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Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons
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We investigate the dynamics of a double quantum dot charge qubit which is coupled to piezoelectric acoustic
phonons, appropriate for GaAs heterostructures. At low temperatures, the phonon bath induces the non-
Markovian dynamical behavior of the oscillations between the two charge states of the double quantum dot.
Upon applying the numerically exact quasiadiabatic propagator path-integral scheme, the reduced density
matrix of the charge qubit is calculated, thereby avoiding the Born-Markov approximation. This allows a
systematic study of the dependence of the Q factor on the lattice temperature, on the size of the quantum dots,
as well as on the interdot coupling. We calculate the Q factor for a recently realized experimental setup and find
that it is two orders of magnitudes larger than the measured value, indicating that the decoherence due to

phonons is a subordinate mechanism.
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I. INTRODUCTION

Various candidates for realizing building blocks of quan-
tum information processors with nanoscale solid state struc-
tures have been proposed and partially realized in ground-
breaking experiments. An important class of proposals
consists of using the charge degree of freedom in semicon-
ducting double quantum dots'? (DQDs) to realize a quantum
mechanical two-state system or quantum bit (qubit).>-¢
Thereby, the logical states |[0) and |1) are given by the low-
energy charge states of the DQD with one excess electron
either on the left or the right dot. The transition between
these states occurs via tunneling between the two dots. A
significant advantage of the charge qubit is its direct control-
lability via external voltage sources. In recent experiments,
the coherent manipulation of the charge states of DQDs has
been achieved.”® The control over the bias and the gate volt-
ages permits to reliably tune the DQD in the Coulomb block-
ade regime to the required transition line (1,0)«(0,1). The
large charging energies suppress leakage to the energetically
higher lying many-electron states.

A central impediment for coherent quantum information
processes is decoherence and dissipation, see Ref. 10 for a
particular example. While charge qubits are rather easily ad-
dressable from the outside, they are, in turn, also rather frag-
ile for various decoherence mechanisms from the environ-
ment. In order to achieve a thorough understanding of the
role of the various decoherence mechanisms, one has to rely
on realistic and precise model calculations which allow us to
sort out the different contributions. Among them, decoher-
ence due to acoustic phonons is one possible candidate. This
mechanism has been studied previously using approaches re-
lying on the Born-Markov approximation.>®!!:1> The deco-
herence rates obtained in these studies were one or two or-
ders of magnitude smaller than those determined
experimentally for GaAs DQDs.”8 However, no exact treat-
ment was available to validate the Born-Markov approxima-
tion in the DQD context. This is particularly interesting in
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view of realistic DQD designs, since the geometrical form
factors tailor a rather peculiar spectral density J(w) of the
phonon environment. For piezoelectric phonons, it has a
high-frequency tail decaying only algebraically with!! J(w)
« ™!, while it is superohmic at low frequencies with J(w)
o w®, with a crossover at frequencies in the regime of the
tunneling amplitude of the DQD. As it has also been pointed
out in Ref. 11, the use of the Born-Markov approximation is
appropriate only at small tunneling amplitudes. However, it
is expected to become increasingly unreliable for DQDs with
larger interdot tunneling amplitudes. The motivation to find
exact reference solutions for this problem also stems from
the fact that the Born-Markov approximation has led to the
conclusion that other mechanisms of decoherence, as for in-
stance, background charge fluctuations and electromagnetic
noise from voltage fluctuations, would be the dominating
source of decoherence, while phonon decoherence should be
a negligible contribution. In view of further design optimiza-
tion for real devices, exact results are clearly desirable.

In this paper, we study phonon decoherence using the
same model as in Ref. 11 as a basis for the numerically exact
iterative quasiadiabatic propagator path integral (QUAPI)
scheme.!315 In particular, we avoid the Born-Markov ap-
proximation, which turns out to be problematic at larger tun-
neling amplitudes A of the DQD. The decaying oscillations
of DQD charge states allow us to extract the quality (or Q)
factor. We find that Q decreases with increasing tunneling
amplitudes A for small A. In fact, the solution in this regime
is accurately described by the weak-coupling result for a su-
perohmic environment.'® At large A, the Q factor increases
with increasing A and the non-Markovian corrections be-
come noticeable, changing even the order of magnitude of Q.
In between these two regimes, a crossover occurs which is
related to the geometry of the DQD, see below. In particular,
our numerically precise method allows to obtain results for
the DQD device recently realized in experiments.”® We find
that the calculated value lies approximately two orders of
magnitude above the experimentally measured value. Indeed,
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FIG. 1. Sketch of the geometry of the double quantum dot
charge qubit and the various angles of the phonon propagation.

this suggests that the phonon decoherence mechanism is sub-
ordinate and other mechanisms dominate decoherence in the
DQD charge states which have been realized until now. In
comparison to the results from the Born-Markov approxima-
tion, we find that the exact Q factor is in general larger,
indicating that the former overestimates phonon decoher-
ence.

II. MODEL FOR CHARGE QUBIT AND PHONON BATH

In order to solely investigate the role of the phonons in
the decoherence processes, we start with the simplifying as-
sumption that the DQD is isolated from the leads. The total
Hamiltonian is given by®!®

H:HS+HB+HSB' (1)

Here, Hy is the Hamiltonian of the DQD, which is modeled
in the basis of the two localized charge states, |0)=|L)
=(1,0), and, [1)=|R)=(0, 1), as a symmetric two-level sys-
tem in pseudo-spin notation (o; are the Pauli matrices) as

Hg=hAo,. 2)

In this simple model, we have assumed that the external gate
voltage is tuned such that the two charge states are energeti-
cally nearly degenerate and that the excess electron can tun-
nel between the two dots with the tunneling amplitude A. A
possible energy bias between the two states could easily be
included in the model, but is not considered in this work.

The Hamiltonian for the phonon bath is, as usual, given
by

Hy=12 wgblb,. 3)
q

with the phonon dispersion relation wy.
The interaction part of the Hamiltonian is determined by
the electron-phonon interaction and reads>%!!17

Hgp =12, (ahN, + afNR)(b] +b_,). (4)
q

Here, N; is the number of the excess electrons on the left
(right) [£=L(R)] dot and af=),e4ReF(q), where R,=0
and R; =de, are the position vectors of the two dots. As in
Ref. 11, we have assumed that the center of the left dot is
located at the origin of the coordinate system, while the cen-
ter of the right dot is placed on the y axis with distance d, see
Fig. 1 for a sketch. The two dots are assumed to have an
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equal radius of a and to be confined to the xy plane in the
underlying two-dimensional electron gas. The coupling con-
stants A, which depend on material parameters and on the
wave vector (, will be specified below. To take into account
a realistic dot geometry, we associate a form factor

Felq) = J &r ng(r)e_iq'r (5)

to each dot, where n,(r) is the charge density distribution of
the dot. In the following, the two dots are assumed to have
identical form factors. With this the coupling Hamiltonian
simplifies to'l!7

f .
Hp =5 0.2, gq(by+ by, (6)
q

with gq=NoF(q)(1—e79%). Notice that the phonons can
propagate in all three dimensions and that the electron-
phonon coupling is not isotropic.!! Having specified the cou-
pling, we can now introduce the spectral density of the pho-
non bath which reads

J(w) =2 [gg|* 80~ w,). (7)
q

As in Ref. 11, we specialize to linear acoustic phonons with
velocity s (s=5X 10> m/s for GaAs) and linear dispersion
wq=s|q|. Moreover, we only consider coupling to longitudi-
nal piezoelectric phonons and neglect the contribution of the
deformation potential, which is justifiable at temperatures
below 10 K for bulk GaAs material.'""!® This yields the cou-
pling constant [\ |*=g,,7s*/(V|q|), where g, is the dimen-
sionless piezoelectric constant (g,,~0.05 for GaAs), and V
being the volume of the unit cell. Assuming that the charge
density distribution on the dot is Gaussian in the xy plane
and localized in the z direction, one finds for the spectral
density of the bath!!

2 22 2 2
J(0) = gpne f dfsing =@ sin” s

0

X{I—JO(%{sina)}, (8)

with Jo(x) being the zeroth Bessel function.

The spectral density is shown in the inset of Fig. 2 for the
case of GaAs and a dot radius of a=60 nm. The low-
frequency behavior is  superohmic, i.e., J(w—0)
~ agow. @, with aso=gpnd*/(6a*), while the high-
frequency tail falls off algebraically like J(w— )1/ w.
The crossover between these two limiting regimes occurs on
a frequency scale w.=s/a= T;]. For GaAs and a typical dot
radius of a=60 nm, we obtain w.=83 GHz, corresponding to
an energy of 55 ueV. As we will see below, the typical tun-
neling amplitudes A are comparable to this energy scale.
This indicates that the Markov approximation could become
problematic in this transition region. The cutoff frequency,
w,, corresponds to the inverse of the time scale, 7., of the
bath autocorrelation function which reads'®
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FIG. 2. The bath autocorrelation function (response function)
L(t)=Lg(t)+iL(r) for the spectral density J(w) [inset] of the pho-
non bath for the case of GaAs with g;,=0.05, s=5X 103 m/s, a dot
radius of a=60 nm, and interdot distance d=180 nm. Temperature
is T=15 mK. The dashed lines in the inset mark the superohmic
limit J(w— 0)=asow,°@® at low frequencies and the high-
frequency limit J(w— %) <1/ w.

L(t) = Lg(t) + iL/(1)

1(” h
=—f de(w)[coth (;)'Bcoswt—isinwt .9

™J0

The autocorrelation function L(z) is shown in Fig. 2 for T
=15 mK for a=60 nm and d=180 nm.'"!° The algebraic de-
cay at high frequencies determines the short-time behavior of
L(z); notice the finite slope of Lg(z) at =0, in contrast to the
zero slope of the usual exponential and Drude-shaped cutoff
functions.!® The superohmic low-frequency behavior of J(w)
yields a fast decay of L(z) at long times. The often used
Born-Markov approximation corresponds to replacing the
strongly peaked real part Lg(7) by a & function with the cor-
responding weight, while the imaginary part L,(¢) is often
neglected. Moreover, we note that the dimensionless damp-
ing constant given by the prefactor agg of the low-frequency
superohmic limit assumes the value agn=0.075 for the pa-
rameters quoted above. Thus, our results at small A can be
compared to those from a weak-coupling approach in terms
of real-time path integrals for the spin-boson model with a
superohmic environment.'®

II1. THE QUASIADIABATIC PATH-INTEGRAL
PROPAGATOR

The dynamics of the qubit is characterized by the time
evolution of the reduced density matrix p(7), which is ob-
tained after tracing out the bath degrees of freedom, i.e.,

p(1) = trgU(1,0)W(0)U™\(1,0),

. t
U(t,0) = Texp -é f d'H . (10)
0

Here, U(t,0) denotes the propagator of the full system plus
bath and 7 denotes the time-ordering operator. W(0) is the
full density operator at initial time set at r=0. We assume
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standard factorizing initial conditions,'® ie., W(0)
o p(0)exp[—Hp/ (kzT)], where the bath is at thermal equilib-
rium at temperature 7 and the system is prepared according
to p(0). Throughout this work, we always start from the qu-
bit state p(0)=|L){L|.

The technique which we use to calculate p(r) is the well-
established iterative tensor multiplication algorithm derived
for the quasiadiabatic propagator path integral (QUAPI).!? It
is a numerically exact algorithm, as also, for instance, the
real-time quantum Monte Carlo method is.?” It has been suc-
cessfully tested and adopted in various problems of open
quantum systems, with and without external driving.'>-!> For
details of this algorithm, we refer to previous work!'3-!> and
here only address the ingredients which are important to our
calculations.

The algorithm relies on the symmetric Trotter splitting of
the short-time propagator U(fy,,%;) into system (Hg) and
bath (Hp) parts on a time slice of length Az. The bath dy-
namics can be solved exactly yielding a Feynman-Vernon-
type influence functional,'® while the system is propagated
exactly by solving the Schrodinger equation. The neglect of
the higher order terms of the full propagator causes an error
of the order of Af’. The Trotter splitting allows us to calcu-
late an approximate value of the true result for the observable
of interest, with an error depending on At. As shown in Ref.
21, this error vanishes proportional to A% as Ar—0. Thus,
by extrapolation of the results for Az— 0, the Trotter error
can be eliminated completely (the details of this procedure
are discussed elsewhere??).

The interaction of the system with the bath induces inter-
nal transitions in both and creates intercorrelations between
them (memory); the latter are described by the autocorrela-
tion function L(r) given in Eq. (9). For the phonon bath,
these correlations decay on a time scale given by the corre-
lation time 7. This motivates us to neglect such long-time
correlations beyond a memory time 7., and to break up the
influence kernels into pieces of total length, 7.,=KAt,
where K denotes the number of time steps over which the
memory is fully taken into account.

The two strategies mentioned above are countercurrent:
For the Trotter splitting, a small time step At is desirable,
thus decreasing 7., for a fixed K. On the other hand, a large
Tmem 1S Wanted in order to take a long memory range into
account. Nevertheless, converged results can be obtained in
the following way: (i) We choose 7., such that we include
all the relevant parts of the correlation function L(z). Quan-
titatively, this can be done by requiring Lg(7Tmem)/Lg(0)
<1072 in the asymptotic regime. (ii) We choose K such that
the resulting At=7,,.,/K is small enough to ensure that we
are in the regime which allows extrapolation for Az—0 (see
above). This procedure allows us to completely eliminate the
Trotter error. We note that the choice of K is limited to a
maximum of K=12 for reasonable numerical practicability
on a personal computer.

IV. THE Q FACTOR OF COHERENT CHARGE
OSCILLATIONS

We have adjusted the QUAPI algorithm to the phonon
spectral density (8) and determine the charge population
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FIG. 3. Time evolution of the charge population of the left dot
for the case A=27 peV and T=15 mK. Shown are the exact results
obtained from QUAPI (4 ) and the result of a fit of an exponentially
decaying cosine to p;;(#) (solid line). The dashed line indicates the
result of a weak-coupling (Born-Markov) approximation using Egs.
(11) and (12) for the same parameters. Deviations from the exact
results are striking. The remaining parameters are the same as in
Fig. 2.

p11(t) of the left dot as a function of time for the initial
condition p;;(0)=1. A typical example of the resulting
damped oscillatory behavior is shown in Fig. 3 where the
exact QUAPI results are depicted by the symbol () for the
case A=27 ueV, T=15mK, and K=12. To extract the
damping rate, 7y, and the oscillation frequency, (), we fit an
exponentially decaying cosine to the numerical data. The re-
sult of the fit is shown in Fig. 3 as solid line. The fit yields
Qquar=0.98w, for the oscillation frequency and yquapr
=5.27X 1073w, for the decay constant.

The ratio of y and () fixes the quality factor according to
the convention Q=/(7ry). Evaluating Q allows us to inves-
tigate the dependence of the coherence of the charge oscilla-
tions on various experimental parameters. Figure 4 shows the
Q factor as a function of the tunneling amplitude A obtained
with the numerically exact QUAPI algorithm (+). For illus-
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FIG. 4. The quality factor Q of the coherent charge oscillations
as a function of the tunneling amplitude A in natural units (lower
scale) and scaled with respect to @, (upper scale). The data shown
are obtained with QUAPI (+) using the phonon spectral density

[Eq. (8)] and with the weak-coupling approximation (wca) of Egs.
(11) and (12). The parameters are the same as in Fig. 2.
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tration, we have used parameters from the experimental
setup of Ref. 19. Since our model contains realistic assump-
tions about the geometry of the DQD and the materials char-
acteristics, the predictions of the QUAPI calculations in this
case can be considered quite accurate. Two regimes exist: (i)
At small A, Q decreases with increasing A (see below),
while (ii) at large A, Q increases again with increasing A.
The crossover in between occurs when the energy splitting
between the qubit states coincides with the maximum of the
spectral density J(w), i.e., when 2A=w,. Then, the damping
is most efficient and thus the rate y is maximal. Notice that
realistic values for the tunneling amplitudes A fall in the
range of the bath correlation frequency scale w, (see the
upper axis of Fig. 4, where A is scaled with respect to w,.).

Since the coupling to the phonons is rather weak (cf the
value of agn=0.075 for the superohmic coupling constant at
low frequencies), it is tempting to compare our exact results
to simple, approximate analytical results obtained from real-
time path-integral formalism in the regime of weak
coupling.'® However, we remark that one needs to keep in
mind that the algebraic decay of the spectral density at large
frequencies is by itself not taken into account while deriving
the approximate result. Thus, only the superohmic low-
frequency part can be expected to yield a reasonable agree-
ment. The weak-coupling results are given by'6

Q=2A[1-2Re u(2iA)]"? (11)
and
1 hA
=—J(2A)coth —, 12
= (2A)co T (12)
where
1" Jw) ( hw )
==| d th -1]. 13
u(z) Zfo @ e 2\ 2T (13)

With this, we can compute the time evolution of charge
population of the left dot in the weak-coupling approxima-
tion, which is shown in Fig. 3 (dashed line), for the same
parameters as above. The deviation from the exact result for
the chosen parameters due to non-Markovian effects is strik-
ing and is also illustrated by the numerical values 1=3.0w,
and y=5.6 X103 w,.

The resulting Q factor is shown in Fig. 4 (solid line,
“wca”). Since the results in Egs. (11) and (12) are obtained
by linearization with respect to the damping constant g,
they are equivalent to a Born-Markovian approximation. We
find noticeable deviations for intermediate and large values
of A. From Eq. (11) it follows that the oscillation frequency
Q) is renormalized by the term involving u(2{A) stemming
from one-phonon interblip correlations in the self-energy.'®
We find that at small A these corrections are negligible,
while they increasingly become important at larger A, point-
ing to a non-Markovian dynamics in this regime. Note that
the qualitative behavior of Q versus A is similar to that found
in Ref. 11 within the Born-Markovian master equation ap-
proach. However, the absolute numbers disagree.

To understand the results at small tunneling amplitudes,
we zoom into the small-A region and show the QUAPI re-
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FIG. 5. Zoom into the small A region. Shown are the QUAPI
results for the phonon (+) and the pure Ohmic (V) spectral density.
In addition, they are compared with the approximate analytical,
weak-coupling results of Egs. (I1) and (12) for the superohmic
(solid line) and the ohmic (dashed line) cases. The parameters are

for the Ohmic case, «=0.05, and for the superohmic case, ago
=0.075. For all cases, T=15 mK.

sults in Fig. 5 (+, right ordinate scale) together with the
results from the weak-coupling approximation (solid line)
obtained from Egs. (11) and (12). Therefore, we have used
the pure superohmic spectral density with an exponential
cutoff with frequency Q.>A, ie, J(w)=agow, @’ exp
(~w/Q,), with ag9=0.075 and Q,=10w,. We find a good
agreement between both results in the limit of small A, thus
justifying that the dynamics at small A is Markovian. Nev-
ertheless, note that even in this frequency range deviations
between the exact and the approximate solution do appear.
As a further check, we also compare the results of both the
numerically exact and the analytical approach for Q for a
pure Ohmic environmental spectral density, J(w)=aw exp
(~w/w,), for «=0.05. Both the QUAPI (V) and the approxi-
mative weak-coupling solution (dashed line) coincide. The Q
factor decreases monotonically for decreasing A since the
Ohmic low-frequency modes are not suppressed strongly
enough in comparison with the superohmic case. Although
the dynamics is Markovian for small A, non-Markovian cor-
rections appear to be relevant at intermediate values of A.
Because realistic values for the tunneling splitting A are also
of the order of w,, the role of the large frequency tail «1/w
still is not negligible and cannot be appropriately taken into
account within a Born-Markovian master equation.

The sensitivity of the Q factor on the lattice temperature 7
of the GaAs host is shown in Fig. 6 for a small and a large
tunneling amplitude A. Note that for the latter the corre-
sponding Born-Markov results have been shown not to be
reliable due to noticeable non-Markovian corrections which
can be observed in our data. Another parameter which is
adjustable in the DQD design is the dot radius a. The depen-
dence of Q on a is depicted in Fig. 7 for a large and a small
tunneling amplitude for a fixed ratio d/a=3. We find that Q
decreases monotonically with increasing a for small value of
A, while it increases with increasing a for large value of A,
qualitatively similar to the findings in Ref. 11. Note, how-
ever, the sizable differences in the absolute numbers which
are due to the non-Markovian corrections.
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FIG. 6. Q factor as a function of temperature for two different
tunneling amplitudes A. The remaining parameters are the same as
in Fig. 2.

Finally, we address the recent experiment of Hayashi et
al.” These authors implemented a GaAs DQD in the bias-
pulsing mode. During the pulse, the tunneling amplitude is
constant. The bias pulse is ramped up on a time scale of
100 ps. The tunneling amplitude has been estimated as A
=5 weV. The lattice temperature was 7=20 mK, while the
effective dot radius and the interdot distance have been esti-
mated to be =50 nm and d= 225 nm, respectively. For this
combination of parameters, the QUAPI method yields Q
=352, which has to be compared with the experimental value
of 0=3. On the other hand, the weak-coupling solution of
Egs. (11) and (12) yields Q=539. Two important conclusions
can be drawn from these numbers. First, the Born-Markov
approximation underestimates decoherence in these systems
and non-Markovian corrections are quite noticeable. Second,
our exact result differs from the experimental value by a
factor of roughly 100, indicating that the role of the phonons
for the decoherence is indeed of minor importance to under-
stand the reported experimental results. Other sources of de-
coherence, such as voltage fluctuations from the electromag-
netic environment or background charge fluctuations, exist
and have to be taken into account for an accurate description
for realized charge-based DQD qubits.

However, our results go beyond this point. Our predicted
exact values of the Q factors represent a fundamental upper
limit on the possibility to improve coherence of DQD charge
qubits since phonon decoherence represents an intrinsic de-
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FIG. 7. Q factor as a function of the dot radius a for two dif-
ferent tunneling amplitudes A and for a fixed ratio d/a=3. The
remaining parameters are the same as in Fig. 2.
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coherence mechanism which can hardly be overcome. This
has to be noticed also in view of the DiVincenzo criteria®®
for a possible realization of a quantum computer.

V. CONCLUSIONS

To summarize, we have obtained numerically exact re-
sults for the Q factor of the decaying charge oscillations in a
double quantum dot upon using the real-time quasiadiabatic
propagator path integral (QUAPI). Realistic assumptions on
the form of the environmental phonon spectral density en-
tered in our model via geometrical form factors and materials
characteristics. No fitting parameters of any sort were uti-
lized. We have investigated the quality (Q) factor as a func-
tion of the tunneling splitting and have compared our results
with those obtained from a weak-coupling approximation
within an analytical approach in terms of real time path in-
tegrals. We find that the regime of small tunneling ampli-
tudes is appropriately covered by the Markovian description.
However, at larger (but still realistic) values of the tunneling
amplitude, non-Markovian corrections appear and are rel-
evant. Moreover, we have determined the temperature depen-
dence of the Q factor as well as its dependence on the dot
radius. From a comparison with the result obtained in an
experimental realization of a double quantum dot charge qu-
bit, we find that the theory predicts a Q factor two orders of
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magnitudes larger than the measured value. This leads to the
conclusion that phonon decoherence is a subordinate mecha-
nism in GaAs quantum dots realized with present state-of-
the-art technology. Clearly, other forms of coupling to the
external environment prevail for those already realized de-
vices. However, our results also represent a fundamental up-
per limit to the coherence of DQD charge qubits, which can
hardly be overcome due to its intrinsic nature.

It would be interesting to extend the QUAPI calculation
to Si-based charge qubits, which have recently been
implemented.” Since Si has inversion symmetry, piezoelec-
tric phonons do not occur and one needs to include deforma-
tion potential phonons in the calculations. The decoherence
induced by the electron-phonon coupling is likely to be
smaller than in gaAs. However, for the deformation poten-
tial case, Ny~ V |q|. Thus, if on one hand we expect a strong
superohmic behavior at low frequencies, on the other hand, a
very slow decay of the spectral function at high frequencies
should occur. That may provide an even stronger non-
Markovian dynamics and have implications for other imple-
mentations, such as Si:P donor-based charge qubits.?*-26
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