, i.e., the asymptotic case where the
single-electron level spacing in the leads becomes small
compared to all other relevant energy scales, we find a
Lorentzian61

�h�2 �
�2

��/2�2 + �2 , �133�

with the usual special limits �h�2→0 for ����� and �h�2
→1 for �����.

4. Discussion in terms of largest energy scale

Above, we have discussed all six asymptotic cases,
grouped according to the smallest energy scale. Alterna-

FIG. 7. �Color online� The function �h�� ,� ,���2 as expressed in
Eq. �131�, plotted versus the dimensionless quantities � /� and � /�,
where �=
2−
1 denotes the mean energy difference between the
two injected electrons, � the width of their energy distributions, and
� the level spacing in the leads. The case of matching energies 
1

�
2 or ��� ,� �Sec. III E 1� corresponds to the edge indicated as
“small �”; here we find �h�2=1, irrespective of the ratio � /�. The
case of a broad energy distribution �fast injection� ��� ,� �Sec.
III E 4� corresponds to the edge indicated as “large �”; along this
edge �h�2=1, regardless of � /�. The red arrow follows a line of
constant � and � with variable �. For large �, we find again �h�2
=1 for all � /�, whereas for small � �continuum limit, Sec. III E 3�,
the limit �h�2=0 or �h�2=1 is reached, depending on whether � /�
�1 or � /��1.
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tively, we can discuss the asymptotic regimes characterized
by the largest energy scale. In the detuned case ��� ,�, we
never see two-particle interference since �h�2
��4�2 /�2�f�� ;� ,��→0 where f�� ;� ,�� is a function
which is bounded for fixed � and �. In the case of a wide
distribution, such as, e.g., effected by a fast injection into the
lead with injection time � /�, we are in the regime ��� ,�,
and we always find that �h�2 exponentially approaches 1. In
the single-level case ��� ,�, there is only one level to fill
and we obtain �h�2→1 irrespective of the relative magnitude
of � and �.

IV. SUMMARY

We have carried out a thorough study of current and noise
for spin-polarized and spin-entangled electrons in a beam-
splitter geometry, including a local spin-orbit interaction
�Rashba and Dresselhaus� in one of the incoming arms. We
have considered incoming leads with one or two channels, as
well as backscattering effects. The channels can be coupled
via the SO interaction for incoming energies near the band
crossing. We have found that the spin-orbit interaction is a
useful mechanism to coherently rotate spin states. Such ro-
tation can be used to modulate noise signals, thus providing
unique signatures of spin polarization and spin entanglement.

For spin-polarized electrons, noise measurements can
give a direct measure of the degree of polarization along
different directions. For electron pairs, the coupling between
the channels can play an important role. For pairs with in-
coming energies near the band crossing injected into one of
the channels, we find an additional modulation due to the
coherent transfer of electrons between the two channels. In
this case, noise measurement allows us to distinguish all the
different triplets states defined along the y direction, in addi-
tion to the singlet. Furthermore, for equal strengths the com-
bined effect of the Rashba and Dresselhaus interactions can
partially cancel out. In this case, the spin and orbital degrees
of freedom are separable, the interband coupling essentially
disappears, and the propagation of spin states is robust
against scattering off nonmagnetic impurities.

We have also considered the influence of backscattering
in the beam-splitter with a single channel. The main effect is
an additional contribution related to the partition noise due to
the tunnel barrier describing the backscattering. This reduces
the visibility of the oscillations in the shot noise as the SO
rotation angle 	SO is varied. It also reduces the maximal
noise value found for perfect antibunching of singlets.

We have generalized earlier results for the shot noise of
entangled electrons by allowing the injection of wave pack-
ets, i.e., coherent superpositions of discrete momentum
eigenstates �plane waves�. We have found a general analyti-
cal formula for the two-particle interference visibility �h�2 in
terms of all three relevant energy scales �, �, and �. Our new
result contains and generalizes both the discrete single-level
case and the continuum case.

Finally, we have developed a simple heuristic picture for
the noise based on number operators in the different leads
and the relevant transmission and reflection probability am-
plitudes in the beamsplitter. Within this picture we can more

intuitively rederive some of the formulas for the noise—
previously derived within the rigorous scattering formalism
�Sec. III�—in the presence of spin-orbit interaction and back-
scattering in the incoming leads.
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APPENDIX A: BOUNDARY CONDITIONS AT x=L

Here we show in some detail that both the wave function
and the velocity operator acting on it are continuous at the
exit �x=L� of the SO region in lead 1.

1. Continuity of �„x ,y…

The continuity of the wave function at x=L is trivially
satisfied by the two-channel state

��x,y� = � cos�	d/2�e−i	SO/2 + ei	SO/2

�	cos�	d/2�e−i	SO/2 − ei	SO/2

�1

2
ei�kc+kSO�x�a�y�

+ �− i sin�	d/2�e−i	SO/2

i� sin�	d/2�e−i	SO/2 �1

2
ei�kc−kSO�x�b�y� , �A1�

describing the electron state within the SO region 0�x�L
and the state

!�x,y� = �A

B
�1

2
ei�kc+kSO�x�a�y� + �C

D
�1

2
ei�kc−kSO�x�b�y� ,

�A2�

valid for x�L in lead 1, if we choose A, B, C, and D, equal
to the corresponding components of ��L ,y�.

2. Continuity of the current flow

The continuity of the �nondiagonal� velocity operator55

v̂SO =�
�

im
�x

� + i�

�
0 0

� − i�

�

�

im
�x 0 0

0 0
�

im
�x

� + i�

�

0 0
� − i�

�

�

im
�x

� �A3�

acting on the wave fuctions at x=L

�v̂SO��x,y��x→L− = �v̂SO!�x,y��x→L+, �A4�

assures current conservation. The left-hand side of Eq. �A4�
yields
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�v̂SO��x,y��x→L− =
�

4m��
�kc − �/2 + kSO�e−i�L/2

��kc − �/2 + kSO�e−i�L/2

�kc − �/2 − kSO�e−i�L/2

− ��kc − �/2 − kSO�e−i�L/2
� +�

�kc + �/2 + kSO�ei�L/2

��kc + �/2 + kSO�ei�L/2

− �kc + �/2 − kSO�ei�L/2

��kc + �/2 − kSO�ei�L/2
��eikcL +

�

2m�
�k2 − kSO�eik2L

− ��k2 − kSO�eik2L

0

0
�

�A5�

or

�v̂SO��x,y��x→L− =
�

2m� �kc + kSO���cos�	d/2� + i
�

�kc + kSO�
sin�	d/2��e−i	SO/2 + ei	SO/2�

��kc + kSO���cos�	d/2� + i
�

�kc + kSO�
sin�	d/2��e−i	SO/2 − ei	SO/2� �ei�kc+kSO�L�a�y�

+
�

2m� − i�kc − kSO��sin�	d/2� + i
�

�kc − kSO�
cos�	d/2��ei	SO/2

− i��kc − kSO��sin�	d/2� + i
�

��kc − kSO�
cos�	d/2��ei	SO/2�ei�kc−kSO�L�b�y� , �A6�

where we used k2−kSO=kc+kSO. On the other hand, it is
straightforward to show that

�v̂SO!�x,y��x→L+

=
�

2m
�kc + kSO�� 	cos�	d/2�e−i	SO/2 + ei	SO/2


�	cos�	d/2�e−i	SO/2 − ei	SO/2

�

�ei�kc+kSO�L�a�y� +
�

2m
�kc − kSO�

�� − i sin�	d/2�ei	SO/2

− i� sin�	d/2�ei	SO/2 �
�ei�kc−kSO�L�b�y� . �A7�

Again, assuming ��kc�kF we can drop the terms propor-
tional to � / �kc±kSO� in Eq. �A6� thus arriving at the desired
equality �v̂SO��x ,y��x→L− = �v̂SO!�x ,y��x→L+ which assures
current conservation.

APPENDIX B: TRANSPORT THROUGH QUANTUM WIRE
AT ���=�

As an example of a backscattering mechanism in
quasi-1D channels, we calculate here the transmission and
reflection coefficients for a quantum wire of length a in the
presence of spin-orbit coupling of both the Rashba and
Dresselhaus types with equal strengths ���=�. The wire is
attached to leads which are modeled as semi-infinite quan-
tum wires without spin-orbit interaction. Again we choose
the axis of the wire along the x direction. The central region
0�x�a is characterized by an effective mass m2 and a con-
fining potential V2�y�, whereas the leads �x�0 and x�a�
have effective mass m1 and confining potential V1�y�, in gen-
eral m1�m2, V1�V2. For definiteness let us consider the
case �=−�. Here the spin is independent of the momentum

along the wire thus being a good quantum number. The prob-
lem of matching the wave functions at the interfaces sepa-
rates then into these two spin directions. Without loss of
generality, we will concentrate on the � state as defined in
Eq. �2�. Moreover, to analyze ballistic transport through this
arrangement we will use the approximation that the reflected
and transmitted electrons have the same subband index as the
incoming ones. Thus, the incoming and reflected parts of the
wave function at x�0 read

��x,y� = �"eikx + Ae−ikx��n
1�y� , �B1�

and for the transmitted part at x�a we have

��x,y� = Ceikx�n
1�y� . �B2�

Here k is the wave vector of the incoming particle along the
wire axis with energy 
=
n

1+ ��k�2 /2m1, where 
n
1 is the sub-

band energy of the transverse wave function 
n
1�y� according

to the potential V1�y�. In the above equations, " is the am-
plitude of the incoming wave, and A and C are the ampli-
tudes of the reflected and transmitted wave, respectively.
Note that the above form of the transmitted and reflected part
of the wave function are a restricted ansatz containing the
aforementioned approximation that the subband index is the
same as in the incoming part. For the wave function in the
region with spin-orbit coupling �0�x�a� we use the gen-
eral ansatz

��x,y� = �
j

	�B+
j eiq+

j x + B−
j eiq−

j x�� j
2�y�ei�2�m2y
 �B3�

with

q±
j = − �2�m2 ±�2m2

�2 �
 +
2m2�2

�2 − 
 j
2� , �B4�

and 
 j
2 is the subband energy of the transverse wave function


 j
2 in the absence of spin-orbit coupling. The above ansatz
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contains all subbnads, and the corresponding wave vectors
q±

j will acquire imaginary parts for large enough subband
energies. However, since this region of the setup is finite
�0�x�a�, the wave functions remain normalizable.

The continuity conditions on the wave functions at the
interface x=0 lead to

�" + A��n
1�y� = �

j

	�B+
j + B−

j �� j
2�y�ei�2�m2y
 , �B5�

m2

m1
k�" − A��n

1�y� = �
j

	�� jB+
j − � jB−

j �� j
2�y�ei�2�m2y


�B6�

with

� j =�2m2

�2 �
 +
2m2�2

�2 − 
 j
2� , �B7�

and at x=a one has

Ceika�n
1�y� = �

j

	�B+
j eiq+

j a + B−
j eiq−

j a�� j
2�y�ei�2�m2y
 ,

�B8�

m2

m1
kCeika�n

1�y� = �
j

	�� jB+
j eiq+

j a − � jB−
j eiq−

j a�

� � j
2�y�ei�2�m2y
 . �B9�

Multiplying the above by 	� j
2�y�
*e−i�2�m2y and integrating

over the transverse direction y gives

�" + A�Sjn = B+
j + B−

j , �B10�

m2

m1
k�" − A�Sjn = � jB+

j − 	� jB−
j 
 , �B11�

CeikaSjn = B+
j eiq+

j a + B−
j eiq−

j a, �B12�

m2

m1
kCeikaSjn = � jB+

j eiq+
j a − � jB−

j eiq−
j a, �B13�

where we have defined the overlap integrals

Sjn =� dy	� j
2�y�
*e+i�2�m2y�n

1�y� . �B14�

Eliminating the quantities A and C yields

2
m2

m1
k"Sjn = �m2

m1
k + � j�B+

j + �m2

m1
k − � j�B−

j , �B15�

0 = �m2

m1
k − � j�B+

j eiq+
j a + �m2

m1
k + � j�B−

j eiq−
j a �B16�

or, solving for B±
j ,

�B+
j

B−
j � =

� �m2

m1
k + � j�eiq−

j a − �m2

m1
k − � j�

− �m2

m1
k − � j�eiq+

j a �m2

m1
k + � j� �

�m2

m1
k + � j�2

eiq−
j a − �m2

m1
k − � j�2

eiq+
j a

� �2
m2

m1
k"Sjn

0
� . �B17�

Moreover, multipying Eqs. �B5�–�B9� by 	�n
1�y�
* and inte-

grating over y gives

" + A = �
j

	�B+
j + B−

j �Sjn
* 
 , �B18�

m2

m1
k�" − A� = �

j

	�� jB+
j − � jB−

j �Sjn
* 
 , �B19�

Ceika = �
j

	�B+
j eiq+

j a + B−
j eiq−

j a�Sjn
* 
 �B20�

m2

m1
kCeika = �

j

	�� jB+
j eiq+

j a − � jB−
j eiq−

j a�Sjn
* 
 . �B21�

Inserting the above expressions for B±
j into Eq. �B18� yields

the following result for the reflection amplitudes

A

"
= − 1

+ �
j

��m2

m1
k + � j�e−i�ja − �m2

m1
k − � j�ei�ja�2

m2

m1
k�Sjn�2

�m2

m1
k + � j�2

e−i�ja − �m2

m1
k − � j�2

ei�ja

,

�B22�

and from Eq. �B20� one finds for the transmission amplitude

C

"
= �

j

e−ika−i�2�m2a4� j
m2

m1
k�Sjn�2

�m2

m1
k + � j�2

e−i�ja − �m2

m1
k − � j�2

ei�ja

. �B23�

Equations �B22� and �B23� describe the electron reflection
and transmission amplitudes, respectively, arising from the
potential discontinuities at the entrance and exit of the SO
region �0�x�a�. It is worthwhile to note that using Eqs.
�B19� and �B21� instead of Eqs. �B18� and �B20� leads to an
identical expression for the transmission amplitude and to an
equivalent result for the reflection amplitude
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A

"
= 1 − �

j

��m2

m1
k + � j�e−i�ja + �m2

m1
k − � j�ei�ja�2� j�Sjn�2

�m2

m1
k + � j�2

e−i�ja − �m2

m1
k − � j�2

ei�ja

.

�B24�

This is indeed the same as Eq. �B22� as one can see using
� j�Sjn�2=1. Thus, Eqs. �B10�–�B13� 	from which Eq. �B17�
was obtained
 are consistent with Eqs. �B18�–�B21�. This is
a nontrivial finding since our original ansatz for the wave
function was a restricted one containing an approximation,
and it is not a priori clear that such an ansatz would lead to
a consistent system of equations.

APPENDIX C: HEURISTIC PICTURE OF THE NOISE IN A
BEAM SPLITTER

One can obtain a simple physical picture of the expres-
sions for the current noise by considering the fluctuations of
the number operator in the outgoing leads when one injects a
pair of particles in leads 1 and 2 �i.e., �n1�= �n2�=1�. For
instance,

S33� e2

h�
�−1

� ��n3
2� = �n3

2� − �n3�2,

S34� e2

h�
�−1

� ��n3�n4� = �n3n4� − �n3��n4� .

By considering classical, Fermi or Bose particles we can
derive formulas which are in direct correspondence with the
results for the current fluctations for electron pairs with spin
previously obtained in Sec. III using the rigorous scattering
formalism. For clarity we discuss separately the different
configurations, illustrated in Fig. 4. We first consider a sym-
metric beam splitter with backscattering and no local SO
effect in lead 1; see Fig. 4�b�. We then consider the case of
backscattering in the SO lead 1 only, shown in Fig. 4�a�.
Finally, we return to the SO rotation in a beam splitter with
no backscattering.

1. Backscattering at the beam splitter

In realistic experiments3 the beam-splitter is not perfect,
and can actually contain a significant amount of backscatter-
ing in all input leads �i.e., s11,s22�0�, as well as “cross-
backscattering” between the input leads �s12�0�. The most
symmetric scattering matrix corresponding to this situation is

s =�
a c r t

c a t r

r t a c

t r c a
� ,

where all backscattering amplitudes are the same s11=s22
=s33=s44=a and so are the cross-backscattering amplitudes
s12=s34=c. Defining A= �a�2, C= �c�2, R= �r�2, and T= �t�2, the
unitarity of s imposes A+C+R+T=1 and c=−ar / t, so that a

and c are not independent. To have independent a and c, one
must drop the requirement of symmetry between input and
ouput, as is considered in Sec. III C and Appendix C 2 for
the case of backscattering in the SO lead only. We now cal-
culate the expectation values of the number operators in lead
3 and 4, by simply considering the probabilities for the dif-
ferent scattering configurations. Let P�3�, P�3,3�, and
P�3,4� denote the probabilities of finding one and two elec-
trons in lead 3, and one electron in each lead 3 and 4, re-
spectively. We need to determine �n3�= P�3�+2P�3,3�, �n3

2�
= P�3�+4P�3,3�= �n3�+2P�3,3�, and �n3n4�= P�3,4�.

For classical particles, we have �n3�C= �s13�2��s21�2+ �s22�2

+ �s24�2�+ �s23�2��s11�2+ �s12�2+ �s14�2�+2�s13�2�s23�2=R+T, �n3
2�C

=R+T+2RT, and �n3n4�C= �s13�2�s24�2+ �s14�2�s23�2=R2+T2.
We find the autocorrelations and cross correlations

��n3
2�C = T�1 − T� + R�1 − R� = �A + C��R + T� + 2RT ,

�C1�

��n3�n4�C = − 2RT . �C2�

As we shall see in Appendix C 2 below, these results corre-
spond to the current noise S33 and S34 for electrons behaving
classically �i.e., with different energies and/or with opposite
spins�. The result �C1� consists of the sum of two terms
corresponding to the partition noise for electrons coming
from lead 2 and 1, respectively. One can simply add these
contributions because the classical particles are independent.
In the second equality we can recognize a partition noise
term �A+C��R+T� in addition to the usual “beam-splitter
noise” �2RT.

The situation is different for quantum particles obeying
Fermi or Bose statistics, in which case one must first add or
substract the amplitudes before building the probabilities for
indistiguishable events. One can satisfy unitarity by choos-
ing, for convenience, Re�r*t�=Re�a*c�=0, which yields
�r2± t2�=R�T and �a2±c2�=A�C. For spinless fermions,
one has P�3,3�=0 and �n3�F= �s13s24−s14s23�2+ �s13s21

−s11s23�2+ �s13s22−s12s23�2=R+T, �n3
2�F= �n3�F=R+T, and

�n3n4�F= �s13s24−s14s23�2= �R+T�2. The correlations read

��n3
2�F = T�1 − T� + R�1 − R� − 2RT = �A + C��R + T� ,

��n3�n4�F = 0.

For the autocorrelation ��n3
2�F, we see that the zero value

found in the absence of backscattering becomes finite, which
is a consequence of the partition noise created by the addi-
tionnal backscattering channels. One can obtain this result by
substracting from the classical result the forbidden case with
two electrons in lead 3, ��n3

2�F= ��n3
2�C−2P�3,3�. The cross-

correlations, on the other hand, remains zero. These results
for fermionic particles correspond to electrons with equal
energies in a triplet state.

For spinless bosons, we must double P�3,3� thus obtain-
ing �n3�B=R+T, �n3

2�B=R+T+4RT, and �n3n4�B= �R−T�2.
The correlations are
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��n3
2�B = T�1 − T� + R�1 − R� + 2RT = �A + C��R + T� + 4RT ,

�C3�

��n3�n4�B = − 4RT , �C4�

and correspond to electrons in a singlet pair with equal en-
ergies. We recognize again the sum of a partition-type noise
and the beam-splitter noise 4RT.

We can establish a connection between the above results
and those of Ref. 67 in which the case with no cross-
backscattering s12=0 was studied. In that work, the back-
scattering was introduced in the same way as in Sec. III C,
namely, by taking the probabilities R and T from the original
beam-splitter and adding a tunnel barrier with reflection
probability RB. Since the cross-backscattering does not play a
direct role for the noise in the output leads, one can identify
A+C→RB, R→R�1−RB�, and T→T�1−RB�, which estab-
lishes the equivalence of Eqs. �C3� and �C4� and Eqs. �5�,�6�
of Ref. 67.

2. Backscattering in one lead

We consider here the case of backscattering in lead 1 only,
which was discussed in Sec. III C. The problem is no longer
symmetric and the transmission probabilities T and R are not
equivalent anymore. See Appendix B where we calculate ex-
plicitly the transmission and reflection coefficients for a
model quantum wire with spin-orbit interaction of both the
Dresselhaus and Rahsba types. We recall that R and T here
are the original quantities before adding the backscattering
channel, and therefore satisfy T=1−R. We calculate the fluc-
tuations of the number operator in lead 3 n3 by the same
procedure as in Appendix C 1.

For classical particles we find �n3�C=1−AR, �n3
2�C=1

−AR+2TR�, which yields

��n3
2�C = TR + R��1 − R�� . �C5�

This result corresponds to the current noise expressions
�103�–�105� with �1��2. Hence, in this configuration elec-
trons with distinct energies are not affected by the �anti�sym-
metrization related to their spin state, and behave, effec-
tively, similar to classical particles.

For fermions, one finds �n3�F= �n3
2�F=1−AR, which gives

��n3
2�F = TR + R��1 − R�� − 2TR�. �C6�

This result corresponds to the case of triplets �104� and �105�
with �1=�2 and 	SO=0.

For bosons we can proceed likewise to find �n3�B=1
−AR,�n3

2�B=1−AR+4TR�. The result

��n3
2�B = TR + R��1 − R�� + 2TR�, �C7�

corresponds to the case of singlets with �1=�2 and 	SO=0.
This can also be found by doubling the probability to have
electrons in the same lead 3, ��n3

2�B= ��n3
2�C+2P�3,3�.

We can also rewrite the results above as

��n3
2�C = AR�1 − AR� + 2TR�,

��n3
2�F = AR�1 − AR� = �n3��1 − �n3�� ,

��n3
2�B = AR�1 − AR� + 4TR�.

This shows how the backscattering induces a partition noise
��n3��1− �n3��, in addition to renormalizing the beam-
splitter noise �TR� via R�=R�1−A�.

3. Spin-orbit rotation

We can incorporate some of the effects of SO-induced
rotation within the heuristic scheme presented above. We ne-
glect backscattering for simplicity. Considering the result for
the singlet 	Eq. �60�
 with �1=�2, S33

S = �e2 /h��2TR�1
+cos 	SO�, we see that the SO angle 	SO “interpolates” from
the bosonic behavior �	SO=0� to the fermionic behavior
�	SO=��. For the angle 	SO=� /2, we actually recover the
same result as in the classical case ��1��2�—although one
must emphasize that any locally rotated state is still maxi-
mally entangled, and therefore is not classical. In order to
consider particles that effectively behave in an intermediate
way between bosons and fermions, we consider particles that
follow intermediate statistics, i.e., anyons that acquire a finite
phase ei	 upon antisymmetrization �with 	=0 for bosons and
	=� for fermions�. Indeed, one can easily recover the for-
mula

��n3
2�A = 2TR�1 + cos 	� , �C8�

corresponding to a Rashba-rotated singlet pair with �1=�2
	Eq. �60�
 by the following calculation for anyons:

�n3�A = P�3� + 2P�3,3�

= �s13s24 + ei	s14s23�2 + 2�s13s23
1 + ei	

�2
�2

= R + T = 1, �C9�

�n3
2�A = P�3� + 4P�3,3�

= �n3
2�A + 4�s13s23

1 + ei	

�2
�2

= 1 + 2TR�1 + cos 	� . �C10�

The factor �1+ei	� /�2 interpolates between the Pauli exclu-
sion principle and the bosonic bunching occuring for two
particles in the same lead 3.

APPENDIX D: EVALUATION OF THE NOISE
MATRIX ELEMENT

Here we sketch the derivation of general formulas for the
relevant matrix elements in the noise calculation for injected
electron pairs. From the noise definition 	Eq. �46�
 it is clear
that we need to evaluate objets of the form
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D = �0�a�,��
�
��a�,��

�
��a�,�
† �
�

� a�,���
��a�,��

† �
��a�,��

† �
���0� �D1�

and

Q = �0�a�,��
�
��a�,��

�
��a�,�
† �
�a�,���
��

� a��,��
† �
��a��,���
��a�,��

† �
��a�,��

† �
���0� . �D2�

Wick’s theorem tells us that we can express the above matrix
elements in terms of all possible pairings of the fermionic
operators. Here the possible nonzero pairings involve only
one creation and one destruction operator. For the first case
we have

D = + �0�a�,�
† �
�a�,���
���0��0�a�,��

�
��a�,��

† �
���0�

��0�a�,��
�
��a�,��

† �
���0� − �0�a�,�
† �
�a�,���
���0�

��0�a�,��
�
��a�,��

† �
���0��0�a�,��
�
��a�,��

† �
���0�

+ �0�a�,��
�
��a�,�

† �
��0��0�a�,���
��a�,��

† �
���0�

��0�a�,��
�
��a�,��

† �
���0� − �0�a�,��
�
��a�,�

† �
��0�

��0�a�,���
��a�,��

† �
���0��0�a�,��
�
��a�,��

† �
���0�

+ �0�a�,��
�
��a�,�

† �
��0��0�a�,��
�
��a�,��

† �
���0�

��0�a�,�z�
�
��a�,��

† �
���0� − �0�a�,��
�
��a�,�

† �
��0�

��0�a�,���
��a�,��

† �
���0��0�a�,��
�
��a�,��

† �
���0� .

�D3�

The first two terms are zero since they both have a destruc-
tion operator acting on the vacuum state. Hence, we have

D = ��������
�
������������
�����

�
�
�
�
�
�

− �����������
�����

�
�
�
�
�
�

�

+ ��������
�
������������
�����

�
�
�
�
�
�

− �����������
�����

�
�
�
�
�
�

� . �D4�

Similarly, we find

Q = + ������������������

��
�
�	�����������
�����

�
�
�
�
�
�

− �����������
�����

�
�
�
�
�
�




− ������������������
�
�
��
�
�

	�����������
�����
�
�

�
�
 − ���������������
�
�
�
�
�




+ ������������������
�
�
��
�
�

	�����������
�����
�
�

�
�
 − ���������������
�
�
�
�
�




− ������������������
�
��
�
	�����������
�����

�
�
�
�
�
�

− �����������
�����

�
�
�
�
�
�




− ���������������
�
�
�
�
�

	�������������
������
�
�

�
�
� − ������������������
�
�
��
�
�




+ ���������������
�
�
�
�
�

	�������������
������
�
�

�
�
� − ����������
�
����������
�
�
�




− �����������������
�
�
�
�	������������
�����

�
�
�
�
�
�

− ������������
�����

�
�
�
�
�
�




+ ���������������
�
�
�
�
�

	��������
�
�
�

�����������
�
� − ����������
�
����������
�
�
�




− ���������������
�
�
�
�
�

	��������
�
�
�

�����������
�
� − ����������
�
����������
�
�
�




+ �����������������
�
�
�
�	��������
�
�
�

���������
�
�
�

− ��������
�
�
�

���������
�
�
�


 . �D5�

With the help of Eqs. �D4� and �D5� we can systematically determine all the relevant matrix elements appearing in the noise
calculation for a particular type of injected electron pair �singlet, triplets, Bell states, etc.�.

APPENDIX E: DISCRETE SUMS FOR h„�1 ,�2…

We choose 
1 as our reference energy and define �=
2−
1. We further assume an equidistant discrete single-particle
spectrum of the leads, 
=
1+ �q+n��, where n is an integer, q a real number between 0 and 1, and � is the level spacing of
the leads, see Fig. 6. We obtain h�q�=g0�q−� /��g0�q�h0�q� with the discrete sums

h0�q� = �
n=− 

 1

�n� + q� − � + i���n� + q� − i��
=

− 2�

��� − 2i��

sin ��q + i
�

�
��cos ��q − 3i

�

�
� − cos ��q + i

�

�
− 2

�

�
��

�cosh 2�
�

�
− cos 2�q��cosh 2�

�

�
− cos 2��q −

�

�
�� , �E1�
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1

g0�q�2 = �
n=− 

 
1

�n� + q��2 + �2 =
�

��

sinh 2�
�

�

cosh 2�
�

�
− cos 2�q

.

�E2�

Taking the modulus squared of the complex function h, we
obtain �h�q��2=g0�q�2g0�q−� /��2�h0�q��2=AB�q�, with a
manifestly q-independent factor

A =
�2

��/2�2 + �2

1

2 sinh2 2��/�
, �E3�

and an apparently q-dependent factor

B�q� =
�cos ��q − 3i�/�� − cos ��q − 2�/� + i�/���2

cosh 2��/� − cos 2��q − �/��
.

�E4�

Inspection of Eq. �E4� shows that the dependence of B�q�
on the offset q drops out completely, and we are left
with B�B�q�=cosh�4�� /��−cos�2�� /��=cosh2�2�� /��
−cos2��� /��, where we have used cos2 x= �1+cos x� /2 and
cosh2 x= �1+cosh x� /2. Combining A and B, we finally ob-
tain Eq. �131�. We note that the cancellation of q from the
interference function �h�2 is a consequence of our normaliza-
tion condition, i.e., that electrons are injected with unit prob-
ability.

1 Semiconductor Spintronics and Quantum Computation, edited by
D. D. Awschalom, D. Loss, and N. Samarth �Springer, Berlin,
2002�.

2 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
�2004�.

3 R. C. Liu, B. Odom, Y. Yamamoto, and S. Tarucha, Nature
�London� 391, 263 �1998�.

4 J. C. Egues, P. Recher, D. S. Saraga, V. N. Golovach, G. Burkard,
E. V. Sukhorukov, and D. Loss, in Quantum Noise in Meso-
scopic Physics, edited by Y. V. Nazarov �Kluwer, Dordrecht, The
Netherlands, 2003�, p. 241–274.

5 D. P. DiVincenzo and D. Loss, J. Magn. Magn. Mater. 200, 202
�1999�.

6 G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61,
R16303 �2000�.

7 M. S. Choi, C. Bruder, and D. Loss, Phys. Rev. B 62, 13 569
�2000�.

8 P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63,
165314 �2001�.

9 G. B. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B 24, 287
�2001�.

10 G. Falci, D. Feinberg, and F. W. J. Hekking, Europhys. Lett. 54,
255 �2001�.

11 R. Mérlin, cond-mat/0105073.
12 A. T. Costa, Jr. and S. Bose, Phys. Rev. Lett. 87, 277901 �2001�.
13 W. D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett.

88, 037901 �2002�.
14 S. Bose and D. Home, Phys. Rev. Lett. 88, 050401 �2002�.
15 P. Recher and D. Loss, Phys. Rev. B 65, 165327 �2002�.
16 C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher, Phys.

Rev. Lett. 89, 037901 �2002�.
17 D. S. Saraga, B. L. Altshuler, D. Loss, and R. M. Westervelt,

Phys. Rev. Lett. 92, 246803 �2004�.
18 V. Bouchiat, N. Chtchelkatchev, D. Feinberg, G. B. Lesovik, T.

Martin, and J. Torrès, Nanotechnology 14, 77 �2003�.
19 P. Recher and D. Loss, Phys. Rev. Lett. 91, 267003 �2003�.
20 C. W. J. Beenakker, C. Emary, M. Kindermann, and J. L. van

Velsen, Phys. Rev. Lett. 91, 147901 �2003�.
21 P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, Phys. Rev.

Lett. 91, 157002 �2003�.
22 D. S. Saraga, B. L. Altshuler, D. Loss, and R. M. Westervelt,

Phys. Rev. Lett. 92, 246803 �2004�.
23 P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, Phys. Rev.

Lett. 92, 026805 �2004�.
24 O. Sauret, T. Martin, and D. Feinberg, Phys. Rev. B 72, 024544

�2005�.
25 E. Dupont and K. Le Hur, cond-mat/0507282 �unpublished�.
26 F. Taddei and R. Fazio, Phys. Rev. B 65, 075317 �2002�; L.

Faoro, F. Taddei, and R. Fazio, ibid. 69, 125326 �2004�.
27 E. I. Rashba, Fiz. Tverd. Tela �Leningrad� 2, 1224 �1960� 	Sov.

Phys. Solid State 2, 1109 �1960�
; Y. A. Bychkov and E. I.
Rashba, J. Phys. C 17, 6039 �1984�; Yu. A. Bychkov and E. I.
Rashba, JETP Lett. 39, 78 �1984�.

28 J. C. Egues, G. Burkard, and D. Loss, Phys. Rev. Lett. 89,
176401 �2002�.

29 S. Datta and B. Das, Appl. Phys. Lett. 56, 665 �1990�; see also J.
C. Egues, G. Burkard, and D. Loss, ibid. 82, 2658 �2003� for a
spin FET proposal with additional spin control due to spin-orbit
induced interband coupling. G. Meier, T. Matsuyama, and U.
Merkt, Phys. Rev. B 65, 125327 �2002� and C.-M. Hu, J. Nitta,
A. Jensen, J. B. Hansen, H. Takayanagi, T. Matsuyama, D. Heit-
mann, and U. Merkt, J. Appl. Phys. 91, 7251 �2002� describe
some experimental efforts towards the Datta-Das transistor. See
M. G. Pala, M. Governale, J. König, and U. Zülicke, Europhys.
Lett. 65, 850 �2004� for a spin-transistor proposal with holes.

30 A. V. Moroz and C. H. W. Barnes, Phys. Rev. B 60, 14 272
�1999�.

31 F. Mireles and G. Kirczenow, Phys. Rev. B 64, 024426 �2001�.
32 L. W. Molenkamp, G. Schmidt, and G. E. W. Bauer, Phys. Rev. B

64, 121202�R� �2001�.
33 M. H. Larsen, A. M. Lunde, and K. Flensberg, Phys. Rev. B 66,

033304 �2002�.
34 M. Governale and U. Zülicke, Phys. Rev. B 66, 073311 �2002�.
35 P. Středa and P. Šeba, Phys. Rev. Lett. 90, 256601 �2003�.
36 E. A. de Andrada e Silva and G. C. La Rocca, Phys. Rev. B 67,

165318 �2003�.
37 X. F. Wang, Phys. Rev. B 69, 035302 �2004�.
38 R. Winkler, Phys. Rev. B 69, 045317 �2004�.
39 S. Q. Shen, Appl. Phys. Lett. 84, 996 �2004�.
40 E. G. Mishchenko, A. Brataas, and Y. Tserkovnyak, Phys. Rev. B

69, 073305 �2004�.
41 G. Usaj and C. A. Balseiro, Phys. Rev. B 70, 041301�R� �2004�.

EGUES et al. PHYSICAL REVIEW B 72, 235326 �2005�

235326-26



42 C. L. Romano, S. E. Ulloa, and P. I. Tamborenea, Phys. Rev. B
71, 035336 �2005�.

43 J. Knobbe and Th. Schäpers, Phys. Rev. B 71, 035311 �2005�.
44 S. Debald and B. Kramer, Phys. Rev. B 71, 115322 �2005�.
45 Yu-Xian Li, Y. Guo, and Bo-Zang Li, Phys. Rev. B 71, 012406

�2005�.
46 G. Dresselhaus, Phys. Rev. 100, 580 �1955�.
47 The separation of both the Dresselhaus and Rashba contributions

has recently been investigated experimentally via photocurrent
measurements, see S. D. Ganichev, V. V. Bel’kov, L. E. Golub,
E. L. Ivchenko, Petra Schneider, S. Giglberger, J. Eroms, J. De
Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl,
Phys. Rev. Lett. 92, 256601 �2004�.

48 Gate control of the SO coupling in 2DEGs was realized by G.
Engels, J. Lange, Th. Schäpers, and H. Lüth, Phys. Rev. B 55,
R1958 �1997� and J. Nitta, T. Akazaki, H. Takayanagi, and T.
Enoki, Phys. Rev. Lett. 78, 1335 �1997�. The relevance of band
nonparabolicity effects on the SO coupling is discussed by
C.-M. Hu, J. Nitta, T. Akazaki, H. Takayanagai, J. Osaka, P.
Pfeffer, and W. Zawadzki, Phys. Rev. B 60, 7736 �1999�; see
also D. Grundler, Phys. Rev. Lett. 84, 6074 �2000� for electric
control with front and back gates. Y. Sato, T. Kita, S. Gozu, and
S. Yamada, J. Appl. Phys. 89, 8017 �2001� have reported large
values ��3�10−11 eV m� for the SO coupling constant in an
InAs-based interface. The Rashba coupling in multimode quan-
tum wires was investigated by Th. Schäpers, J. Knobbe, and V.
A. Guzenko, Phys. Rev. B 69, 235323 �2004�.

49 J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90,
146801 �2003�.

50 R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A.
Waag, and L. W. Molenkamp, Nature �London� 402, 787
�1999�; Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H.
Ohno, and D. D. Awschalom, ibid. 402, 790 �1999�.

51 See J. C. Egues, Phys. Rev. Lett. 80, 4578 �1998� and J. C.
Egues, C. Gould, G. Richter, and L. W. Molenkamp, Phys. Rev.
B 64, 195319 �2001� for ballistic spin filtering in semimagnetic
heterostructures.

52 For a study of spin-dephasing in multimode wires, see: W.
Häusler, Phys. Rev. B 70, 115313 �2004� and B. K. Nikolić and
S. Souma, ibid. 71, 195328 �2005�.

53 The band offset due to the gate-induced Rashba term arises from
the energy shift �R��2kR

2 /2m and is very small since �R�
F.
We can estimate the transmission amplitude from t=2�1
+�R /
F�1/4 / 	1+ �1+�R /
F�1/2
 �see Refs. 32 and 33�. Typically
�Ref. 48� �R /
F=0.1, which yields �t�2=0.99943.

54 N. W. Ashcroft and N. D. Mermin, Solid State Physics �Holt-

Saunders International, New York, 1976�, Chap. 9.
55 See Molenkamp, Schmidt, and Bauer �Ref. 32� and U. Zulicke

and C. Schrol, Phys. Rev. Lett. 88, 029701 �2001� for a discus-
sion of the relevance of the proper matching of the velocity
operator for transport across hybrid ferromagnetic/
semiconductor junctions. E. A. de Andrada e Silva, G. C. La
Rocca, and F. Bassani, Phys. Rev. B 55, 16 293 �1997�, discuss
boundary conditions for the confinement direction in SO
coupled systems.

56 G. Lommer, F. Malcher, and U. Rössler, Phys. Rev. Lett. 60, 728
�1988�.

57 B. Jusserand, D. Richards, H. Peric, and B. Etienne, Phys. Rev.
Lett. 69, 848 �1992�.

58 B. Jusserand, D. Richards, G. Allan, C. Priester, and B. Etienne,
Phys. Rev. B 51, R4707 �1995�.

59 M. Büttiker, Phys. Rev. B 46, 12 485 �1992�; Ya. M. Blanter and
M. Büttiker, Phys. Rep. 336, 1 �2000�. See also G. Feve, W. D.
Oliver, M. Aranzana, and Y. Yamamoto, Phys. Rev. B 66,
155328 �2002� for a formulation of the scattering formalism in
terms of the Rashba states for a beam-splitter configuration with
“global” spin orbit and single-moded incoming leads.

60 H. Zhao, X. Zhao, and Y.-Q. Li, cond-mat/0502390 �unpub-
lished�.

61 P. Samuelsson, E. V. Sukhorukov, and M. Büttiker, Phys. Rev. B
70, 115330 �2004�.

62 X. Hu and S. Das Sarma, Phys. Rev. B 69, 115312 �2004�.
63 It is crucial that subsequent pairs of entangled electrons are well

separated in time and space. This requires that the “delay time”
#d between two electrons within an entangled pair an electron
pair is negligible compared to the “transit time” #t for an elec-
tron to cross the beam-splitter structure. For typical parameters
we find4 #d�0.6 ps�#t�10–100 ps for the entanglers of Refs.
8 and 17.

64 For a recent proposal on how to perform nondestructive projec-
tive measurements on Bell states using quantum dots, relevant
for measurement-based quantum computation, see: H. A. Engel
and D. Loss, Science 309, 586 �2005� and J. Carlos Egues, ibid.
309, 565 �2005� �Perspectives�.

65 R. Loudon, Phys. Rev. A 58, 4904 �1998�.
66 A. I. Signal and U. Zülicke, cond-mat/0505049 �unpublished�.
67 G. Burkard and D. Loss, Phys. Rev. Lett. 91, 087903 �2003�.
68 S. Datta, Electronic Transport in Mesoscopic Systems �Cambridge

University Press, Cambridge, 1995�.
69 G. Burkard, J. C. Egues, and D. Loss, J. Supercond. 16, 237

�2003�.

SHOT NOISE AND SPIN-ORBIT COHERENT CONTROL… PHYSICAL REVIEW B 72, 235326 �2005�

235326-27


