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A set of stacked two-dimensional electron systems in a perpendicular magnetic field exhibits a three-
dimensional version of the quantum Hall effect if interlayer tunneling is not too strong. When such a sample
is in a quantum Hall plateau, the edge states of each layer combine to form a chiral metal at the sample surface.
We study the interplay of interactions and disorder in transport properties of the chiral metal, in the regime of
weak interlayer tunneling. Our starting point is a system without interlayer tunneling, in which the only
excitations are harmonic collective modes: surface magnetoplasmons. Using bosonization and working pertur-
batively in the interlayer tunneling amplitude, we express transport properties in terms of the spectrum for
these collective modes, treating electron-electron interactions and impurity scattering exactly. We calculate the
conductivity as a function of temperature, finding that it increases with increasing temperature as observed in
recent experiments. We also calculate the autocorrelation function of mesoscopic conductance fluctuations
induced by changes in a magnetic field component perpendicular to the sample surface, and its dependence on
temperature. We show that conductance fluctuations are characterized by a dephasing length that varies in-
versely with temperature.
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I. INTRODUCTION

Multilayer quantum Hall systems offer a setting in which
to study the influence of electron-electron interactions and
impurity scattering on tunneling between quantum Hall edge
states. Specifically, consider a layered conductor in a mag-
netic field that is perpendicular to the layers, with the field
strength chosen so that a single layer in isolation would have
quantized Hall conductance. Then, if interlayer tunneling is
not too strong, the multilayer system exhibits a three-
dimensional version of the quantum Hall effect and the bulk
is insulating at low temperatures. Under these conditions,
edge states are present in each layer at the sample surface
and are coupled by interlayer tunneling to form a surface
phase, which is a chiral, two-dimensional metal.1,2 The con-
tribution of this surface phase to the interlayer electron trans-
port properties of such systems has been isolated in experi-
ments on semiconductor multilayers,3 and is dominant if
samples are sufficiently small and cold.

The consequences of impurity scattering for transport in
the chiral metal have been discussed extensively from a the-
oretical viewpoint1,2,4–9 and have been probed experimen-
tally in several ways.3,10–19 Crucially, the chiral motion of
electrons along the layer edges means that localization is
suppressed.1,2 As a result, the surface conductivity in the in-
terlayer direction has a low-temperature limit that is nonzero,
even though its measured value may be much smaller than
e2 /h.3,11,13 Separately, theoretical discussions of conductance
fluctations4–7,9 have examined both their dependence on ge-
ometry in fully phase-coherent samples, and their depen-
dence on the inelastic scattering length when this is smaller
than sample size. Observations of reproducible mesoscopic
conductance fluctuations,12,19 induced by small changes of
magnetic field within a quantum Hall plateau, demonstrate

that interlayer hopping is quantum-mechanically coherent
and also provide a way to determine the inelastic scattering
length. In addition, magnetoresistance in response to a field
component perpendicular to the sample surface has been
proposed8 and used14,15,17 as a method for measuring the
elastic scattering length.

In contrast to these studies of disorder effects, past theo-
retical work on effects due to electron-electron interactions
in the chiral metal has been limited. There have been discus-
sions, first, of the temperature dependence of the inelastic
scattering length2,9 and, second, of the fact that there is no
zero-bias anomaly in the tunneling density of states �or any
related contribution to the conductivity�, because of the bal-
listic motion of the charge in the in-layer direction.2,9

Against this background, recent experiments finding a
significant temperature dependence to the surface
conductivity16,18 are striking as likely indications of interac-
tion effects, and provide one of the motivations for the work
we present here. In particular, the fact that conductivity is
observed to increase with increasing temperature presents a
puzzle for theory. Some straightforward potential explana-
tions are specifically excluded by the experimental design:
large ratios of sample perimeter to cross-sectional area en-
sure that surface states make the dominant contribution to the
measured conductance; and sample perimeters much longer
than the inelastic scattering length ensure that weak localiza-
tion effects are absent. For samples studied in Ref. 18, the
measured conductivity ��T� increases by about 7% in the
temperature range from 50 to 300 mK, implying a tempera-
ture scale of ��T� · �d��T� /dT�−1�4 K, which is similar to
that for other interaction effects in quantum Hall systems.

In this paper we study interactions and disorder in the
chiral metal, working in the experimentally relevant limit of
weak interlayer tunneling. Treating tunneling perturbatively,
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Coulomb interactions, and impurity scattering can be
handled exactly by means of a straighforward application of
bosonization. We calculate the full temperature dependence
of the conductivity. We also study conductance fluctuations
induced by magnetic field changes, obtaining their autocor-
relation function and its dependence on temperature. Making
appropriate parameter choices, our results for both quantities
are consistent with experimental findings. A short account of
this work has been presented previously, in Ref. 20.

Our work differs from most of the extensive literature on
tunneling between quantum Hall edges states in two impor-
tant ways. First, while much previous work has been con-
cerned with edge states of fractional quantum Hall
systems,21–24 including multilayer samples,25,26 our focus is
on the integer quantum Hall effect. Second, whereas most
past work �with some exceptions: see Refs. 27–30� has been
restricted to systems with only short-range interactions, we
find that the long-range nature of Coulomb interactions,
which we treat in full, is central for the results we obtain.

The remainder of this paper is organized as follows. We
develop a model for the chiral metal in Sec. II and show how
bosonization can be used to give an exact description of the
collective excitations. Section III contains calculations of the
temperature dependence of the conductivity. We study con-
ductance fluctuations in Sec. IV, and discuss our results in
Sec. V.

II. MODELING THE CHIRAL METAL

In this section we summarize the physical ingredients that
are important for modeling transport between edge states in
multilayer conductors and set out the lengthscales that char-
acterize the system. We introduce a Hamiltonian in terms of
fermionic operators for edge electrons. We bosonize this
Hamiltonian, obtaining a result which is quadratic in boson
operators if interlayer tunneling is omitted. Finally, we ex-
press the two-electron correlation function that is central to
transport calculations in terms of boson correlators.

A. Ingredients, lengthscales, and parameters

A multilayer conductor is illustrated in Fig. 1. We use
coordinates with the x axis parallel to the layer edges, and
treat a sample of N layers with layer index n and layer spac-
ing a. Consider the system in the presence of a perpendicular
magnetic field of strength B, with the chemical potential ly-
ing between the lowest and first excited Landau levels. In the
bulk of the sample, single-particle states at energies close to
the chemical potential are localized by disorder. At the
sample surface in this energy range, edge states propagate in
the confining potential Vedge�y� at a velocity v. Interactions
modify the confining potential and the edge velocity: we
denote by vF the velocity allowing for Hartree contributions.
Edge states have a width w in the y direction, which is set by
the magnetic length lB in a clean sample, and by the bulk
localization length � in the presence of impurities. We use a
one-dimensional decription of the edge state in each layer,
projected onto the x coordinate in the standard way.

Out theoretical treatment takes into account only one edge
state in each layer and is therefore appropriate for a system

in which electrons are spin polarized. In fact, some of the
experiments we refer to, including those on the temperature
dependence of conductivity,18 are for systems with a Landau
level filling factor per layer of �=2. It is appropriate to apply
our theory to these systems provided electrons with opposite
spin directions contribute additively and incoherently to the
conductivity.

The system of edge states can be characterized using three
lengthscales. First, impurities, which generate only forward
scattering with a phase shift, result in an elastic mean free
path lel, the distance over which a phase shift of order 2� is
accumulated. Second, temperature T in combination with the
velocity vF can be expressed in terms of the thermal length
LT=�vF /kBT. Third, interlayer tunneling with amplitude t�

can be parametrized by the characteristic distance l� through
which electrons move in the chiral direction between tunnel-
ing events. The value of l� can be expressed in terms of the
interlayer diffusion constant D: since, for small t�, interlayer
hops are of length a and occur at a rate vF / l�, one has l�

=a2vF /D. In turn, this can be expressed in terms of the con-
ductivity, using the Einstein relation and the fact that the
density of states is n= �2�a�vF�−1, giving l�=a�e2 /2����.9

Parameter values for the experiments of Refs. 3, 17, and
18 are as follows. Samples consist of N�50–100 layers
with spacing a=30 nm. The mean free path is estimated17 to
be lel�30 nm. An upper bound on vF, reached in samples
with a steep confining potential, is vF��ClB, where �C is
the cyclotron frequency. It has the value �ClB=1.7
�105 ms−1 in GaAs at 6.75 T. With this value, LT�10 	m
at T=100 mK. Finally, for a surface conductivity of �=1.3
�10−3e2 /2�� �which lies within the observed range at �
=2�, l�=40 	m. We are therefore concerned with the regime
lel
LT
 l�, and this motivates our approach, based on a
perturbative treatment of tunneling.

B. Fermionic Hamiltonian

Our model Hamiltonian H=H0+Hdis+Hhop+Hint has
single-particle terms H0, Hdis, and Hhop, representing, re-
spectively, free motion along each edge, impurity scattering,

FIG. 1. A multilayer conductor, showing the orientation of axes
in our coordinate system, with edge states propagating in the x
direction. The form of the confining potential Vedge�y� is illustrated
top left. Interlayer tunneling amplitude and spacing are denoted by
t� and a, respectively.
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and interlayer hopping, and a contribution Hint from Cou-
lomb interactions. We write it in terms of the electron cre-
ation operator cqn

† for an edge state with wave vector q in
layer n, taking sample perimeter L so that q=2�nq /L, where
nq is integer. The creation operator at a point is

�n
†�x� =

1
�L

�
q=−�

�

e−iqxcqn
† . �2.1�

We normal order the Hamiltonian with respect to a vacuum
in which states are occupied for q
0 and empty otherwise.
Then

H0 = − i�v�
n
� dx:�n

†�x��x�n�x�: , �2.2�

and

Hhop = �
n
� dx�t��n+1

† �x��n�x� + H.c.� . �2.3�

The interaction contribution, written in terms of the projected
density ��x�=�n

†�x��n�x� with a two-particle potential
Un−m�x−x��, is

Hint =
1

2�
nm
� dx� dx�:�n�x�Un−m�x − x���m�x��: .

�2.4�

Finally, writing the impurity potential projected onto the
edge coordinate in the nth layer as Vn�x�, we have

Hdis = �
n
� dx Vn�x�:�n

†�x��n�x�: . �2.5�

We take Vn�x� to be Gaussian distributed with zero-range
correlations and strength �: �Vn�x��av=0 and
�Vn�x�Vn��x���av=��n,n���x−x��. This disorder term can be
removed by means of a gauge transformation on the fermi-
onic field operators, under which

�n
†�x� → ei�n�x��n

†�x� , �2.6�

where

�n�x� =
1

�v
�

0

x

dx�Vn�x�� �2.7�

is the phase shift acquired under forward scattering from the
impurities. The elastic scattering length is related to the dis-
order strength � by lel=�2v2 /�. Under this gauge transfor-
mation, H0+Hdis→H0. The hopping term, however, picks
up a dependence on the disorder, and after the transformation
is

Hhop = �
n
� dx�t��n,x��n+1

† �x��n�x� + H.c.� , �2.8�

where

t��n,x� = t�ei��n+1�x�−�n�x��. �2.9�

We ignore the effects of this gauge transformation on the
boundary conditions applying to �n�x�, which is justified at
temperatures large compared to the single-particle level
spacing. With this, H0+Hint is unaffected by the gauge trans-
formation, and gauge transformed operators cqn

† can be de-
fined by inverting Eq. �2.1�. All further references in this
paper to fermionic operators are to the gauge-transformed
ones.

C. Bosonized Hamiltonian

We bosonize the Hamiltonian in the standard way, ex-
pressing H0+Hint in terms of noninteracting collective
modes. Since Hhop transforms into a cosine function of the
boson creation and annihilation operators, we treat it pertur-
batively. To justify this, we require that t� should be small.
Since t� is a relevant perturbation,25 we also require that
temperature should not be too small: LT
 l�.

Boson creation operators are defined in the usual way
�see, for example, Ref. 31� as

bqm
† =

i

�nq�1/2 �
r =−�

�

cr+q,m
† cr,m �2.10�

for q�0. Fourier transforming the interaction potential and
expressing the result as a velocity, we introduce

un−m�q� = �2���−1� dx eiqxUn−m�x� . �2.11�

The Fermi velocity renormalized by Hartree interactions is
vF=v−�nun�0�, where the divergence which arises in the
sum in the case of Coulomb interactions is canceled by con-
tributions to v from a neutralizing background. The Hamil-
tonian in the absence of hopping �and omitting fermion num-
ber terms which appear at electron densities different from
that of our vacuum� is

H0 + Hint = �
mn

�
q�0

��vF + un−m�q��qbqn
† bqm. �2.12�

The combination H0+Hint is diagonalized by Fourier
transform in the layer index n. We impose periodic boundary
conditions on n, define the wave vector k=2nk� /Na, with nk
integer and −� /a
k�� /a, and set

bqk
† =

1
�N

�
n=1

N

einkabqn
† , �2.13�

and

u�q,k� = �
n

einkaun�q� . �2.14�

Then

H0 + Hint = �
k

�
q�0

���q,k�bqk
† bqk, �2.15�

where the excitation frequencies are

��q,k� = �vF + u�q,k��q . �2.16�
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The Coulomb interaction, regularized at short distances
by a finite width w for edge states, has the form

Un�x� =
e2

4��0�r

1
�x2 + n2a2 + w2

. �2.17�

The edge state width w is set by the localization length � of
localized states in the bulk of the sample at the Fermi energy.
In a clean sample with well-separated Landau levels, �� lB,
but in a highly disordered sample with Landau levels that are
broad in energy one may have �� lB. The value of w proves
important in matching our results to experiment, as we will
discuss in Sec. III D.

We write the Fourier transform, using the Poisson sum-
mation formula, as

u�q,k� = vF
�

2�
�

p
� � dx dz

e−i�qx+kz+2�pz/a�

�x2 + z2 + w2
�2.18�

and find

��q,k� = vFq	1 + � �
p�Z

Qp
−1e−wQp
 �2.19�

with Qp
2 =q2+ �k+2�p /a�2 and p integer. Here, the inverse

screening length ��e2 /4��r�0�vFa characterizes the inter-
action strength.

For isolated layers, taking the limit of large a, the sum on
p may be replaced with an integral and one recovers the
dispersion relation of edge magnetoplasmons in a single
layer system, known from previous work.32,33

For the multilayer system the expression for the disper-
sion relation may be simplified in two stages. First, if the
layer spacing is small �a
w� the sum on p may be omitted,
so that

��q,k� = vFq	1 +
�e−w�q2+k2

�q2 + k2 
 . �2.20�

If, in addition, interactions are weak �w
�−1�

��q,k� = vFq	1 +
�

�q2 + k2
 . �2.21�

In the following we obtain detailed results for systems with
wide edges using the dispersion relation of Eq. �2.20�, and
for systems with narrow edges using the dispersion relation
of Eq. �2.21�.

D. Two-particle correlation function

A central quantity in our calculations of transport proper-
ties is the two-fermion correlation function

G�x,t� � ��n
†�x,t��n+1�x,t��n+1

† �0,0��n�0,0�
 , �2.22�

where �. . .
�Tr�e−�H . . . � /Tr�e−�H� and operators are written
in the Heisenberg representation, with O�t�=eiHt/�Oe−iHt/�.
We evaluate this in the absence of tunneling, so that H
=H0+Hint.

As a first step, define the boson field operator34

�n�x� = − �
q�0

nq
−1/2�e−iqxbqn

† + eiqxbqn�e−�q/2, �2.23�

where � is a short-distance cut-off. Omitting Klein factors
�which cancel from G�x , t��, the fermion and boson field op-
erators are related by

�n�x� = �2���−1/2 exp�− i�n�x�� . �2.24�

The correlation function is

G�x,t� =
1

�2���2 �ei�n�x,t�e−i�n+1�x,t�ei�n+1�0,0�e−i�n�0,0�
 .

�2.25�

We define its logarithm S via

G�x,t� �
1

�2��2eS. �2.26�

Because H is harmonic, S can be expressed as

S = − 1
2 ���n�x,t� − �n+1�x,t� + �n+1�0,0� − �n�0,0��2


+ 1
2 ��n�x,t� − �n+1�x,t�,�n�0,0� − �n+1�0,0�� − 2 ln � .

�2.27�

The thermal average and the commutator appearing in this
expression can be evaluated in the standard way via a mode
expansion, by expressing �n�x , t� in terms of boson creation
and annihilation operators using Eq. �2.23�. Taking the ther-
modynamic limit and replacing wave vector sums with inte-
grals, with �=1/kBT, we arrive at

S�x,t,T� = − 2 ln � −
a

�
�

−�/a

�/a

dk�1 − cos ak��
0

� dq

q
e−�q

� �coth�����q,k�/2��1 − cos�qx − ��q,k�t��

+ i sin�qx − ��q,k�t�� . �2.28�

It is useful to note that

G�− x,− t� = G�x,t�*, �2.29�

and also define a frequency-dependent correlator,

G̃�x,�� =� dt ei�tG�x,t� . �2.30�

III. CONDUCTIVITY

In this section we express the conductivity ��T� obtained
from a Kubo formula in terms of the two-fermion correlation
function calculated in Sec. II D. We also set out the steps
required for a numerical evaluation of ��T�, present our re-
sults, and compare them with the experimental data of Ref.
18.

A. Kubo formula for conductivity

The operator for the interlayer current density between
layers n and n+1 is
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jn�x� =
ie

�
�t��n,x��n+1

† �x��n�x� − H.c.� . �3.1�

The real part of the conductivity at frequency � is given by
the Kubo formula35

���,T� =
ia

��L
�
m
�

−�

�

dt sin �t� dx� dx�

� � jn�x,t�jm�x�,0�
 . �3.2�

To leading order, the interlayer hopping appears only in the
current operators, and we evaluate the thermal average using
a Hamiltonian from which interlayer hopping is omitted.

Substituting for jn�x , t� using Eq. �3.1� gives an expres-
sion for the conductivity of the chiral metal with a given
configuration of disorder: to leading order in t��n ,x�,

���,T� =
2iaL

��
	 e

�L

2� dx� dx��

−�

�

dt sin �t

� t��n,x�t�
* �n,x��

� ��n
†�x,t��n+1�x,t��n+1

† �x�,0��n�x�,0�
 .

�3.3�

Averaging over disorder configurations yields

�t��n,x�t�
* �n,x���av = t�

2 e−�x�/lel �3.4�

and hence

���,T� =
e2

h

8�ialelt�
2

��2 � dx

2lel
e−�x�/lel�

−�

�

dt sin �t

� ��n
†�x,t��n+1�x,t��n+1

† �0,0��n�0,0�
 . �3.5�

This result can be expressed in terms of the time or
frequency-dependent two-particle correlation functions de-
fined in Sec. II D. Setting �=0 we find

��T� = −
e2

h

8�alelt�
2

�2 � dx

2lel
e−�x�/lel�

−�

�

dt t Im G�x,t�

�
e2

h

8�alelt�
2

�2 � dx

2lel
e−�x�/lel Re���G̃��x,����=0� .

�3.6�

For a boson dispersion relation ��q ,k�=vFq, as resulting
from the Hartree approximation, the fermion correlation
function factorizes into independent contributions from each
layer. These have the form

��n
†�x,t��n�0,0�
 =

1

2�
�

−�

�

dk
eik�vFt−x�

1 + e��vFk �3.7�

and we find a temperature-independent conductivity

���,T� =
e2

h

2t�
2 lela

�2vF
2

1

1 + �2lel
2 /vF

2 , �3.8�

which in the zero-frequency limit has the value

�0 =
e2

h

2t�
2 lela

�2vF
2 . �3.9�

More generally, with an arbitrary boson dispersion rela-
tion a simplification of Eq. �3.6� is possible for lel
LT, since
G�x , t� varies with x only on the scale LT while the correlator
�t��n ,x�t�

* �n ,x���av has range lel. We get

��T� = − 4��0vF
2�

−�

�

dt t Im G�0,t�

� 4��0vF
2 Re���G̃��0,����=0� . �3.10�

B. Evaluation of �„T…

To find the temperature dependence of the conductivity
we must combine Eqs. �2.26�, �2.28�, and �3.10�. A first step
before the numerical evaluation is to isolate the dependence
on the cut-off � and take the limit �→0, as we describe in
this section.

We start from the expression given in Eq. �2.28� for the
logarithm of the two-particle correlation function, which we
evaluate at x=0. It is convenient to separate out a zero-
temperature contribution by writing

S�t,T� � S�t,0� + �S�t,T� �3.11�

and also to split S�t ,0� into real and imaginary parts, with

S�t,0� � U�t� − iV�t� , �3.12�

where U�t� and V�t� are real for t real. Then, writing

��T� = ��0� + ���T� , �3.13�

we obtain from Eq. �3.10�

��0� =
2�0vF

2

�
�

0

�

dt teU�t� sin V�t� �3.14�

and

���T� =
2�0vF

2

�
�

0

�

dt teU�t� sin V�t��e�S�t,T� − 1� .

�3.15�

In the case of a linear boson dispersion relation ��q ,k�
=vFq the functions U�t� and V�t� have the forms

Ulin�t� = − ln��2 + vF
2t2� �3.16�

Vlin�t� = � − 2 tan−1��/vFt� . �3.17�

Adding and subtracting these expressions from the ones for
U�t� and V�t� with a general dispersion relation, we find
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U�t� = Ulin�t� +
a

�
�

−�/a

�/a

dk�1 − cos ak�

� �
0

� dq

q
e−�q�cos„��q,k�t… − cos�vFqt��

�3.18�

and

V�t� = Vlin�t� +
a

�
�

−�/a

�/a

dk�1 − cos ak�

� �
0

� dq

q
e−�q�sin„��q,k�t… − sin�vFqt�� .

�3.19�

Finally, we have

�S�t,T� = −
a

�
�

−�/a

�/a

dk�1 − cos ak��
0

� dq

q
e−�q

��1 − cos ��q,k�t��coth	����q,k�
2


 − 1� .

�3.20�

The advantage of casting the equations for the conductiv-
ity in this form is that the momentum integrals in Eqs.
�3.18�–�3.20� can be performed at �=0, since the integrands
decay fast enough at large q for convergence. Dependence on
� is confined for small � to the functions Ulin�t� and Vlin�t�,
and from Eqs. �3.16� and �3.17� one sees that it is important
only for t�O���. It is therefore convenient to separate the
integration range in Eq. �3.14� into two parts, 0
 t�R and
R
 t��, with �
R
1. In the first interval U�t�=Ulin�t� and
V=Vlin�t�; in the second interval one can set �=0.

Let the contributions to ��0� from the two intervals be
��1� and ��2�. Writing t�=vFt /� we have

��1� =
2�2�0

�
�

0

R�−1

dt� t�eU�t�� sin V�t�� �3.21�

which gives

��1� =
2�0

�
�

0

�

dt� t�
1

1 + t�2

2t�

1 + t�2 = �0. �3.22�

The evaluation of ��2� requires a numerical calculation, and
we present those results in Sec. III D.

Finally, turning to the conductivity at nonzero tempera-
ture, we note that there are no extra difficulties in the evalu-
ation of �� using Eq. �3.15�. The function �S�t ,T�, can be
computed numerically with �=0, and �S�t ,T�→0 as t→0,
so that ���T� has no contribution from the integration inter-
val 0
 t�R in the limit �→0.

In summary, when evaluating ��0� or ���T� using Eqs.
�3.14� and �3.15�, the functions U�t�, V�t�, and �S�t ,T� may
be evaluated numerically by setting �=0 in Eqs.
�3.18�–�3.20�, and the results used in Eq. �3.14� to find ��2�.
To this one must add ��1�=�0 in order to obtain the zero-

temperature conductivity ��0�. These equations combine
with Eq. �3.15� for ���T� to give a computationally trac-
table, though nontrivial, expression for ��T�.

C. Conductivity at zero temperature

The conductivity at zero temperature and zero frequency
is determined solely by the low energy limit of the group
velocity for excitations, since no other modes are excited as
T ,�→0. This zero-frequency limit is reached as q, the
wave-vector component in the chiral direction, approaches
zero. The group velocity ����q ,k� /�q�q=0�vF��k� is, in
general, a function of k, the wave-vector component in the
interlayer direction.

To determine ��0�, a useful procedure is to consider a
model dispersion relation which is exactly linear in
q :��q ,k�=vFq��k�. A linear dispersion relation is also of
interest in its own right. It arises from an interaction that in
real space is short range in the chiral direction, x :Un�x�
=gn��x�, giving ��k�=1+ �2��vF�−1�neiknagn. With a linear
dispersion relation, q integrals in the expressions leading to
G�x , t� can be evaluated analytically, greatly simplifying the
calculation of conductivity. As we show in the following, for
the limit lel
LT that we consider, a dispersion relation linear
in q yields a temperature-independent value of conductivity.
For interactions, such as the Coulomb potential, that are not
short range in x, linearization of the dispersion relation gives
only an approximation to G�x , t�. The value of ��0� that
results from integrating this approximate form for G�x , t� is
nevertheless exact �at the leading order in t� considered
throughout this paper�. This fact is clear on physical grounds,
since we have correctly accounted for the dispersion relation
at low energy. It may also be derived formally, as follows.

Starting from Eq. �3.10�, we deform the contour for the
time integral into the semicircle at infinity in the lower half
of the complex plane, writing t= tR+itI with tR and tI real.
Then in Eq. �2.28� we have the factor

�
0

�

dq
1

q
exp�− �q − iqx − itR��q,k� + tI��q,k�� .

�3.23�

This must be evaluated for all values of t lying on the
deformed time integration contour. When �tR� is large,
exp�−itR��q ,k�� is a rapidly oscillating function of q, and the
q integral can be computed using the method of stationary
phase: since ��q ,k� is a monotonically increasing function of
q, the dominant contribution comes from the vicinity of the
end-point at q=0. Similarly, when tI is large and negative,
exp�tI��q ,k�� is small for most values of q, and the q inte-
gral can be computed using steepest descents: again, the
dominant contribution comes from the vicinity of q=0. In
both instances we may approximate ��q ,k� by its form lin-
earized about q=0; after linearization the q integral can be
evaluated analytically.

This calculation yields
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G�0,t� =
1

�2��2	 �t/��

sinh��t/���

2 1

vF
2

1

�� + it�2

� exp	−
2a

�
�

0

�/a

dk�1 − cos ak�ln ��k�
 .

�3.24�

Substituting this into Eq. �3.10� we obtain

��T� =
2�0

�
exp	−

2a

�
�

0

�/a

dk�1 − cos ak�ln ��k�

�� dt�t2

��2 + t2�2	 �t/��

sinh��t/���

2

. �3.25�

In the limit �→0, the t integral gives � /2 regardless of
temperature, demonstrating that, for systems with a linear
dispersion relation, in the regime lel
LT, ��T� is indepen-
dent of T. We find

��T� = �0 exp	−
2a

�
�

0

�/a

dk�1 − cos ak�ln ��k�
 .

�3.26�

This is our final result for the dependence of ��0� on the
dispersion relation as parametrized by ��k�.

D. Results

We are now in a position to calculate the conductivity for
a system with Coulomb interactions by evaluating numeri-
cally the formulas we have derived: first, the zero-
temperature value using the results from Sec. III C, and then
the full temperature-dependent conductivity using the results
from Sec. III B. We investigate the variation of the conduc-
tivity with two parameters, the Fermi velocity vF, and the
edge state depth w, and seek values of these parameters for
which our results match the experimental data of Ref. 18.
The parameters enter the dispersion relation ��q ,k� directly,
and vF also appears in the inverse screening length �. The
interaction strength is set by the combination �a �recall that
a is the layer spacing�. A scale for temperature is set by vF
and a, via T0��vF /akB, so that T /T0=a /LT. A scale for
conductivity is given by �0, its value in the Hartree approxi-
mation.

At a qualitative level, the effect of interactions on the
conductivity can be anticipated by starting from the expres-
sion given in Eq. �3.9� for this quantity within the Hartree
approximation. In turn, that expression can be understood in
terms of a calculation of the interlayer tunneling rate, based
on the Fermi golden rule: the rate involves the square of a
matrix element between initial and final states on adjacent
layers, and a power of the density of states for both the initial
and the final states. The squared matrix element, allowing for
disorder which affects phases of initial and final states sepa-
rately, contributes a factor of t�

2 lel to �0. The form of the
density of states on a single edge �2��vF�−1, implies that
�0�vF

−2. Returning to a full treatment of the interacting sys-
tem, we note that the effect of interactions is to generate an

energy-dependent group velocity in place of a constant
value, vF. In effect, the value of ��T� at a particular tempera-
ture involves a thermal average of the inverse square of the
group velocity. Because Coulomb interactions increase the
group velocity at low energy, they decrease conductivity at
low temperature; equally, because the group velocity ap-
proaches vF at high energy and the conductivity approaches
�0 at high temperature.

Turning to detailed results, the dependence of ��0� on
w /a and �a is shown in Fig. 2, as obtained from Eq. �3.26�
using ��k�=1+�e−w�k� / �k�. Interactions reduce the value of
the conductivity, by a factor which is large if �a is large. The
variation of ��T� with T is illustrated in Fig. 3 for a system
with the dispersion relation appropriate for narrow edge
states, Eq. �2.21�. In this case the k integrals in Eqs. �3.18�
and �3.19� can be done analytically, leaving only the q and t
integrals to be evaluated numerically. Finally, the behavior of
��T� for a system with wide edge states �w�a� is presented
in Fig. 4. In this case the dispersion relation is as given in
Eq. �2.20�, analytical progress does not seem possible, and
integrals on k, q, and t must be evaluated numerically to
obtain ��T�. We note in passing that we checked that there
are only small changes to the results presented when using

FIG. 2. Conductivity at zero temperature, as a function of inter-
action strength, parametrized by inverse screening length � for vari-
ous edge state widths w.

FIG. 3. Dependence of conductivity on temperature for narrow
edge states, with interaction strengths �a=1 and �a=5.
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the more complete form of the interaction given in Eq.
�2.19�, including the sum on p.

Examining these results, it is evident that the general
shape of ��T� does not vary greatly with parameters: the
temperature dependence is quadratic at low temperatures, has
a roughly linear region at intermediate temperatures, and ap-
proaches �0 in the high-temperature limit. The quadratic de-
pendence at low temperature is universal, but the extent of
the roughly linear region at intermediate temperature is
model dependent. Moreover, scales in this temperature de-
pendence change dramatically with parameter values. The
value of the dimensionless temperature T /T0 at the crossover
between the low and intermediate temperature regimes is de-
pendent on � �see Fig. 3� and varies even more strongly with
w �compare Figs. 3 and 4�. In addition, the magnitude of the
variation in ��T� between low and high T depends very
much on the values of w and �a. In order to reproduce the
experimental observation of a nearly linear increase in ��T�,
by about 7% between the temperatures of 50 and 300 mK,18

we require parameters which place the experimental tem-
perature window in the intermediate regime for behavior, so
that the quadratic variation of ��T� with T occurs only in a
temperature range below 50 mK, and the saturation of ��T�
occurs only above 300 mK. Since the available data are not
sufficiently detailed to justify a formal fitting procedure, we
instead survey the consequences of a range of parameter
choices in our results and examine the match to experimental
observations.

We begin by considering narrow edges states, using the
results shown in Fig. 3. Assuming vF��ClB, which repre-
sents an upper bound on vF, we have vF=1.7�105 ms−1.
With a=30 nm, we find �a�1 and T0�40 K. Taking these
values, the variation in ��T� over the experimental tempera-
ture range is very small and quadratic, in disagreement with
observations. A reduction in the value of vF serves to de-
crease the temperature scale T0, and also increases �. It is
possible to generate approximately linear variation of ��T�
with T in the experimental temperature range by using a
sufficiently small value of vF �reduced from the upper bound
by �O�103��, but we know of no reason for vF to be so
small.

We therefore turn to theoretical results for wide edge
states, as illustrated in Fig. 4. In this case, we find that large
values of w greatly reduce the temperature range over which
��T� varies quadratically with T, and can lead to approxi-
mately linear variation in the experimental temperature
range. A second consequence of large w is that the conduc-
tivity change ����−��0� is reduced. This tendency can be
counteracted by increasing the interaction strength �a. We
find that observed behavior can be reproduced by taking w
=4a=120 nm and vF=3�103 ms−1 �giving �a=50�. The
temperature dependence of ��T� obtained using these param-
eter values is shown in Fig. 5 for temperatures below
400 mK.

This choice of parameters, and its implications, merit fur-
ther discussion. First, we note that there are two separate
experimental indications that edge states have a width closer
to the value we have adopted, of 120 nm, than to the con-
ventionally expected value of lB�10 nm. One comes from
measurements of bulk hopping transport in multilayer
samples,36 which give a localization length of �=120 nm:
one expects w��. The other comes from studies of conduc-
tance fluctuations,19 discussed in Sec. IV. These yield a value
for the inelastic scattering length, from the amplitude of fluc-
tuations, and a value for the area of a phase-coherent region
perpendicular to the applied field, from the correlation field
for fluctuations. The ratio of this phase-coherent area to the
inelastic scattering length implies an edge state width which
is also much larger than lB: w�70 nm. Next, turning to the
value of vF, which we have taken 50 times smaller than for
edge states in a steep confining potential, we note that large
edge state width favors a small value for vF, because wide
edge states penetrate into the bulk of the sample where both
the confining potential gradient and the drift velocity of elec-
trons moving in this potential are small. Finally, we comment
on the fact that accepting a small value for vF implies a large
value for �0, if other parameters are unchanged. In fact, large
w acts in the opposite direction, to reduce the effective tun-
neling amplitude t� between edge states, since different por-
tions of the edge contribute to the amplitude with different

FIG. 4. Dependence of conductivity on temperature for wide
edge states with w=4a and interaction strengths �a=1 and �a
=50.

FIG. 5. Dependence of conductivity on temperature for w=4a,
with a=30 nm, vF=3�103 ms−1 and �0=1.893�10−3e2 /2�� �full
line�, compared with experimental data �points� taken from Fig. 2 of
Ref. 18 �data set for fractal 2�.
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phases, so that there are partial cancellations. To account for
the magnitude of the measured18 conductivity, 1.5
�10−3e2 /2��, using the value for the mean free path lel
=30 nm derived from magnetoresistance measurements17 re-
quires an effective value of t� about 50 times smaller than
bare estimate3 of 0.12 meV. This is a surprisingly strong
supression of tunneling, though possible if edge states in
successive layers have different displacements from the sur-
face, as suggested in Ref. 18.

IV. CONDUCTANCE FLUCTUATIONS

It is found experimentally that mesoscopic fluctuations in
the conductance of the chiral metal are induced by small
changes of magnetic field within a quantum Hall plateau.12,19

These conductance fluctuations are observed in samples with
a perimeter that is several times larger than the estimated
inelastic scattering length. Under such conditions, it is not
initially clear why the magnetic field component perpendicu-
lar to layers in the sample should influence conductance in
this way, since in the simplest picture electron trajectories
enclose flux only by encircling the sample. More realisti-
cally, a number of possibilities are evident:19 the sample
walls may lie at an angle to the layer normal, either on av-
erage or because of surface roughness, or finite edge state
width may be important. In our theoretical treatment of con-
ductance fluctuations we avoid specific assumptions about
this aspect of the system by considering fluctuations that
result from variations in a magnetic field component B� per-
pendicular to the sample surface. The amplitude of fluctua-
tions is not affected by this choice. By contrast, the scale for
the correlation field of fluctuations is dependent on the model
chosen for flux linkage.

In a general setting, there are two possible reasons for the
amplitude of conductance fluctuations to decrease with in-
creasing temperature. One is because of a decrease in the
inelastic scattering length; the other is because of thermal
smearing. In the case of a chiral metal only the first mecha-
nism operates, because states at different energies are per-
fectly correlated.9 In this sense, conductance fluctuations of-
fer a rather direct probe of interaction effects.

In this section, in place of conductivity �, we are con-
cerned with the conductance g=�L /Na of a finite sample
and fluctuations �g=g− �g�av about its average value. We de-
note the average within the Hartree approximation by g0
��0L /Na. We derive an analytic expression for the autocor-
relation function of conductance fluctuations induced by B�.
We focus on its temperature dependence at low temperatures,
obtaining a scaling form for the regime in which ��T�
���0�. We compute the scaling function, evaluate our ex-
pressions numerically, and compare our results with the ob-
servations of Ref. 19.

A. Correlation function

The conductance autocorrelation function

F��B� = ��g�B���g�B� + �B��av �4.1�

is characterized by the amplitude F�0� and by the correlation
field. An obvious field scale is set by a flux density of one

flux quantum �0 through a rectangle with sides proportional
to the layer spacing and the thermal length, and we define
B0=�0 /2�aLT=� /eaLT. We also introduce a dimensionless
field variation b=�B /B0, which depends on temperature
through LT, and a temperature-independent reduced field h
which has dimensions of a wave vector: h=b /LT�e�B /a�.

With a suitable choice of gauge, the transverse field enters
the Hamiltonian only as a phase for interlayer hopping. Let
us take, for convenience, B�=0, in the presence of nonzero
�B Eq. �2.9� is modified to

t��n,x� = t�ei��n+1�x�−�n�x�+hx�. �4.2�

This additional, field-dependent phase alters Hhop and conse-
quently the current operator.

An expression for the conductance of a sample with a
specific disorder configuration is obtained by scaling Eq.
�3.3� with the sample dimensions. Taking account of the
field-dependent phases in the current operator and substitut-
ing into the definition of F��B�, after some manipulation we
arrive at

F��B� =
g0

2�2vF
4

L2lel
2 N2 �

n,m
� dx� dx�� dy� dy�� dt it

�G�x − x�,t� � dt� it�G�y − y�,t���eih�x−x��

+ e−ih�x−x���eC�x,x��eC�y,y���eDnm�x,x�;y,y��

+ e−Dnm�x,x�;y,y�� − 2� . �4.3�

Two contributions to this expression arise from the disorder
average:

C�x,x�� = − 1
2 ���n+1�x� − �n�x� − �n+1�x�� + �n�x���2�av

�4.4�

and

Dnm�x,x�;y,y�� = ���n+1�x� − �n�x� − �n+1�x�� + �n�x���

� ��m+1�y� − �m�y� − �m+1�y�� + �m�y����av.

�4.5�

Both may be evaluated using the result �for x ,y�0�

��n�x��m�y��av =
�nm

lel
min�x,y� . �4.6�

The equation for C gives

eC�x,x�� = e−�x−x��/lel, �4.7�

which in the limit of small lel can be written 2lel��x−x��. The
expression for D is more complicated: one finds

Dnm�x,x�;y,y�� =
R�x,x�;y,y��

lel
�2�nm − �n+1,m − �n−1,m� .

�4.8�

The function R�x ,x� ;y ,y�� gives the overlap between the
two directed intervals on the real line x→x� and y→y�: for
example, R�1,5 ;4 ,9�=−R�5,1 ;4 ,9�=1. On substituting
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these expressions for C and D into Eq. �4.3�, we obtain

F�b� =
g0

2�2vF
4

L2lel
2 N

� dx� dx�� dy� dy��eih�x−x�� + e−ih�x−x���

�� dt itG�x − x�,t� � dt� it�G�y − y�,t��e−�x−x��/lel

� e−�y−y��/lel�e2R�x,x�;y,y��/lel + e−2R�x,x�;y,y��/lel − 2

+ 2eR�x,x�;y,y��/lel + 2e−R�x,x�;y,y��/lel − 4� . �4.9�

On examining where the weight of the integrand lies with
respect to the spatial integrals in Eq. �4.9�, one sees that the
term in braces vanishes except in places where R�0. We
consider different types of contributions from these regions,
and keep only those which are leading order for LT� lel.
First, consider regions in which �x−y�� lel but �x−x��� lel.
The small factor e−�x−x��/lel is compensated by the first term in
the braces if �x�−y��� lel. Then

e−�x−x��/lele−�y−y��/lele2R�x,x�;y,y��/lel = e�−�x−y�−�x�−y���/lel.

�4.10�

Since G�x , t� has a range in x of order LT, the resulting con-
tribution to F��B� is O�LT/L�. Another contribution of the
same order arises from regions where �x−y��� lel and �x�
−y�� lel. Subleading contributions come from regions where
all four spatial variables are within an elastic length of one
another. These contributions are O�lel /L�.

Keeping only the leading order terms, the expression for
the correlation function has the much simplified form

F��B� =
4g0

2�2vF
4

NL
� dx�eihx + e−ihx� � dt it� dt� it�

� �G�x,t�G�x,t�� + G�x,t�G�− x,t��� . �4.11�

Using the symmetry of G�x , t� �see Eq. �2.29�� one finds

F��B� =
g0

2

NL
�

−�

�

dx eihx�f�x��2, �4.12�

where

f�x� � − 4�vF
2�

−�

�

dt t Im G�x,t� . �4.13�

B. Computing the correlation function

In order to compare our theory for conductance fluctua-
tions with experiment, we need to be able to calculate F��B�
for various values of the temperature and parameters vF and
w. Although it is possible to use a computer to evaluate the
form of F�B�� given in Eq. �4.12� without further approxi-
mation, it is far easier to make progress by calculating G�x , t�
for a linearized dispersion relation. This approach is exact in
the low-temperature regime defined by the condition ��T�
���0�, and we proceed to use it in our calculations.

In the low-temperature regime where the linearized dis-
persion relation may be used, F�B�� has a scaling form. To

make this apparent, it is helpful to recast equations in terms
of dimensionless variables, characterizing �B by b in place
of h, and introducing x̂=x /LT and t̂=vFt /LT. Writing

G�x , t�= �2�LT�−2Ĝ�x̂ , t̂� and f�LTx̂�= f̂�x̂�, for a linear disper-
sion relation ��q ,k�=qvF��k�, we have

Ĝ�x̂, t̂� = exp�− 2a

�
�

0

�/a

dk�1 − cos ak��ln�x̂ − ��k�t̂�

− ln	 ����k�t̂ − x̂�/��k�

sinh�����k�t̂ − x̂�/��k��

��

� exp�− ia�
0

�/a

dk�1 − cos ak�sgn�x̂ − ��k�t̂��
�4.14�

and

f̂�x̂� = −
1

�
�

−�

�

dt̂ t̂ Im�Ĝ�x̂, t̂�� . �4.15�

Then the conductance autocorrelation function has the form

F��B� =
g0

2LT

NL
C��B/B0� �4.16�

with scaling function

C�b� = �
−�

�

dx̂ eibx̂� f̂�x̂��2. �4.17�

In this form F��B� depends on temperature T and magnetic
field difference �B only through the scaling variables LT/L
and �B /B0. The thermal length LT plays the role of an in-
elastic scattering length, in the sense that it determines both
the amplitude of conductance fluctuations and �through B0�
their correlation field. Such behavior is initally surprising,
since LT is independent of interaction strength. In fact, of
course, the form of the scaling function C�b� depends para-
metrically on interaction strength.

For weak interactions this dependence of C�b� on � can
be extracted analytically, as follows. First, note from Eq.
�2.21� that ��k�=1+� / �k�. Also, in Eqs. �4.14�, �4.15�, and
�4.17�, change variables from x̂ , t̂ to y , p with x̂=y /� and t̂
=yp+y /�. Then

lim
�→0

Ĝ�y/�,p + y/��

� g�y,p� = exp�− 2a

�
�

0

�/a

dk�1 − cos ak�

� �ln�y�p + 1/k�� − ln	 �y�p + 1/k�
sinh��y�p + 1/k��
��

� exp�ia�
0

�/a

dk�1 − cos ak�sgn�y�p + 1/k���
and
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lim
�→0

f̂�y/�� � f̃�y� = −
y2

�
�

−�

�

dp p Im�g�y,p�� .

The � dependence of the scaling function is hence isolated
for small � as

C�b� =
1

�
�

−�

�

dy exp�iyb/��� f̃�y��2, �4.18�

demonstrating that the amplitude of conductance fluctuations
grows and that the correlation field shrinks as interactions are
made weaker. In both cases, the variation implies an inelastic
scattering length that diverges as �−1 for weak interactions.
Such a dependence of the inelastic scattering length on inter-
action strength is long established in nonchiral, one-
dimensional conductors.37

In order to find the form of the scaling function and to
study its � dependence at general �, a three-dimensional nu-

merical integration is necessary. We compute Ĝ�x̂ , t̂�, then

f̂�x̂�, and then the scaling function C�b� itself.

C. Results

We illustrate the form of the scaling function C��B /B0�
for a range of parameter values in a sequence of three fig-

ures. Its dependence on interaction strength �a is shown for
narrow edge states in Fig. 6 and for w=a in Fig. 7. In both
cases, smaller interaction strength leads to a larger amplitude
for conductance fluctuations and a smaller correlation field,
as may be anticipated on the grounds that weaker interac-
tions lead to a longer inelastic scattering length. In Fig. 8
C��B /B0� is shown for �=50 and w=4a, the parameter val-
ues suggested by the comparison of our conductivity calcu-
lations with experiment. We discuss experimental data on
conductance fluctuations in Sec. IV D. Finally, the increase
in the amplitude of conductance fluctuations with decreasing
� is illustrated in Fig. 9.

D. Comparison with experiment and previous theory

The exact treatment of disorder and interactions provided
by the calculations we have described presents an opportu-
nity to test the standard theoretical treatment of conductance
fluctuations, in which a single inelastic scattering length lin,
or equivalently a scattering rate vF / lin is used as a cut-off in
perturbation theory. For the chiral metal, such calculations
have been described in Ref. 9. They yield a Lorentzian scal-
ing function

FIG. 6. C��B /B0� for narrow edge states and �a=0.6, 0.8, and
1.

FIG. 7. C��B /B0� for w=a and �a=0.6, 0.8, and 1.

FIG. 8. C��B /B0� at w=4a and �a=50.

FIG. 9. Conductance fluctuation amplitude as a function of in-
teraction strength �a at w=0 �full line�, and asymptotic behavior
calculated analytically for small �a �dashed line�.
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F��B� =
2g0

2

NL

lin

1 + z2 �4.19�

with z=2��Blina /�0. A comparison between the functional
form we obtain for F��B� and a Lorentzian is given in Fig. 8:
while the two functions are similar, the discrepancies are
worth attention because they indicate behavior which cannot
be characterized by a single relaxation time. A similar com-
parison can be made in the Fourier transformed domain, in
terms of the function f�x�. To reproduce Eq. �4.19� from our
Eq. �4.12�, we would require lin=LT and

f̂�x̂� = e−�x̂�/2, �4.20�

where an exponential decay is indicative of a single lifetime

lin /vF for excitations. The form we obtain for f̂�x̂� is shown
in Fig. 10. The absence of a cusp at x=0 indicates that there
is of a range of relaxation times in the system. In addition,
the fact that f�0��1 is an interaction effect �from Eq. �3.10�
one sees that f�0�=��0� /�0� not allowed for in the standard
perturbative treatment.

We close this section with a comparison between the ex-
periments of Ref. 19 and our results, using the same param-
eters, �a=50 and w=4a, that provided a match for the be-

havior of ��T�. For the experimental base temperature of T
=70 mK, we use our approach to determine the amplitude of
conductance fluctuations. As a way to present the result, we
then follow the experimental analysis19 in using Eq. �4.19� to
obtain a value for lin of 0.3 	m. The experimental value,
extracted in the same way, is lin�1 	m. Since the calculated
amplitude of conductance fluctuations varies by several or-
ders of magnitude over the range of parameter values we
have investigated, and since no new adjustment of param-
eters was involved in our discussion of conductance fluctua-
tions, we find the rough agreement between these two values
of lin very encouraging.

V. CONCLUSIONS

In summary, for the system of weakly coupled quantum
Hall edge states that we have studied, bosonization provides
a very complete treatment of the interplay between electron-
electron interactions and disorder. We have shown that inter-
action effects can account for the observed temperature de-
pendence of the interlayer conductivity, provided we allow
for finite edge state width and adopt a value for the edge state
velocity that is rather smaller than previously assumed. We
have investigated conductance fluctuations within the same
theoretical approach, showing how they are suppressed with
increasing temperature, with a characteristic lengthscale LT
�T−1. Encouragingly, the same parameter values used to
match the measured behavior of conductivity reproduce ap-
proximately the observed fluctuation amplitude. From a the-
oretical viewpoint, it is interesting that such dephasing ef-
fects can be generated from a description based on harmonic
collective modes, simply via the nonlinear relation between
boson and fermion operators.
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