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Slab lenses formed from nonmagnetic anisotropic media are described. In the case of a uniaxial medium, the
requirement is �xx�0,�zz�0,z being the uniaxis direction, normal to the front and back optical surfaces of the
lens. The properties of the lenses are similar to those of lenses made from a negative index medium. However,
they only function in p polarization and the image is not free of aberrations. An example of a suitable medium,
applicable to far-infrared frequencies, is a crystal of triglycine sulfate.
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I. INTRODUCTION

One of the most exciting prospects associated with the
recent surge in interest in negative refractive index materials
is the possibility of slab lenses, first proposed by Veselago in
1968.1 Both sides of a lens of this type would be flat and
parallel to each other, yet an object on one side of the lens
would project a real image on the other side. Pendry2 pre-
dicted that such a lens could, in fact, act as a so-called “su-
perlens,” producing images smaller than the traditional dif-
fraction limit would allow. The type of material originally
suggested by Veselago had both the dielectric function � and
magnetic permeability � negative �double negative medium�.
In the special case of �=−1 and �=−1, perfect reconstruc-
tion of the source field should be possible. Artificial struc-
tures using split-ring resonators3,4 have been proposed to
give negative effective � and � values, and negative refrac-
tion has been confirmed experimentally in such structures in
the microwave region.5,6 Alternative artificial photonic crys-
tals have also been shown to exhibit negative refraction.7–15

The lensing properties of slabs of both of these types of
materials have been convincingly demonstrated,16–19 and
some promising advances, including subwavelength imag-
ing, have been made. Despite these successes, a perfect lens
of the type described by Pendry3 would require the use of a
material with very exacting properties.20,21 Practical achieve-
ment of such properties represents a considerable challenge.
Nevertheless, a much simpler slab lens, although far from
satisfying perfect lens criteria, may be conceivable. This pa-
per describes such a lens made from a simple anisotropic
medium. Although focusing is restricted to p-polarized radia-
tion and the image is not free of aberrations, the type of
imaging described by Veselago1 should indeed be possible.

II. NEGATIVE REFRACTION IN UNIAXIAL DIELECTRIC
MEDIA

The optics that can lead to negative refraction in a
uniaxial dielectric medium was described in previous
papers.22,23 Here we define a light ray to undergo negative
refraction when, on passing through an interface, the incident
and refracted ray lie on the same side of the surface normal.

Such behavior can of course occur trivially if none of the
principal axes lies along this normal, but the present paper is
not concerned with such cases, as they do not, in general,
lead to the type of lensing properties described in here.

Consider radiation passing through an interface in the ge-
ometry shown in Fig. 1�a�. Layer 1 is a vacuum layer and
layer 2 is a uniaxial nonmagnetic medium whose uniaxis lies
along z, normal to the interface. The in-plane wave-vector
component kx is then given by

kx = k0sin �i, �1�

where k0=� /c and �i is the angle of incidence. Boundary
conditions dictate that this kx value holds both sides of the
interface.

Maxwell’s equations may be applied in the two layers to
find the z components of the wave vector. In the first
�vacuum� layer, this gives

k1z
2 = k0

2 − kx
2. �2�

In the second layer, however, it is necessary to differentiate
between the behavior of the s-polarized waves �E field along

FIG. 1. �a� Directions of wave vectors and Poynting vectors for
p-polarization refraction at an interface between air and a uniaxial
medium with �xx=1, �zz=−1 for �i=30°. �b� Equal frequency con-
tours on each side of the interface for a single frequency value �for
simplicity, the negative k2z curve is not shown�. The value of kx for
�i=30° is shown as a dashed line joining the two contours.
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y, perpendicular to the plane of incidence formed by the
wave vector k and the surface normal� and p-polarized
waves �H field along y�.24 The former are commonly referred
to as ordinary waves and the latter as extraordinary waves.
The two solutions are, for s polarization,

k2z
2 = k0

2�xx − kx
2, �3�

and for p polarization,

k2z
2 = k0

2�xx − kx
2�xx

�zz
, �4�

where �xx and �zz represent the principal components of the
dielectric function of the uniaxial medium.

It is important to choose the correct root for k1z and k2z. In
order to do this, we look at the power flow S, which, for the
incident and refracted rays considered here, must be from left
to right in both media �i.e., S1z and S2z are both positive�. In
the first medium �vacuum�, the power flow is parallel to the
wave vector, and we choose the positive root for k1z. In order
to determine the correct root for k2z, we represent the power
flow by the Poynting vector S=E�H* and determine the
time-averaged value �S�=1/2 Re�S�. For s polarization, this
gives, in terms of the E field in layer 2,

�S2� =
1

2
Re� kx

*

�0�
�Ey�2,0,

k2z
*

�0�
�Ey�2� . �5�

For p polarization, the equivalent expression in terms of the
H field is

�S2� =
1

2
Re� kx

�0��zz
�Hy�2,0,

k2z

�0��xx
�Hy�2� . �6�

The power flow in s polarization is parallel to the real part of
the wave vector, just as in vacuum, and Re�k2z� is always
positive �or zero�. In p polarization, the power flow direction
�or angle of refraction �r� is given by

tan �r =
�S2x�
�S2z�

=
Re�kx/�zz�
Re�k2z/�xx�

. �7�

For simplicity, let us consider for the moment only propagat-
ing waves with no absorption, in which case �xx ,�zz, and k2z
are all real �kx is automatically real from Eq. �1�	. Since S2z
must be positive, Eq. �6� shows that the sign of k2z must be
the same as that of �xx. The case of interest in this commu-
nication is �xx positive and �zz negative, in which case k2z is
always real and positive �other combinations of signs of �xx
and �zz are considered in the earlier papers22,23�. Equation �7�
shows that, for kx positive �positive angle of incidence �i�,
the angle of refraction �r will then be negative, indicating
negative refraction as shown in the example in Fig. 1�a�.

The above behavior may be represented pictorially using
equal frequency contours9,15 �referred to as equifrequency
surfaces in the three-dimensional case� in the kx-kz plane. At
any given frequency, Eqs. �2� and �4� give the allowed wave
vectors for propagating waves, yielding the contours shown
in Fig. 1�b�. Thus Eq. �2� is represented by a circle of radius
k0 and Eq. �4� by two hyperbolas25,26—one for positive k2z
values and the other �not shown in Fig. 1�b�	 for negative k2z

values. Power flow is always perpendicular to these con-
tours. The resulting Poynting vector directions are then the
same as those shown in Fig. 1�a�. Note that there is always
an acute angle between S2 and k2, so the anisotropic medium
is classed as a forward wave material,23 and the refracting
mechanism is thus similar to that which occurs in the type of
photonic crystals studied by Luo et al.9 or Hu and Chan.27

The relevant equal frequency contours in the latter case are
circles centered around the crystal M point, and negative
refraction, at least for small kx, occurs in much the same way
as shown in Fig. 1�b�. This contrasts with isotropic double
negative materials, which have S and k antiparallel, and are
thus backward wave media.

The solid line in Fig. 2 shows �r, calculated from Eq. �7�,
as a function of �i for the case �xx=1, �zz=−1. It is instructive
to compare these results with Snell’s law, which, for refrac-
tion from vacuum into an isotropic medium, gives
sin �i / sin �r=n, where n represents the refractive index of
the refracting medium. In the present case, we find the rela-
tionship between sin �i and sin �r by combining Eqs. �1�, �4�,
and �7�. In the absence of absorption, this gives

sin2�r =
�xxsin2�i

�zz
2 + sin2�i��xx − �zz�

. �8�

There is therefore not, in general, a linear relationship
between sin �i and sin �r as would be expected for isotropic
media. Nevertheless, in the small angle �paraxial� limit
sin2�i	1, Eq. �8� reduces to

sin2�i

sin2�r
=

�zz
2

�xx
, �9�

and Snell’s law is obeyed with an effective refractive index
neff equal to

neff =
�zz

�xx
1/2 . �10�

In the special case of �xx=1, �zz=−1, this gives neff=−1,
so that �r=−�i. This is represented by the dashed line in Fig.
2. Despite the large discrepancies at high angles, the paraxial

FIG. 2. Angle of refraction as a function of angle of incidence at
the interface between air and a medium with �xx=1, �zz=−1. The
solid line shows the angle of refraction calculated using Eq. �7� and
the dashed line gives the result of using a paraxial approximation
represented by Eq. �9�.
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approximation holds good to within 3% at incident angles of
10° or less.

The fact that light is not only reflected negatively, but also
obeys Snell’s law, albeit in the small-angle limit, suggests
that the plane interface described above should have interest-
ing lensing properties, and that a slab lens of the type de-
scribed by Veselago1 is worth investigating.

III. IMAGE FORMATION IN THE PARAXIAL LIMIT

We now consider the use of a material with �xx�0,�zz
�0 as a slab lens. For simplicity, we first consider the situ-
ation in which the paraxial approximation discussed above
holds true. The geometry used is that shown in Fig. 3. A
point source S is positioned at x=0, z=0. The left-hand face
of a slab of material, of thickness d2, is positioned at z=d1.
In p polarization, a ray emanating from S refracts negatively
at the z=d1 interface as shown in Fig. 3�a�, and, assuming
the slab is sufficiently thick, crosses the z axis at a distance L
from this interface, within the slab. The ray is once again
refracted negatively at the other side of the slab, crossing the
z axis at a distance d3 to the right of the slab.

At the first interface, Snell’s law gives, in the paraxial
approximation,

neff =
�i

�r
=

h/d1

− h/L
= −

L

d1
. �11�

Similarly, at the second interface,

neff =
h�/d3

− h�/�d2 − L�
= −

d2 − L

d3
. �12�

Eliminating L from these two equations, we get

d1 +
d2

neff
+ d3 = 0. �13�

Thus, in the paraxial approximation, the point at which rays
cross the z axis to the right of the lens does not depend on the
initial angle of incidence, so the rays are focused to a single
point at z=d1+d2+d3. Note, however, that a physical solu-
tion �d3 positive� to Eq. �13� only exists if d2
 �neff�d1. This
is a reflection of the fact that if the slab is not sufficiently
thick, there is neither an internal nor an external focus.

A simple ray diagram showing the formation of an image
from a slab with �xx=1, �zz=−1, corresponding to neff=−1, is
shown in Fig. 3�b� for incident angles up to 10°. The ray
directions used in drawing this diagram were calculated from
Eq. �7�. As expected from Eq. �13�, an image is formed at the
position at which d1+d3=d2. This is also the condition for
image formation by a slab lens of isotropic material with �
=−1 and �=−1, corresponding to a true refractive index n
=
�
�=−1, as considered by Veselago1 and Pendry.2 In fact,
Eq. �13� gives the image position, in the paraxial limit, for a
slab lens of any isotropic double negative medium if neff is
replaced by the true refractive index. In the case of such a
medium with �=−1 and �=−1, the equation is not restricted
to the paraxial limit, and holds for all incident angles. Fur-
thermore, in this special case the amplitudes of the evanes-
cent waves corresponding to �kx��k0 are also restored at the
image position, leading, in principle, to a perfect reconstruc-
tion of the image.2

To go beyond the use of geometrical optics in modeling
image formation, we consider the refocusing of a Gaussian
beam, for which the paraxial approximation should be valid
for a normally incident beam provided the beam waist is not
too narrow. The procedure necessary for the analysis has
been detailed by Kong et al.28 The beam waist takes the
place of the source S, and is centered at x=0, z=0. In the
absence of the slab medium, the resulting magnetic field at
any xz coordinate can be represented, providing z�0, as

Hy = �
−�

�

��kx�ei�kxx+k1zz�dkx, �14�

where

��kx� = −
g

2

e−g2�kx − k0sin ��2/4. �15�

2g represents the beam width at its waist and � represents the
effective incident angle of the overall beam. The changes
required for z�0 are trivial.

In the presence of the slab, the fields in each of the three
layers n can be represented as

Hny = �
−�

�

�an�kx�eiknzz + bn�kx�e−iknzz	eikxxdkx. �16�

The coefficients an are for radiation propagating in the direc-
tion of increasing z and the coefficients bn are for radiation
propagating in the direction of decreasing z. Thus one can
see by inspection that a1=��kx� and that b3=0. The other
coefficients may be calculated taking into account the mul-

FIG. 3. �a� Path of a single ray from a source S passing through
a slab of thickness d2. �b� Focusing of radiation from source S by a
slab lens with �xx=1, �zz=−1 within the range of incident angles
−10° ��i�10°. �c� Focusing of radiation from source S by a slab
lens with �xx=1, �zz=−1 within the range of incident angles −40°
��i�40°. In both �b� and �c�, the slab is placed at a position such
that d2=2d1.
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tiple reflections and transmissions involved �see Kong et
al.28 for details�, where the single interface reflection and
transmission coefficients, for incidence from vacuum to the
uniaxial medium, are given by,22 respectively,

r =
�xxk1z − k2z

�xxk1z + k2z
, �17�

t =
2�xxk1z

�xxk1z + k2z
. �18�

The values of the E fields are obtained by integrating the two
terms in Eq. �16� separately, and applying ��H=−i�D to
each result. The power density can then be determined at any
xz coordinate from the Poynting vector, calculated from the
values of the H and E fields.28

The results of numerical calculations, based on the above
analysis, for a p-polarized Gaussian beam incident on a slab
lens with �xx=1, �zz=−1 are shown in Fig. 4. We use g=2�,
where � represents the free-space wavelength, corresponding
to a half-angle beam divergence of 9°. Figure 4�a� shows the
result at normal incidence when d1=d2 /2. At �i=9°, the
paraxial approximation results in an error of only 2.5% in �r,
so it appears reasonable to compare the image position with
that expected from the d1+d3=d2 rule that paraxial theory
predicts in the present case. We take the image position to be
that where the intensity, to the right of the lens, is a maxi-
mum. Using this criterion, we find d1+d3=48.4�=0.964d2,
very close to the prediction of paraxial theory. In Fig. 4�b�,
we check the effect of moving the incident beam waist closer
to the lens, which should move the image away from the lens
by an equal amount. This is actually what we find, and once
again d1+d3=48.4�.

Despite the promising nature of the above results, some
care should be taken in their interpretation. In particular, we
have taken the radiation to be p-polarized, and considered a
two-dimensional representation of a Gaussian beam. In effect
this amounts to a beam, polarized with its H field along y,
focused to a waist that is not circular but is in the form of a
line directed along y. In the case of a Gaussian beam focused
to a circular spot, one would normally expect half the “nor-
mal incidence” radiation to be p-polarized and half to be
s-polarized �even in the presence of a polarizer�. The
s-polarized radiation would not be refocused and, in the case
of �xx=1, would continue to diverge as if the lens were not
there. Thus half the radiation would not be refocused.

The oblique incidence result is shown in Fig. 4�c�. Here,
the refocusing is not so good, but negative refraction itself is
distinctly visible, along with the effect of internal and exter-
nal reflections. Note, however, that although the reflected
rays show up clearly on the log scale used in the figure, the
actual reflectivities are of order 10−2. In this case, paraxial
theory clearly cannot be applied. Image formation away from
the paraxial limit is considered in the following section.

IV. IMAGE FORMATION AWAY FROM THE PARAXIAL
LIMIT

There are clearly very few practical situations in which
the paraxial approximation will give a good model of image
formation for this type of lens. Figure 2 shows that devia-
tions from this model become large for angles of incidence
much greater than used in the previous section. Figure 3�c� is
a ray diagram showing image formation by a slab with �xx
=1, �zz=−1 for the range of incident angles −40° ��i
�40°. For this wider range of angles, there is still a clear
focusing effect, as in Fig. 3�b�, but there are now significant
aberrations. The envelope of the rays forms a caustic curve
similar to that caused by spherical aberrations in more con-
ventional lens systems,29 and the effective image is now
closer to the lens than paraxial theory would predict.

In order to model a source radiating in all directions in the
xy plane, we consider S as an oscillating line current source.
For the present case, applicable to p polarization, we con-
sider this to be a source of magnetic current K directed along
the y axis at x=0, z=0. The analysis is essentially the same
as that used for the Gaussian beam in the previous section,
but with ��kx� replaced by30

��kx� = −
��0K

4k1z
. �19�

Note that the lateral width �along x� of the slab is implic-
itly assumed to be infinite. Focusing by a slab of finite width
will therefore be slightly different from the idealized calcu-
lations shown here.

Figure 5 shows focusing from a line source by a slab with
�xx=1, �zz=−1+0.0001i �a small amount of absorption has
been included to help stabilize the integral when the source
is close to the slab�. Figure 5�a� shows the time-averaged
power flow when d1=10�, d2=20�. Here d1 ,d2��, so we
expect the lens to behave according to the predictions of
geometrical optics, and the focusing effect is indeed essen-

FIG. 4. �Color online� Refocusing of a Gaussian beam by a slab
lens. The vertical dashed lines represent the faces of the slab. The
material parameters are �xx=1, �zz=−1, the slab thickness is d2

=50�, and the beam width is characterized by g=2�. �a� d1=25�,
�=0; �b� d1=10�, �=0; �c� d1=25�, �=30°. In each case, the
power density scale is in arbitrary units. Note that some values fall
outside the range of the scale shown. These values are represented
as either black �low power density� or white �high power density�.
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tially the same as shown in Fig. 3�c�, with the same caustic
curves clearly visible. These types of curves have also been
seen in lenses of double negative materials.19 The distance
d1+d3 is now equal to 17.1�, equivalent to 0.855d2, and the
full width at half-maximum �FWHM� at the focus is 0.7�
=0.035d2. We check that d1+d3 remains constant by reduc-
ing d1 to 5� in Fig. 5�b�. Once again we find d1+d3=17.1�,
and the FWHM is also unchanged. In both cases, the image
is considerably elongated along the z axis, having a length of
5�.

In the geometrical optics regime d1 ,d2��, the image size
should be determined by the aberrations seen in Fig. 3�c�, so
a scaling down of d1 and d2, assuming d1 /d2 is held constant,
should lead to a corresponding scaling down of the image
size. If, on the other hand, d1 and d2 approach wavelength
dimensions, image size is determined mainly by diffraction-
limiting effects. We see this by comparing Fig. 5�a� with Fig.
5�c�, in which d1 and d2 have been reduced from 10� and
20� to � and 2�, respectively. The FWHM of the image

changes from 0.7�=0.035d2 to 0.46�=0.23d2, the image
now being effectively at its diffraction-limited size. In addi-
tion, the image is now closer to the lens. A snapshot of the
power flow �Fig. 5�d�	 helps show how focusing occurs. A
plot similar to this has also been shown by Smith et al.26 in
an analogous s-polarization case. We check if d1+d3 is still
independent of d1 for this thinner slab by comparing Fig.
5�c� with Fig. 5�e�, for which d1 is reduced from � to 0.05�.
We find that d1+d3=1.18� in both cases, and that the
FWHM does not change. Figure 5�f� shows the instantaneous
power flow when d1=0.05�, and one can clearly see how the
exterior image is shifted to the right when compared with
Fig. 5�d�. In addition to this, careful study shows that there is
an internal focus near the right-hand edge of the lens in Figs.
5�c� and 5�d� and near the left-hand edge of the lens in Figs.
5�e� and 5�f�, much as geometrical optics would predict. The
overall imaging behavior appears similar to that from a slab
of double negative media in which the perfect lens condition
n=−1 is not satisfied.19,31

Although the source is very close to the slab �d1	�� in
Figs. 5�e� and 5�f�, image formation does not appear to be
dictated by near-field effects. Total reconstruction of the
source field, which, in double negative materials, depends on
growing evanescent fields within the slab,2 is not available to
us. In our case there are no evanescent fields within the slab,
as k2z is real for all kx �see Eq. �4� and Fig. 1�b�	. Evanescent
fields from the source can be passed from one side of the slab
to the other but, unless both the source and the image are
very close to the slab �d1 ,d3	��, such fields do not appear
to contribute to the image.

We can bring both the source and image close to the slab
if we increase the magnitude of �zz. In Fig. 6 we show results
for a crystal with �xx=1 and �zz=−5+0.0001i. d1 and d2 are
the same as in Figs. 5�e� and 5�f�. Figure 6�a� shows the
time-averaged Poynting vector and Fig. 6�b� shows the time-
averaged value of �Hy�2. In both figures, the radiation appears
to pass through the slab as a collimated beam. This type of
behavior has previously been reported in photonic crystal
slabs having flattened equal frequency contours at low kx
values32 �flattening the contour is equivalent to increasing the
magnitude of �zz�.

Figure 6�a� gives the image position at d3=0.01�, with a
FWHM of 0.36�. The image in Fig. 6�b�, on the other hand,
is not separated from the slab surface, so we take d3=0,

FIG. 5. �Color online� Focusing of radiation from a line source
by a slab lens with �xx=1, �zz=−1+0.0001i. �a� Time-averaged
power density when d1=10�, d2=20�. �b� Time-averaged power
density when d1=5�, d2=20�. �c� Time-averaged power density
when d1=�, d2=2�. �d� Instantaneous power density when d1=�,
d2=2�. �e� Time-averaged power density when d1=0.05�, d2=2�.
�f� Instantaneous power density when d1=0.05�, d2=2�.

FIG. 6. �Color online� Focusing of radiation from a line source
by a slab lens with �xx=1, �zz=−5+0.000i. The lens thickness is
d2=2�, and the source is positioned such that d1=0.05�. �a� Time-
averaged power density. �b� Time-averaged value of �Hy�2.
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giving a FWHM value of only 0.27�. The difference be-
tween the two figures is largely due to the evanescent waves,
which do not contribute to the power flow at the image.
Evanescent waves, therefore, do not take part part in the
formation of the image seen in Fig. 6�a� but do contribute to
the narrower image seen in Fig. 6�b�—which figure more
closely represents the experimental situation is likely to de-
pend on the exact experimental configuration.

It is worth comparing briefly the behavior of the evanes-
cent modes in this case with the reconstruction of the eva-
nescent components from the perfect lens discussed by
Pendry.2 In the latter case, the evanescent field grows within
the slab due to surface modes. In the present case, however,
there are no evanescent fields within the slab, and surface
modes are not possible. Nevertheless, guided waves are al-
lowed at certain discrete kx values. In such cases the evanes-
cent field decays from either side of the slab. At the relevant
kx values there are poles in the field transmitted across the
slab, and these appear to contribute to the subwavelength
imaging observed in Fig. 6�b�. They do not, in general, lead
to a simple reproduction of the source field, however, and the
image does not necessarily contain a dominant central peak
of the type seen in Fig. 6�b�. The exact form of the image
depends crucially on the values of the slab thickness and of
the slab material parameters, as is the case for photonic crys-
tals with flattened equal frequency contours,33 and the over-
all behavior in the case of these higher �zz magnitudes ap-
pears somewhat similar to that reported for such photonic
crystals.17 Note that the poles in the transmitted field are also
responsible for the instabilities, mentioned earlier, in the in-
tegral used in the transmitted field calculations, since this
integral is based on a summation using a finite sampling
interval. The result is that spurious features can appear in the
field plot. The incorporation of a small imaginary component
into �zz slightly smoothes out these poles, however, and this
resolves the problem.

V. CRYSTAL MATERIALS SUITABLE FOR SLAB LENSES

Let us now consider how the condition �xx�0,�zz�0 can
be achieved in practice. We concentrate, in this section, on
natural crystals that can be used in the geometrical optics
regime d1 ,d2��. Many anisotropic crystals, such as quartz,
satisfy the condition �xx�0,�zz�0 in principle, at far-
infrared frequencies due to polarization dependence of cer-
tain phonon resonances.34 If we consider these resonances as
damped harmonic oscillations, we can express both �xx and
�zz in the form

�uu = ��,u + �
n

�n,u�0n,u
2

�0n,u
2 − �2 − i��n,u

, �20�

where u represents either x or z. Here ��,u represents the
high-frequency dielectric constant, and �0n,u ,�n,u, and �n,u
represent the frequency, strength, and damping parameter,
respectively, of the nth phonon mode.

Ignoring damping ��n,u=0�, one can see that �uu becomes
negative near the resonances, and since the resonant frequen-
cies in �zz are not necessarily the same as those in �xx, the

condition �xx�0,�zz�0 should be possible in suitably aniso-
tropic materials. In practice, however, damping plays a vital
role in the response, and, at thicknesses necessary for the
geometrical optics experiments considered in this section,
most crystals are effectively opaque near the phonon reso-
nances. Phonon combination bands further complicate the
picture. Nevertheless, if one is prepared to work at low tem-
peratures, not only do materials with suitably low absorption
exist, but they are also easy to grow in large single crystals.

An extremely promising material is triglycine sulfate
�TGS�. The crystal structure is actually biaxial, not uniaxial,
but since we are only considering the case of E restricted to
the xz plane, this makes no difference so long as x and z are
both principal axes of the structure. We consider a geometry
that places the crystal C2 axis along our z axis and the crystal
x axis along our own x axis. Measurements35 at 5 K record a
phonon resonance, polarized along z, at 37.3 cm−1 with a
damping parameter of only 0.002 cm−1. Using the data of
Gerbaux and co-workers,35,36 we model the resulting �zz in
Fig. 7 �for simplicity we only model a single oscillator since
there are no other close resonances�. Over the given range,
�xx can be considered constant, taking a value 3.65.36 Figure
7 shows that the imaginary part of �zz is extremely small over
almost the entire range, suggesting that, at low temperatures,
TGS would be an excellent candidate for slab lensing
experiments.

We model the focusing, by a TGS slab, of radiation from
a magnetic line current source in Fig. 8. The model is the
same as that used to generate Figs. 5 and 6. �zz is taken from
Fig. 7 and �xx=3.65, with d1=5 mm and the slab thickness
d2=10 mm. The transmission spectrum through a slab of ap-
proximately this thickness was investigated by Hadni et al.,36

who showed that it was almost totally transparent in this
frequency region. As might be expected from Fig. 7, the
focusing effect is highly frequency-dependent, the internal
image moving further to the left and the external image mov-
ing further to the right with increasing frequency. In Fig.
8�a�, at 38.73 cm−1, the external and internal images roughly
coincide, at the right-hand edge of the slab, having a FWHM
of 0.18 mm=0.018d2=0.70�. Figure 8�b� shows the situa-
tion at 38.93 cm−1. The internal image is now roughly at the
center of the slab, with the external image to the right of it,
having a FWHM of 0.21 mm=0.021d2=0.82�. It is interest-
ing to compare this figure with Fig. 5�a�, since they are very

FIG. 7. Real �solid lines� and imaginary �broken lines� parts of
�zz for TGS at 5 K.
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similar. This similarity appears to be related to the fact that,
ignoring damping, �zz /�xx

1/2 �neff in the paraxial approxima-
tion� has the same value �−1� in both cases. In Fig. 8�c�, at
39.13 cm−1, the internal image has moved further to the left,
and the external image now lies outside the range shown. All
the trends seen in Fig. 8 are also seen in the refocusing of a
normally incident p-polarized Gaussian beam �Fig. 9�.

Negative refraction of a Gaussian beam at oblique inci-
dence can be seen directly in Fig. 10. In modeling this figure,
we consider radiation focused directly on the front surface of
the slab, this time with a beam waist of 2 mm. A displace-
ment of the emergent beam is observed, and this displace-
ment is frequency-dependent, as can be seen by comparing
Figs. 10�a�–10�c�. Note that the directions of the refracted
rays could equally well be calculated from Eq. �7�.

VI. CONCLUSION AND DISCUSSION

From the above results it is clear that a TGS slab should
display the type of lensing properties discussed by Veselago.1

The frequency dependence of these properties, and of the
lateral shift of a transmitted ray at oblique incidence, means
that, with suitable use of stops or slits, such a slab would act
as a type of narrow pass filter, and experimental investiga-
tions on this type of material appear extremely important. We
have concentrated on the behavior of such a material in the
geometrical optics regime since fairly simple experiments
should be possible using the large crystals described. How-
ever, much thinner lenses of the type shown in Figs.
5�c�–5�f� and Fig. 6 should also be possible. Indeed, for these
thinner lenses, the requirement of low absorption may be
somewhat relaxed, and many other materials should be
suitable.

Apart from natural crystals, it may also be useful to start
considering artificial structures in which the dielectric tensor
can be controlled. A simple structure applicable to far-
infrared wavelengths would be a semiconductor superlattice.
In the long-wavelength limit, such a structure can be consid-
ered as a uniaxial medium, and the components of the dielec-
tric tensor can have opposing signs, as required. In fact, the
discussion of negative refraction in Ref. 22 was prompted by
the presence of unusual features in the experimental phonon
reflectivity spectra of semiconductor superlattices.37 How-
ever, semiconductor phonons do not usually have sufficiently
low damping to allow significant transmission at thicknesses
applicable to geometric optics. Nevertheless, for smaller-
scale experiments, such structures may still be appropriate.
For instance, Shvets38 has noted that silicon carbide may be
useful for photonic structures because it has a low loss rest-
strahlen region well matched to the wavelength �10.6 �m� of
conventional CO2 lasers. A superlattice incorporating this

FIG. 8. �Color online� Focusing of radiation from a line source
by a TGS slab of thickness 10 mm at frequency �a� 38.73 cm−1, �b�
38.93 cm−1, and �c� 39.13 cm−1.

FIG. 9. �Color online� Refocusing of a normally incident Gauss-
ian beam by a TGS slab. The parameters are d1=5 mm, d2

=10 mm, and w=0.5 mm. �a� 38.73 cm−1, �b� 38.93 cm−1, �c�
39.13 cm−1.

FIG. 10. �Color online� Refraction of a p-polarized Gaussian
beam focused on the surface of a 10 mm TGS slab at �=30°. �a�
38.73 cm−1, �b� 38.93 cm−1, �c� 39.13 cm−1.
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material may therefore be a useful system to study in the
context of the present work.

An alternative approach may be to consider the plasma
response in a doped superlattice or multiple-quantum-well
structure. If the superlattice is modulation-doped, the free
carriers are separated from the donors, and very high mobili-
ties are possible, leading to low absorption. The layer widths
and doping densities are controllable, leading, in principle, to
controllable dielectric tensor components. In the simplest
case, a bulk-slab model, in which the superlattice compo-
nents are assumed to retain their bulk properties, may be
used.39,40 In general, however, a more complete model, tak-

ing quantum confinement into account,41 is likely to be more
useful, and the conditions needed for sufficiently low absorp-
tions require very careful consideration.

Finally, we believe that a fairly thorough analysis of the
near-field effects, which appear important in situations of the
type shown in Fig. 6, is called for.
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