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We study the carrier capture and relaxation due to Coulomb scattering in group-III nitride quantum dots on
the basis of population kinetics. For the states involved in the scattering processes the combined influence of
the quantum-confined Stark effect and many-body renormalizations is taken into account. The charge separa-
tion induced by the built-in field has important consequences on the capture and relaxation rates. It is shown
that its main effect comes through the renormalization of the energies of the states involved in the collisions
and leads to an increase in the scattering efficency.
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I. INTRODUCTION

In recent years, quantum dots �QDs� have emerged as a
powerful tool to tailor the light-emission properties of
semiconductors.1 Applications range from quantum dot la-
sers and ultrafast amplifiers to cavity-quantum electrody-
namics and nonclassical light generation.2 As a new material
system, group-III nitrides are of intense current interest due
to their extended range of emission frequencies from amber
up to ultraviolet as well as their potential for high-power and
high-temperature electronic devices.3,4 While the nonradia-
tive loss of carriers due to trapping at threading dislocations
lowers the efficiency of group-III nitride quantum well light
emitters, this effect is reduced by the three-dimensional �3D�
confinement in QDs.5 Studies of the photoluminescence
spectra6 and dynamics7,8 are used to demonstrate and analyze
efficient recombination processes from the localized QD
states.

Extensive work has been done to study the electronic
states in group-III nitrides.9 The valence-band structure has a
strongly nonparabolic dispersion and a pronounced mass
anisotropy.10 Nitride-based heterostructures with a wurtzite
crystal structure are known to have strong built-in electro-
static fields due to spontaneous polarization and piezoelectric
effects which have been analyzed in ab initio electronic
structure calculations11,12 and in comparison with photolumi-
nescence experiments.13 Tight-binding calculations of QD
states have been used to study free-carrier optical
transitions.14

While the aforementioned theoretical investigations are
devoted to single-particle states and transitions, it is known
from GaAs-based QD systems that the emission properties
are strongly influenced by many-body effects. Self-organized
QD systems, grown in the Stranski-Krastanov mode, exhibit
a single-particle energy spectrum with discrete energies for
localized states as well as a quasicontinuum of delocalized
wetting layer �WL� states at higher energies. The carrier-
carrier Coulomb interaction provides efficient scattering pro-
cesses from the delocalized into the localized states �carrier
capture� as well as fast transitions between localized states
�carrier relaxation�, which can be assisted by carriers in
bound �QD� or extended �WL� states. The dependence of the
scattering efficiency on the excitation conditions has been

calculated for GaAs-based QDs on various levels of
refinement.15–19 The scattering rates are of central impor-
tance for the photoluminescence as well as for the laser ef-
ficiency and dynamics. The same interaction processes also
lead to a renormalization of the electronic states �resulting in
line shifts for the optical transitions� as well as to dephasing
�line broadening� effects, which directly determine absorp-
tion and gain spectra.20

With the current attention on nitride-based QDs the ques-
tion arises as to what extent previous results are modified by
the peculiarities of this material system. Specifically, we
study how the strong electrostatic fields and the correspond-
ing changes of the single-particle wave functions and ener-
gies influence the carrier-carrier scattering processes. For this
purpose, we have to analyze the competing influence of the
internal fields and of the many-body renormalizations. Since
previous investigations of carrier-carrier scattering in semi-
conductor QDs have been performed for free-carrier energies
entering the scattering integrals, an independent second pur-
pose of this paper is the inclusion of self-consistently renor-
malized energies.

Renormalizations of the single-particle energies are due to
direct electrostatic �Hartree� Coulomb interaction, exchange
interaction, and screening. While these effects generally con-
tribute due to possible charging of the QDs, in the considered
wurtzite structure they are additionally modified by the pres-
ence of the built-in fields. In this paper we show that the
discussed changes of the single-particle energies have a
much stronger impact on the carrier scattering processes than
modifications of the single-particle wave functions.

Many-body effects were also considered for the case of
few excited carriers restricted to localized states of a GaN
QD.21 In this regime, the emission properties reflect the mul-
tiexciton states. In our paper, we are interested in kinetic
processes for the opposite limit of high densities of carriers
populating both QD and WL states �as typical for QD lasers�.

For the evaluation of scattering processes, we use kinetic
equations for the carrier occupation probabilities which in-
clude direct and exchange Coulomb interactions under the
influence of carrier screening as well as population effects
�Pauli blocking� of the involved electronic states. Based on
the single-particle states and Coulomb interaction matrix el-
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ements, scattering processes are evaluated on the level of a
second-order Born approximation.19

The paper is organized as follows. In Sec. II we summa-
rize the main ingredients of our theory which include the
kinetic equations, the single-particle states, and their renor-
malization as well as the interaction matrix elements. Details
regarding the WL states and screening effects are given in
appendixes. In Sec. III the QD model is described and the
numerical results for energy renormalization and scattering
times are presented.

II. THEORY FOR CARRIER-CARRIER COULOMB
SCATTERING

To analyze the role of carrier-carrier scattering in nitride-
based QD systems, we use a kinetic equation with Boltz-
mann scattering integrals.19 The dynamics of the carrier
population f��t� in an arbitrary state � is determined by in-
scattering processes, weighted with the nonoccupation of this
state, and by out-scattering processes, weighted with the oc-
cupation according to

�

�t
f� = �1 − f��S�

in − f�S�
out. �1�

The in-scattering rate is given by

S�
in =

2�

�
�

�1,�2,�3

W��2�3�1
�W��2�3�1

* − W��2�1�3

* �

��f�1
�1 − f�2

�f�3
���̃� − �̃�1

+ �̃�2
− �̃�3

�� , �2�

where the first and second terms in the square brackets cor-
respond to direct and exchange Coulomb scattering, respec-
tively. The matrix elements of the screened Coulomb inter-
action, W��2�3�1

, are calculated in Sec. II B. The � function
describes energy conservation in the Markov limit. Single-
particle energies �̃� of state � are renormalized by the Cou-
lomb interaction as discussed in Secs. II D and II E. A simi-
lar expression for the out-scattering rate S�

out is obtained by
replacing f →1− f .

Scattering processes described by Eqs. �1� and �2� con-
serve the total energy and separately the electron and hole
numbers. As a result, the combined action of the discussed
scattering processes will evolve the distribution functions of
electrons and holes towards Fermi-Dirac functions with com-
mon temperature where the QD and WL electrons �holes�
will have the same chemical potential �e��h�. During such a
time evolution towards quasiequilibrium the relative impor-
tance of various scattering processes is expected to change
via their dependence on the �nonequilibrium� carrier distri-
bution functions for WL and QD states. A direct measure for
the efficiency of various scattering processes can be given in
the relaxation-time approximation19 where one calculates the
characteristic time on which a small perturbation of the sys-
tem from thermal equilibrium is obliterated. We use this
method to investigate the influence of the built-in electro-
static field in nitride-based QDs on the carrier-density-
dependent scattering efficiency.

A. Quantum dot model system

Recent progress in tight-binding and k ·p models has been
made in calculating QD electronic single-particle states in-
cluding the confinement geometry, strain, and built-in elec-
trostatic field effects. The special features of the wurtzite QD
structures have been addressed in Refs. 14 and 22–24, while
zinc-blende QD structures have been studied in Refs. 23–28.
Our goals differ from these investigations in the respect that,
for given single-particle states and energies, we need to de-
termine Coulomb interaction matrix elements in order to cal-
culate many-body energy renormalizations and scattering
processes. For this purpose we choose a simple representa-
tion of wave functions for lens-shaped quantum dots29 which
allows us to separate the in-plane motion �with weak con-
finement for the states localized at the QD position and with-
out confinement for the states delocalized over the WL
plane� from the motion in growth direction with strong con-
finement. This leads to the ansatz

���r� = 	l
b���
�

b�z�ub�r� , �3�

where the WL extends in the plane described by �= �x ,y�. 	
and 
 are the envelope functions in this plane and in the
perpendicular growth direction, respectively, and u are Bloch
functions. � represents a set of quantum numbers with l for
the in-plane component �including the spin�, � for the z di-
rection, and b is the band index. In the following we consider
an ensemble of randomly distributed identical QDs with non-
overlapping localized states. The total number of QDs, N,
leads in the large-area limit to a constant QD density nQD
=limA→�N /A.

Regarding the dependence of the results on the choice of
wave functions, we find that not so much the particular form
but rather the correct symmetry is of relevance. Even though
a more accurate treatment is expected to mix the in-plane and
z coordinates, the ansatz �3� is preserving the symmetry.

B. Coulomb matrix elements

The interaction matrix elements of the bare Coulomb po-
tential v�r−r��=e2 / �4��0�r−r��� with the background di-
electric function  are given by

V��2�3�1
=	 d3rd3r���

*�r���2

* �r��v�r − r����3
�r����1

�r� .

�4�

This expression is further specified with the help of Eq. �3�,
the Fourier transform of the Coulomb potential, and by in-
troducing the in-plane Coulomb matrix elements with the
two-dimensional momentum q,

V��2�3�1

b,b� �q� =
e2

2�0q
	 dzdz�
�

b�z�*
�2

b��z��*

�e−q�z−z��
�3

b��z��
�1

b �z� . �5�

Limiting the calculations to the first bound state of the strong
confinement problem �in the z direction�, all the � indices
above take only one value and will be dropped in what fol-

NIELSEN et al. PHYSICAL REVIEW B 72, 235311 �2005�

235311-2



lows. Also, the band indices associated with �1 and �3 are the
same as those of � and �2, respectively, so that only two of
them have to be specified. Therefore Eq. �4� reads

Vl,l2,l3,l1

b,b2 =
1

A
�
q

Vb,b2�q� 	 d2�	l
b���*	l1

b ���e−iq·�

�	 d2��	l2

b2����*	l3

b2����eiq·��. �6�

The obtained separation of integrals over in-plane and z com-
ponents greatly simplifies the computational effort. For prac-
tical calculations we use solutions of a two-dimensional har-
monic potential for the in-plane wave functions of the
localized states and orthogonalized plane-wave �OPW� solu-
tions, discussed in Appendix A, for the in-plane components
of the delocalized states. Then the in-plane integrals in Eq.
�6� can be determined to a large extent analytically for all
possible combinations of QD and WL states. The calculation
of the wave functions in growth direction, which is used to
evaluate the in-plane Coulomb matrix elements, Eq. �5�, is
outlined in the next section. Screened Coulomb matrix ele-
ments are obtained from Eqs. �5� and �6� according to the
procedure described in detail in Ref. 19.

C. Quantum-confined Stark effect

To account for the built-in electrostatic fields of the wurtz-
ite structure in the growth direction, which gives rise to the
quantum-confined Stark effect, we solve the one-dimensional
Schrödinger equation30,31


−
�2

2mb

�2

�z2 + Ub�z��
b�z� = Eb�z�
b�z� , �7�

where the potential

Ub�z� = U0
b�z� + Up

b�z� + Uscr
b �z� �8�

consists of the bare confinement potential in the z direction,
U0

b�z�, as well as the intrinsic electrical and screening fields
Up

b�z� and Uscr
b �z�, respectively. The latter is the electrostatic

field due to the separation of electron and hole wave func-
tions by the built-in field. Following Ref. 31 we calculate the
corresponding screening potential from a solution of the
Poisson equation for a set of uniformly charged sheets ac-
cording to

Uscr
e,h�z� =

�e2Nsys

2�0
	 dz���
e�z���2 − �
h�z���2��z − z�� . �9�

Equations �7�–�9� have to be evaluated self-consistently for a
given total �QD plus WL� carrier density Nsys in the system.

D. Hartree-Fock energy renormalization

The Hartree-Fock �HF� contribution to the energy renor-
malization of an arbitrary state � �QD or WL� is given by

�̃� = �� + ��
HF, �10�

where �� is the free-carrier energy and the HF shift follows
from

��
HF = ��

H + ��
F = �

��

�V������ − V�������f��. �11�

The first part corresponds to the Hartree �direct� term, and
the second part is the Fock �exchange� contribution. The
equation is written in a general basis. For a system with local
charge neutrality, like bulk semiconductors or quantum
wells, the Hartree term vanishes while the Fock term leads to
an energy reduction as used, e.g., in the semiconductor Bloch
equations.32

For the QD and OPW-WL states discussed in this paper,
the absence of local charge neutrality leads to Hartree terms
which are evaluated in Appendix B. Regarding the quantum
numbers, introduced in Sec. II A, we further specify the
following notation: For the in-plane envelopes we use the
two-dimensional momentum k for the delocalized WL states
and �= �m ,R� for the localized QD states, where R is the
QD position and the discrete quantum numbers for a particu-
lar QD are collected in m. The spin index is tacitly included
in either m or k.

Following Appendix B, we find that the Hartree shifts of
the WL states vanish due to compensating contributions from
QD and WL carriers,

�b,k
H = 0. �12�

For a random distribution of QDs this is related to the spatial
homogeneity restored on a global length scale and to the
global charge neutrality of the system. For the same reason,
the Hartree shift of a localized QD state is only provided by
states from the same QD while Hartree shifts due to carriers
in other QD and WL states compensate each other,

�b,m
H = �

b�,m�

Vmm�m�m
b,b� fm�

b� . �13�

From electrostatics one expects the same result, provided
that the WL is modeled as a constant area charge of opposite
sign to the QD total charge. Then the constant part of the
Fourier expansion of the Coulomb matrix elements in Eq.
�6�—i.e., the q=0 contribution—for the QDs balances the
constant area charge from the WL.

On the other hand, since �b,m
H probes the local charge

density at the site of the QD due to the contributions of QD
and WL carriers, one expects an influence of the WL on the
QD Hartree energy shift. Locally, on the QD length scale, the
WL states are not homogeneous as a result of the QD pres-
ence. This causes a departure from the picture where the WL
states contribute only in an averaged manner �via the q=0
term�. Intuitively, one would expect that an increasing
amount of carriers in the WL will start to screen the Cou-
lomb interaction between the QD carriers. Following this
picture we therefore replace the bare Coulomb potential with
the screened one in Eq. �13�: i.e., �b,m

H →�b,m
SH . In Appendixes

A and B more support is given to this argumentation.
In the exchange terms, the summation over the QD posi-

tions can be performed directly, since the associated QD
phase factors disappear for the Coulomb matrix elements
Vmm�mm� and V�k�k as seen from Eqs. �A1� and �A2�, respec-
tively. The resulting exchange energy shifts contain the QD
and WL contributions,
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�b,m
F = − �

m�

Vmm�mm�
b,b fm�

b − �
k�

Vmk�mk�
b,b fk�

b , �14�

�b,k
F = − N · �

m�

Vkm�km�
b,b fm�

b − �
k�

Vkk�kk�
b,b fk�

b . �15�

Since there is an area associated with the Coulomb matrix
element Vkm�km�, the QD density nQD=N /A enters in Eq.
�15�.

E. Screened exchange and Coulomb hole

The HF Coulomb interaction provides only the first ap-
proximation for energy renormalizations; correlation contri-
butions can lead to important corrections. A frequently used
extension of the HF energy shifts for high-density plasma
excitation is the screened-exchange and Coulomb-hole
approximation.32 On this level, the combined contributions
of Coulomb exchange interaction and Coulomb correlations
beyond HF to the energy renormalizations are approximated
with the screened exchange term �where the bare Coulomb
potential in the Fock term is replaced by a screened one� plus
an energy shift denoted as Coulomb-hole contribution. The
Coulomb hole self-energy reads32

�CH�r1,r2,t1,t2� =
1

2
��r1 − r2���t1 − t2�

��W�r1,r2,t1� − V�r1 − r2�� , �16�

with the statically screened Coulomb potential W. In a gen-
eral eigenfunction basis, this leads to the Coulomb-hole en-
ergy shift

��
CH�t� =

1

2�
��

�W�������t� − V������� . �17�

In Eqs. �14� and �15� we therefore replace the bare Cou-
lomb potential with the screened one and substitute the Fock
energy shift with the screened exchange plus the Coulomb
hole, ��

F→��
SX+��

CH. In the limit of low carrier densities,
the screened Coulomb potential reduces to the bare one, the
Coulomb hole vanishes, and we recover the HF result.

III. RESULTS

We start this section by describing the model we use and
the material parameters employed for calculating the one-
particle states. These correspond to the unexcited system.
The next step is to renormalize these states in a self-
consistent way to include the influence of the carrier popu-
lation and the presence of the built-in field, as described in
Sec. II. These single-particle properties enter the scattering
integrals, Eq. �2�.

For the discussion of the numerical results one should
bear in mind the two main consequences of the built-in field.
On the one hand, the self-consistent energies entering the
Fermi functions and the energy conservation are sensitive to
the electron-hole separation induced by the built-in electro-
static field. On the other hand, the Coulomb matrix elements

are changed due to modifications in the wave-function
shapes and overlapping.

A. Model and its parameters

In the following examples we consider an InGaN/GaN
QD-WL system using typical InGaN parameters9 listed in
Table I. For the alloy, we have interpolated linearly the di-
electric constant , the isotropic electron mass me, the hole
mass parameters Ai, and the spin-orbit splitting �so.

A specific feature of the wurtzite structure nitrides is the
strong mass anisotropy of the holes. The mass of the heavy
hole �HH� in the z direction is given by mz

*=m0 / �A1+A3�
with the free-electron mass m0 and the mass parameters A1
and A3.10 For the in-plane motion, a strong hybridization
between the HH and the light-hole �LH� subband leads to
nonparabolic bands. This is due to the fact that the small
HH-LH splitting, induced by the spin-orbit interaction, is
enhanced by neither the strain nor the z confinement. To
include the hybridization effect we use a nonparabolic HH
dispersion10

�k
h = − ��A2 + A4�k2 − ��2

2 + �2A5
2k4, �18�

where �=�2 /2m0 and �2=�so /3. For the motion of the elec-
trons, isotropic effective mass and parabolic dispersion are
considered. Conduction ��Ee� and valence ��Eh� band off-
sets for InGaN grown on GaN have been estimated by split-
ting the gap energy difference between bulk GaN and the
alloy with a band offset ratio 60:40 for electrons and holes,
according to Refs. 34 and 35.

Compared to the usual zinc-blende structure, the wurtzite
structure is characterized by large built-in electric fields. The
strength of the fields is related to the spontaneous polariza-
tion discontinuity at the heterojunction interfaces and the pi-
ezoelectric polarization.11,12 Internal fields in InGaN/GaN
heterojunctions of a few MV/cm have been reported,35,36

TABLE I. Material parameters used in the calculations.

Parameter GaN InN In0.2Ga0.8N

Eg�300 K��eV� 3.438a 0.756a 2.677

�Ee�eV� 0.457

�Eh�eV� 0.304

 8.9b 15.3b 10.2

me�m0� 0.2a 0.07a 0.174

A1 −7.21a −8.21a −7.41

A2 −0.44a −0.68a −0.488

A3 6.68a 7.57a 6.858

A4 −3.46a −5.23a −3.814

A5 −3.40a −5.11a −3.742

�so�eV� 0.017a 0.005a 0.0146

Quantum well �nm� 3.0

FQD−WL�MV/cm� 1.5

Fbarrier�MV/cm� 0.75

aFrom Ref. 9.
bFrom Ref. 33.
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typically in a sawtooth profile, where the field in the QD-WL
system has a different magnitude and opposite direction to
the field of the barrier �reflecting a set of capacitors with
nonequal surface charges�. For the field inside the QD-WL
region and in the barrier, we consider FQD-WL=1.5 MV/cm
and Fbarrier=0.75 MV/cm, respectively.

As the estimated effective hole masses10 are larger than
the electron mass, we expect the QDs to confine more states
for holes than for electrons. On the same basis, the level
spacing, which scales inversely with the mass, is larger for
electrons than for holes. The in-plane QD confinement is
modeled with a 2D parabolic potential, capable of binding
two energy shells �s and p� for electrons and three �s, p, and
d� for holes. The degeneracies of these shells �apart from
spin� are 1, 2, and 3 for s, p, and d, respectively. For elec-
trons we assume a level spacing of 90 meV with the p shell
70 meV below the WL continuum edge, while for holes we
assume a level spacing of 30 meV with the d shell 20 meV
below the WL continuum edge. Thus the es-hs QD transition
is close to the range given in Refs. 8 and 37. The QD param-
eters are summarized in Table II. Finally, we assume
z-direction confinement wave functions which are band de-
pendent but equal for QD and WL states.19

The harmonic oscillator �HO� inverse localization length
� is deduced from the level spacing via ��HO=�2�2 /m*. For
electrons the effective mass of Table I is taken. For holes we
use the mass resulting from Eq. �18� in the small-k limit,
mh

*=m0 / �A2+A4�. This is justified by the typical QD diam-
eters of 100–200 Å, which correspond to the region around
k=0 where the first term of Eq. �18� is dominant.

B. Schrödinger and Poisson equations

The charge separation of carriers along the growth direc-
tion z under the influence of the built-in electrostatic fields,
obtained from a self-consistent solution of Eqs. �7�–�9�, is
shown in Figs. 1�a� and 1�b�. A clear overlap reduction of the
wave functions for electrons and holes is observed. This
leads to a decreasing form factor �the double integral in Eq.
�5� which modifies the 2D Fourier transform of the Coulomb
interaction� for the electron-hole interaction while the stron-
ger carrier localization increases the form factors for the
electron-electron and hole-hole interactions. Thus, the pres-
ence of the built-in field leads to an effective reduction of the
electron-hole interaction, while the electron-electron and
hole-hole interactions are enhanced. The screening field turns
out to be a small correction to the strong built-in field for the
range of densities considered.

C. Renormalized energies

For a total carrier density Nsys, the corresponding carrier
distributions f� in thermal equilibrium are used to determine
the renormalized energies from the self-consistent solution of
the equation �̃�=��+��

SH+��
SX+��

CH for the QD and WL
states. For �� we use the energies listed in Table II for the
QD bound states and the dispersion law of Eq. �18� for the
WL hole states.

The density dependence of the renormalized electron and
hole energies is shown in Figs. 2�a� and 2�c�, respectively, in
the presence of the built-in field. The corresponding results
without the built-in field are given in Figs. 2�b� and 2�d� for

TABLE II. QD parameters used in the calculations.

Parameter Electrons Holes

Shells s, p s, p, d

Level spacing �meV� 90.0 30.0

�s�meV� −160.0 −80.0

�p�meV� −70.0 −50.0

�d�meV� −20.0

QD density �cm−2� 1010

FIG. 1. Total confinement potential U�z� �solid line� and modu-
lus amplitude of the z-component wave function �
�z��2 �dashed
line� along the growth direction z for electrons �a� and holes �b� in
the presence of the built-in field at a total carrier density
Nsys=1010 cm−2. The dotted lines are the wave function amplitudes
for zero field.

FIG. 2. Renormalized energies as a function of the total carrier
density in the system Nsys, for the s shell �solid lines�, p shell
�dotted lines�, d± shell �dashed lines�, and WL k=0 �dash-dotted
lines�. Calculations with �a�,�c� and without �b�,�d� electrostatic
fields are shown for electrons �a�,�b� and holes �c�,�d�. The tempera-
ture is 300 K.
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comparison. The renormalized d shell is split into two degen-
erate d± states and a d0 state, with a separation of a few meV.

Quantitatively, the QD levels experience a smaller energy
shift for the built-in field compared to the zero-field case.
The origin of this difference lies in the Hartree term, which
reflects the electrostatic interaction of a given carrier with all
the others. The field-induced change of the z-confinement
functions tends to separate the electrons from the holes and,
as a consequence for both, the repulsive part of the Hartree
term is increased and the attractive part is decreased. This
effect is illustrated explicitly in Fig. 3 for the p shell where
the four different contributions to the renormalized energies
are shown. For electrons the Hartree shift is repulsive both in
the presence and in the absence of the built-in field, but more
so in the former case. For holes, the built-in field makes the
Hartree term less attractive. In both cases the net result is a
set of shallower bound states. For the sake of completeness
we mention that the different sign of the Hartree field for
electrons and holes comes from the difference in the QD
population of electrons and holes and from the band depen-
dence of the Coulomb matrix elements.

The screened exchange and Coulomb hole terms are not
significantly different for with and without a built-in field. As
the extended WL states are only renormalized by the
screened exchange and Coulomb hole terms, we find an
overall negative energy shift, lowering the free spectrum by
an almost k-independent shift �not shown�.

D. Capture and relaxation times

To quantify the importance of the different scattering pro-
cesses, we study their dependence on the total carrier density
in thermal equilibrium. Using the relaxation time
approximation19 one can introduce a scattering time �� for a
given process according to

�� = �S�
in + S�

out�−1, �19�

which gives a characteristic time on which the system will
return to its thermal equilibrium distribution if exposed to a

small perturbation—i.e., ḟ�=−�f�−F�� /��, with F� being the
thermal equilibrium distribution.

The scattering times are changed by the built-in field
through different competing mechanisms. On the one hand,
the matrix elements are modified �see Sec. III B�; on the
other hand, the QD energies are pushed closer to the WL
continuum �Sec. III C�.

For illustrative purposes, we first study the influence of
the built-in field on the scattering times by using the free
�unrenormalized� energies within the scattering integrals.
This reveals the field effect solely on the Coulomb matrix
elements via the wave-function changes. As an example we
consider a capture process, where an electron or hole from
the WL is scattered into the QD while another WL carrier
�electron or hole� is scattered to an energetically higher WL
state, as well as the reverse process. �Both contribute to the
scattering time according to the relaxation-time approxima-
tion.� Thus the outer index in Eq. �1� is a QD state while the
three summation indices in Eq. �2� belong to the WL states
for this example shown in Fig. 4.

First we discuss the density dependence. The capture time
decreases with increasing carrier density, as more scattering
partners become available. Furthermore, capture times for
electrons are slower than for holes, because the QD electron
levels are placed energetically deeper below the WL con-

FIG. 3. Same as Fig. 2 for different contributions to the renor-
malized p-shell energy �̃p which are the free energy �p �dash-dotted
line�, screened Hartree shift �p

SH �dotted line�, screened exchange
shift �p

SX �solid line�, and Coulomb hole shift �p
CH �dashed line�.

FIG. 4. Capture times for the p shell as a
function of the total carrier density in the system,
Nsys, using the free �unrenormalized energies�,
with �solid lines� and without �dotted lines� a
built-in electrostatic field.
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tinuum edge. For energy-conserving scattering processes, the
excess energy of a WL electron which is captured to the QD
must be transferred to another carrier from the WL in the
present example. In this way a capture to an energetically
deep lying QD state is associated with large momentum
transfer for the WL carriers. As the matrix elements have a
Gaussian dependence on the in-plane momentum, scattering
to WL states with high momentum is suppressed.

The changes in the capture times produced by the field in
the case of unrenormalized energies are minimal. This proves
that the competing trends described in Sec. III B are nearly
compensating each other, with a slight dominance of the ef-
fect of electron-hole scattering reduction.

For the calculation of the capture times in Fig. 5, based on
WL assisted capture processes,19 the renormalized energies
are included in the scattering integrals S�

in,out. Now the cap-
ture times become substantially shorter in the presence of the

built-in field compared to the zero-field case. Thus, the en-
ergy separation of the QD levels from the WL edge plays
now the dominant role in the scattering times. Even though
for the built-in field the capture processes are somewhat
slowed down by the reduction of the electron-hole interac-
tion, they are still faster compared to the zero-field case,
where due to the electron-hole interaction, the QD levels are
energetically deeper in the QD.

Figure 6 shows the WL-assisted QD relaxation times for
processes where a QD electron �hole� scatters to a different
QD electron �hole� state by means of a WL carrier. Alterna-
tively, a QD carrier performs a transition to the WL while
another WL carrier scatters into a different QD state.19 Thus
the outer index in Eq. �1� belongs to a QD state while two of
the summation indices in Eq. �2� correspond to WL states
and one label to a QD state. Mixed QD relaxation
processes,19 where, e.g., a QD electron scatters out to the WL

FIG. 5. Capture times as a function of the
total carrier density in the system, Nsys, for the s
shell �solid lines�, p shell �dotted lines�, d0 shell
�dash-dotted lines�, and d± shell �dashed lines�.

FIG. 6. Relaxation times as a function of the
total carrier density in the system, Nsys, with la-
beling as in Fig. 5.
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while another hole from the WL scatters down to the QD
hole state, play only a minor role due to the charge separa-
tion of the electrons and holes caused by the built-in field.

Generally, the relaxation times for holes are one or two
orders of magnitude shorter than for electrons, since the QD
energy level spacing is larger for the latter. With a built-in
field the relaxation times become shorter compared to the
zero-field case, where the QD energy level spacing is larger
�with the exception of a slightly slower relaxation of the
s-shell electrons�. Relaxation times for scattering between
QD states are in general more than one order of magnitude
shorter than capture. For the p-shell electron relaxation, a
saturation effect due to Pauli blocking is observed at higher
densities, which leads to comparable capture and relaxation
times.

IV. CONCLUSION

The presence of the built-in electrostatic field in wurtzite
heterostructures causes a charge separation of electrons and
holes along the growth direction, which in turn reduces the
electron-hole interaction and increases the electron-electron
and hole-hole interactions.

Our results show that the usually discussed importance of
this effect on the interaction matrix elements only weakly
influences the scattering rates. It turns out that the change of
the self-consistently renormalized energies due to charge
separation leads to a much stronger modification of the scat-
tering rates. Specifically, for the influence on the interaction
matrix elements, the reduction of electron-hole scattering is
partly compensated by the increase of electron-electron and
hole-hole scattering. In contrast, for the energy renormaliza-
tion, the charge separation leads to increased repulsion and
decreased attraction in the Hartree terms, both effects work-
ing in the same direction of shallower confined levels. This
in turn causes an enhancement of the scattering efficiency.

As expected for the QD-WL system, the rates for carrier
capture and relaxation strongly depend on the density of ex-
cited carriers in the localized and delocalized states. For in-
termediate densities, the scattering efficiency increases with
carrier density. For large densities, Pauli blocking and
screening of the interaction matrix elements slow down a
further increase of the scattering rates. For typical InGaN QD
parameters, a QD density of 1010 cm−2 and a carrier density
of 1011 cm−2 at room temperature, direct capture of electrons
�holes� to excited QD states results in scattering times on the
order of 100 �10� ps. Relaxation times for scattering between
the QD hole states are more than one order of magnitude
shorter than capture, while at elevated densities the electron
p-shell relaxation is of the same order of magnitude as cap-
ture.
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APPENDIX A: OPW STATES AND INTERACTION
MATRIX ELEMENTS

The basic idea of the following scheme is to construct an
approximate single-particle basis for the combined QD-WL
system which provides a feasible way to compute the inter-
action matrix elements, Eq. �4�. We start from localized QD
states 	�, as introduced in Secs. II A and II D with �
= �m ,R�, and WL states in the absence of QDs, which are
assumed to have plane-wave envelope functions 	k

0���
=1/�Aeik·� in the WL plane with the two-dimensional carrier
momentum k. Quantum numbers for the spin, band index,
and confinement in the z direction are not explicitly written
for notational simplicity. In the presence of the QDs the or-
thogonality condition of the basis is imposed by projecting
the plane waves on the subspace orthogonal to the QD states,
as outlined in Ref. 19. The WL states are therefore given by
the OPW functions �	k= �1/Nk���	k

0−���	��	��	k
0�. As-

suming QDs with nonoverlapping wave functions, the sum
over �= �m ,R� counts various QD states m at different QD
positions R. For randomly distributed identical QDs, the nor-
malization is given by Nk

2 =1−N�m��	m �	k
0�2.

This scheme allows us to evaluate the in-plane integrals
���eiq·����=�d2�	�

*���eiq·�	����� which appear in the
Coulomb matrix elements, Eq. �6�, for various combinations
of QD and WL states. When � and �� are two QD states, one
obtains

���eiq·���� = �m�eiq·��m�eiq·R�R,R�, �A1�

with the QD positions R and R�. For combinations of QD
and WL states, one finds

���eiq·��	k� = �m�eiq·��	k�e
i�k�+q�·R �A2�

and, for two WL states,

�	k�eiq·��	k� = �k,q+k�DOPW�k,k�,q� �A3�

follows with

DOPW�k,k�,q�

=
1

NkNk�

1 − N�

m

��	k
0�	m�2 − N�

m

��	m�	k�
0 �2

+ N �
m,m�

�	k
0�	m�	m�eiq·��	m��	m��	k�

0 � . �A4�

The orthogonality requirement of the wave functions is
directly reflected in the interaction vertices ��1�e+iq·���2
=��1,�2

for q=0. Meaningful results for the interaction matrix
elements can be expected only when the approximate model
shows the same behavior. Since we start from orthogonal QD
states at a given QD position and assume nonoverlapping
wave functions for different QDs, Eq. �A1� reduces to a Kro-
necker � for q=0. QD and OPW-WL states are orthogonal
by construction; i.e., the requirement is also fulfilled for Eq.
�A2�. As described in Ref. 19, it is the assumption of ran-
domly distributed QDs which, in the large-area limit,
restores—on average—translational invariance and provides
mutually orthogonal OPW states such that the above require-
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ment is also obeyed by Eq. �A3�. Note that DOPW�k ,k ,0�
=1.

APPENDIX B: HARTREE ENERGY RENORMALIZATION

Starting from Eq. �11�, the Hartree energy shift of the QD
states has contributions from the QD and from the WL car-
riers,

�b,�
H = �

b�,��

V������
b,b� f��

b� + �
b�,k�

V�k�k��
b,b� fk�

b� = �b,�
H,QD + �b,�

H,WL.

�B1�

The QD contribution can be specified further using the nota-
tion introduced above and Eq. �6�,

�b,�
H,QD = �

R�
�

b�,m�

1

A
�
q

Vb,b��q�fm�
b� �m�e−iq·��m

��m��eiq·��m�e−iq·�R−R��. �B2�

The result depends on the QD positions through the phase
factor arising from the interaction vertices as given by Eqs.
�A1�–�A3�. In the large-area limit one obtains, by the law of
large numbers, that the distribution of these quantities is
sharply peaked around their configurational averaged value.
Therefore we may replace the QD contribution in Eq. �B1�
by

�b,m
H,QD =

1

N
�

R,R�
�

b�,m�

1

A
�
q

Vb,b��q�fm�
b� �m�e−iq·��m

��m��eiq·��m�e−iq·�R−R��. �B3�

Note that the resulting Hartree shift does not depend on the
QD position any more. The summation over the random po-
sitions R, R� is evaluated as in the disordered system theory
�see, e.g., Ref. 38�:

�
R,R�

f�R�g�R�� = �
R�R�

f�R�g�R�� + �
R

f�R�g�R�

= N2��f · ��g + N��fg , �B4�

where ��F=1/A�d2RF�R� denotes the configuration aver-
age. The first term is the uncorrelated average of the two
random variables, while the second takes into account that
for the same point they are correlated.

In our case f�R�=e−iq·R, g�R��=eiq·R�, ��f= ��g=�q,0

and ��fg=1, so that one may write

�b,m
H,QD = nQD �

b�,m�

Vb,b��q = 0�fm�
b� + �

b�,m�

Vmm�m�m
b,b� fm�

b� .

�B5�

The first term, arising from the Coulomb interaction between
different QDs is proportional to the total QD charge density,
while the second one describes the Hartree interaction inside
a given dot.

The WL contribution to the QD Hartree energy shift can
be evaluated similarly,

�b,�
H,WL = �

b�,k�

1

A
�
q

Vb,b��q�fk�
b��m�e−iq·��m

�e−iq·R�k�,k�+qDopw�k,k�,q�

=
1

A
�

b�,k�

Vb,b��q = 0�fk�
b� . �B6�

The result has the same structure as the first term of Eq. �B5�
and adds the WL charge density to the QD contribution. By
charge neutrality these terms cancel each other and, as ex-
pected, the Coulomb singularity at q=0 is removed. One is
left with the second term of Eq. �B5�, which gives Eq. �13�.

Following the same steps as above we find, for the WL
Hartree energy shift,

�b,k
H = �

b�,��

Vk����k
b,b� f��

b� + �
b�,k�

Vkk�k�k
b,b� fk�

b�

= Vb,b��q = 0��nQD �
b�,m�

fm�
b� +

1

A
�

b�,k�

fk�
b�� = 0,

�B7�

which vanishes due to global charge neutrality.

APPENDIX C: WL SCREENING CONTRIBUTIONS TO
THE QD HARTREE INTERACTION

In our description of the Hartree terms in the previous
Appendix B, the summation over randomly distributed QDs
restores, in the large-area limit, the in-plane translational in-
variance of the OPW-WL states. On this level, only the av-
eraged QD properties enter—a picture which is consistent
with the expectation that in a system with a macroscopic
number of QDs, like a QD laser, only the averaged properties
of the QD ensemble should be important. On a local scale at
a QD position, however, the WL states do not obey transla-
tional invariance since perturbations of the WL states due to
the QD appear. In truly homogeneous systems one has a q
=0 Coulomb singularity which is canceled out by the global
charge neutrality and no other Hartree contribution is
present. We have shown in Appendix B, for the system of
randomly distributed QDs on the WL, that a similar singu-
larity is produced by the configuration averaging and is re-
moved by global neutrality arguments. Then only the local-
ized QD carriers are subjected to Hartree fields induced by
carriers in the same QD.

In this appendix, we reexamine the result using the
Green’s function �GF� formalism.38 The more refined treat-
ment shows that WL carriers can provide corrections to the
QD Hartree shift which can be cast into the form of screen-
ing contributions.

Some low-order diagrams in the GF expansion, describing
terms of the Hartree contribution to the QD energies, are
shown in Fig. 7. Since the QDs are identical, the QD propa-
gators are position independent, but the interaction vertices
contain phase factors related to the position and to the ad-
joining momenta, as given by Eqs. �A1�–�A3�. The proce-
dure described in the previous appendix amounts to the av-
eraging of the Hartree self-energies.

COULOMB SCATTERING IN NITRIDE-BASED SELF-… PHYSICAL REVIEW B 72, 235311 �2005�

235311-9



To begin with, the self-energy in diagram �a� has the form

− i�
1

N �
R,R�

�
b�,m�

1

A
�
q

Vb,b��q�Gm�
b� �t,t�

��m�e−iq·��m�m��eiq·��m�e−iq·�R−R��. �C1�

In a self-consistent calculation, with the equal-time GF re-
lated to the population factors in the usual way, this leads to
the QD Hartree term of Eq. �B3�. In the large-area limit,
using Eq. �B4�, one obtains the two terms of Eq. �B5�. As
noted before, the first term corresponds to averaging the
“tadpole head” of diagram �a� as if it would be independent
of the rest of the diagram, while the second term contains the
contributions of the correlations. It is easy to see that dia-
gram �b� of Fig. 7 leads to the WL Hartree contribution
spelled out in Eq. �B6�. This term, together with the first term
of diagram �a�, contains the Coulomb q=0 singularity spe-
cific to homogeneous systems. The second term of diagram
�a� is an example of a local field which is not averaged out,
the source of this field being “in phase” with the charges that
probe it.

A similar analysis is valid for diagram �c�. Its phase fac-
tors are the same as in diagram �a� and again one has two
contributions. The first one, coming from the uncorrelated
averaging, leads to a self-energy containing only the q=0
contribution,

�i��2 N

A2Vb,b1�q = 0�Gk
b1�t,t��Gk

b1�t�,t�

�Vb1,b��q = 0�Gm�
b� �t�,t�� , �C2�

where summation and integration over the inner variables are
assumed. Since this entails the restriction k=k�, the diagram
contributes to the renormalization of the WL propagator of
index k in diagram �b�. Therefore this is already included in
a self-consistent calculation. More interesting is the second
term, arising from the correlated averaging,

�i��2 1

A2Vm,k,k+q,m
b,b1 Gk+q

b1 �t,t��Gk
b1�t�,t�Vk+q,m�,m�,k

b1,b� Gm�
b� �t�,t�� .

�C3�

In this case the summation over the momentum transfer q
remains unrestricted. The structure is similar to the second
term of diagram �a�; i.e., it corresponds to the intra-QD Har-
tree field, but with the additional k and k�=k+q WL propa-
gators forming a Lindhard loop. The loop describes the
screening of the intra-QD Hartree field by the WL carriers.

The usual procedure in the GF theory is to leave the Har-
tree interaction unscreened and to add the Lindhard loop of
diagram �c� to the “tadpole head” GF of the diagram �b�.
This avoids the double counting of such diagrams. As a re-
sult, a nondiagonal �k ,k�� GF appears in the self-consistent
Hartree loop of diagram �b�. Alternatively, one can avoid
double counting by keeping only momentum-diagonal WL
propagators and leave the Lindhard loop for the screening of
the Coulomb line. We have chosen this second approach,
which also considerably simplifies the formalism.

A fully systematic analysis of all the possible diagrams
and the action of the configuration averaging over them is
way beyond the scope of this paper. The approximation pro-
posed here includes the following physically important fea-
tures. The random phases associated with the QD positions
give rise to a q=0 singularity, which is canceled out by the
global charge neutrality. On the other hand, the intra-QD
fields are not influenced by the phase factors and therefore
are not averaged out. The same is true for the local WL
charges that respond to these fields and induce their screen-
ing.
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