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We study the electronic spectral properties in two examples of strongly interacting systems: A Mott-Hubbard
insulator with additional electron-boson interactions, and a polaronic semiconductor. An approximate unified
framework is developed for the high energy part of the spectrum, in which the electrons move in a random field
determined by the interplay between magnetic and bosonic fluctuations. When the boson under consideration
is a lattice vibration, the resulting isotope effect on the spectral properties is similar in both cases, being
strongly temperature and energy dependent, in qualitative agreement with recent photoemission experiments in
the cuprates.
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I. INTRODUCTION

A general feature of strongly interacting electron systems
is a sizeable suppression of the metallic character, accompa-
nied by a redistribution of the spectral weight from the re-
gion close to the Fermi level towards higher energies. In the
presence of a strong electron-electron repulsion, for example,
incoherent excitations arise far from the Fermi energy in the
so-called upper and lower Hubbard bands, at an energy scale
which is ruled by the strength U of the interaction. A similar
behavior is also found in systems with strong electron-lattice
coupling, where the spectral weight is transferred to broad
peaks located at ±EP, the polaron binding energy.

Recent photoemission experiments in the high-Tc
cuprates,1–4 which are generally described in terms of purely
electronic models due to the proximity to a Mott insulating
phase, have revealed the existence of an important electron-
lattice coupling. This has given rise to intense theoretical
work focusing on the excitation spectra in the presence of
electron-boson interactions, both in models with5–7 and
without8–13 electronic correlations. Of particular interest are
those works which focus on isotope effects �IE�, since they
can disentangle the properties which are directly related to
the coupling to the lattice degrees of freedom. For example,
it has been found that an anomalous isotope effect on the
effective mass arises at the polaron crossover, signaling
the breakdown of the Migdal-Eliashberg adiabatic
approximation.14 An enhancement of the IE is also expected
in the proximity of a Mott metal-insulator transition, i.e., at
intermediate values of the electron-electron repulsion.15 On
the other hand, a strong electronic repulsion suppresses the
effects of the lattice dynamics on the low energy excitations
near the Fermi level. These persist at high energy, where they
amount essentially to a broadening of the electronic spectra.5

In this work, we provide an approximate theoretical
framework based on the coherent potential approximation

�CPA�, which qualitatively describes the high-energy excita-
tion spectra resulting from both electron-electron and
electron-boson interactions, treating the fluctuations of mag-
netic and bosonic origin as a local static disorder. Although
simplified, the present analytical treatment is able to account
for the existence of broad incoherent peaks at high energy,
which are a common characteristic of strongly interacting
electronic systems.

We analyze two extreme cases which can be important for
our general understanding of the problem: �i� A paramagnetic
Mott-Hubbard insulator at half-filling, in the presence of an
additional local interaction of the electrons with dispersion-
less bosons and �ii� a polaronic semiconductor, where the
physics is solely determined by the electron-boson coupling.
In the former case, the validity of our approach relies on the
separation of electronic and bosonic energy scales, which is
achieved due to a strong electron-electron repulsion. In the
latter case, the present CPA results are controlled by direct
comparison with an exact solution obtained by dynamical
mean field theory �DMFT�.16

The consequences of the electron-boson coupling on the
dispersion and width of the high energy features in the spec-
tral function are calculated in both situations, in Secs. II and
III, respectively. Particular attention is devoted to the effect
of a shift of the boson frequency, as can be achieved through
an isotopic substitution if the bosonic mode that couples to
the electrons is a lattice vibration, or more generally if it is a
collective mode with a sizeable lattice component �in which
case a nontrivial IE can still arise, provided that the fre-
quency of the boson is modified by the isotopic substitution�.
In the present approximation, the IE on the high energy part
of the spectrum turns out to be qualitatively similar in the
Mott-Hubbard insulator and in the polaronic semiconductor,
being mainly determined by the strength of the electron-
boson coupling �albeit slightly enhanced by the presence of
electronic correlations�: In both cases it is strongly tempera-
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ture and energy dependent, in agreement with the recently
measured IE in the high temperature superconductor
Bi2Sr2CaCu2O8+�.17,18 A tentative analysis of the experimen-
tal results, performed in Sec. IV, is compatible with the ex-
istence of a moderate electron-phonon coupling in the cu-
prates.

II. ELECTRON-BOSON COUPLING IN A MOTT-
HUBBARD INSULATOR

A. Coherent potential approximation

We study the following Holstein-Hubbard Hamiltonian:

H = �
k,�

�kck,�
† ck,� + U�

i

ni,↑ni,↓ − g�
i,�

ni,��ai + ai
†�

+ �0�
i

ai
†ai,

where electrons in a band with dispersion �k mutually inter-
act through an on-site repulsion U, and are coupled locally to
a dispersionless bosonic mode of frequency �0, with a
strength g. We shall set the energy units such that �=kB=1.
We calculate the spectral properties of the above model at
half filling, in the paramagnetic phase and in the absence of
translational symmetry breaking, in the framework of the
coherent potential approximation �CPA�.19,20 This is suitable
for the Mott insulating phase at large U, but also gives a fair
description of the high energy incoherent excitations in the
correlated metal, provided that the upper and the lower Hub-
bard bands are well separated from the low energy quasi-
particle peak.21 The latter, however, is not accessible within
this theory, and the position of the chemical potential re-
mains undetermined except at half-filling. Additional fea-
tures that are not included in the present description are the
coherent excited states that arise at low temperature �even in
the insulating phase�, due to the quantum nature of the mag-
netic excitations, in an energy range J� t2 /U around the
Hubbard band edges,22–24 and whose dispersion is srongly
reminiscent of spin density waves.

Bearing these limitations in mind, the success of the CPA
is that, despite its formal simplicity, it correctly accounts for
the high-energy scattering by the randomly distributed mag-
netic moments. The momentum-integrated Green’s function
has the form:20

G��� =
1

2� 1

G0
−1��� −

U

2

+
1

G0
−1��� +

U

2
� �1�

where G0 is an effective propagator which takes hopping
processes into account. It can be eliminated by introducing a
local self-energy ���� through the following self-
consistency condition:

G��� = �
k

1

� − �k − ����
=

1

G0
−1��� − ����

�2�

�in the “atomic” limit, G0=1/� and the usual single site
propagator is recovered20�. For each frequency �, we are left

with a system of two equations for the two complex un-
knowns G��� and ����.

In the presence of a local electron-boson interaction, Eq.
�1� can be generalized by introducing an additional field y,
which accounts for the random distribution of electronic en-
ergies due to the fluctuations of the bosons at different sites40

G��� =� dy

2
P�y�� 1

G0
−1��� −

U

2
− y

+
1

G0
−1��� +

U

2
− y� .

�3�

In a system where the on-site electron-electron repulsion
directly competes with the attraction induced by the bosons,
the formation of bipolarons �and the resulting strong anhar-
monicities in the boson field�25,26 is prevented provided that
U is much larger than the polaron binding energy EP
=g2 /�0.15,27 In this case, we can assume that the boson field
obeys the following Gaussian distribution,

P�y� =
1

�2��2
exp	−

y2

2�2
 �4�

The variance

�2 = EP�0 coth��0

2T
� �5�

is determined either by the thermal fluctuations �at high tem-
perature, T	�0� or by the quantum fluctuations of the
bosons �at low temperature, T
�0�.

Let us emphasize that we have neglected boson renormal-
ization effects which, even in the presence of a strong
electron-boson interaction, are suppressed by a sufficiently
strong repulsion U.15,27 Such effects can in principle be in-
cluded by taking �0 in Eq. �5� equal to the measured boson
frequency rather than the bare parameter of eq. �1�. However,
the present scheme is expected to break down in situations
where the bosonic and electronic energy scales become com-
parable �i.e., EP
U�, in which case the properties of the
bosonic field depend crucially on the electron correlations.

Equations �2� and �3� form the backbone of our theory.
The latter can be further explicited by evaluating the Hilbert-
transform of the Gaussian

� dyP�y�
1

z − y
= − i� �

2�2W	 z
�2�2
 �6�

where W is the complex error function.28 Note also that,
since the self-energy � does not depend on momentum, the
details of the band dispersion �k enter in Eq. �2� only through
the corresponding density of states. For the sake of simplic-
ity, we shall consider a band dispersion �k with a semicircu-
lar density of states of half-width D, for which the self-
consistency �Eq. �2�� reduces to G0

−1=�−D2G /4. However,
since they rely on a momentum independent quantity �the
local self-energy�, the results are quite independent on the
choice of the band dispersion.

The spectral function, which is the quantity of interest in
the present work, is defined as
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A��k,�� = −
1

�
Im

1

� + i� − �k − ����
. �7�

Its momentum integral—the spectral density—is N*���
=−�1/��Im G���.

B. Mott-Hubbard insulator

For large U, and in the absence of electron-boson interac-
tions, the set of Eqs. �1� and �2� can be rewritten as

� =
U2

4	� −
D2

4
G
 �8�

G 

1

2

1

� −
D2

4
G ± U/2

�9�

The spectral density N*���
2/�D2�D2 /2− ��±U /2�2 is il-
lustrated in Fig. 1�a�, and consists of two bands of reduced
width 
2D /�2 separated by a gap �
U /2−D /�2 �the �
and � sign are for the lower and upper Hubbard band, re-
spectively�. Such bands represent incoherent states that are
strongly scattered by the disordered magnetic moments. The
corresponding spectral function A��k ,�� exhibits broad
peaks, whose width is comparable with the bandwidth itself:
It is determined by the scattering rate 
���=−Im ����
�D2N*���, which is proportional to the spectral density, and
is, therefore, strongly energy dependent. As a consequence,
the peaks sharpen �and become asymmetric� when approach-
ing the band edges, as can be seen in the energy scans at
constant momentum, in Fig. 2�a� �dashed green curve�. Their
dispersion, defined as the locus of the maxima of A��k ,��
at constant � �the so-called momentum distribution
curves, MDC� can be obtained by solving the equation

FIG. 1. �Color online� A sketch of the spectral density �the
momentum-integrated spectral function�. Top: In a Mott-Hubbard
insulator, for U /D=3 without �dashed green� and with �dotted blue�
electron-boson interaction �EP /D=0.9, �0 /D=0.1�. Bottom: In a
polaronic system �U=0� with the same electron-boson parameters.
The green dashed curve here is the noninteracting band, the black
solid line is the exact DMFT result �Ref. 16� and the blue dotted
curve is the approximate result based on Eq. �13�. Vertical lines
mark the reference energy of incoming particles. In both panels the
shaded area represents the low energy part of the spectrum.

FIG. 2. �Color online� From top to bottom: �a� Energy scans of
the spectral function A��k ,�� in a Mott-Hubbard insulator with ad-
ditional electron-boson interactions, at different �k �equally spaced
between the two edges �k= ±D� �solid blue lines�. The parameters
are U /D=3, EP /D=0.9, �0 /D=0.1, and energies are in units of D.
The curves for �k /D=1,0.8,0.6,0.0 in the absence of electron-
boson coupling are shown for comparison �dashed green lines�. The
black dots mark the onset of spectral weight, which is rather
dispersionless. The inset shows the effect of a shift ��0 /�0=−6%
of the boson frequency on the spectral function at the same values
of �k �the dotted red line is with the modified frequency�. �b� the
dispersion of the broad peaks deduced from momentum scans at
constant energy, for U /D=3 with �solid blue line� and without
�dashed green line� electron-boson coupling. The slope of the non-
interacting band is indicated. The inset shows the IE on the disper-
sion �the dotted red line is with the modified frequency�. �c� Abso-
lute value of the isotope effect on the scattering rate 
=−Im �,
defined as �
=
��0+��0�−
��0�, for different values of �2 /D2

=0.06,0.09,0.12.
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Ek−Re ��Ek�=�k, and is roughly given by Ek=−U /2
+�k /�2 �see Fig. 2�b��.

It should be noted that the slope of the dispersion of such
high energy features deviates significantly from the unrenor-
malized Fermi velocity vF. For this reason, in strongly cor-
related electron systems, some care should be taken when
extracting the function Re ���� from experimental data un-
der the assumption that vF tends asymptotically to its un-
renormalized value at sufficiently high energy, as is custom-
ary in the field29 �see also Ref. 30�.

C. Electron-boson coupling

The coupling to a bosonic mode leads to several modifi-
cations of the picture described above. First of all, the fluc-
tuations of the site energies lead, through the relation �3�, to
an overall broadening of the Hubbard bands. In particular,
this generates additional exponential tails in the vicinity of
the band edges, whose extension is governed by the variance
���EP�0. In the adiabatic regime, where the boson fre-
quency is small compared to the bandwidth ��0
D�, and for
large U, such tails are typically smaller than both the width
of the Hubbard bands and the size of the gap �see Fig. 1�a��.

The spectral function A��k ,��, for U /D=3 and �=0.3D,
is illustrated in Fig. 2�a� at different values of �k. This value
of the variance corresponds, for example, to a moderate
electron-boson coupling EP /D=0.9, in the adiabatic regime
�0=0.1D and at zero temperature. The purely electronic case
��=0� is also shown for comparison �dashed green lines�.
The electron-boson coupling strongly alters the line shapes:
Well inside the Hubbard bands, there is a huge broadening of
the peaks, which can be estimated in the large U limit �see
Appendix� to �
 /
�12�2 /D2, and is of the order of 100%
in the present example. However, the effect is even more
dramatic in the vicinity of the band edges. There, the scat-
tering rate, which is roughly proportional to the spectral den-
sity, has a sharp �square root� dependence on the energy in
the pure electronic case, causing a marked asymmetry of the
peaks. The boson fluctuations convert the sharp edge in a
much smoother exponential tail, restoring a more symmetric
lineshape for A��k ,��. Let us mention that the above-
mentioned power law behavior at the edges of the Hubbard
bands is not peculiar to the semicircular DOS used in this
example �see Ref. 31�. Indeed, analogous results are obtained
starting with a flat noninteracting DOS with a step-like edge,
appropriate for two-dimensional systems.

The position of the peaks is also affected by the electron-
boson coupling, although to a weaker degree �this is partly in
contrast with the results of Refs. 4 and 6, which only predict
a broadening of the peaks, but no renormalization of the
dispersion�. In Fig. 2�b�, we have reported the renormalized
MDC dispersion Ek. The main effect of the electron-boson
coupling is an increase of the slope vhe=dEk /d�k; its relative
variation is of the order �2 /D2, as can be estimated from the
large U expansion presented in the Appendix, and is one
order of magnitude smaller than the corresponding effect on
the linewidths.

It should be noted here that, if one defines the onset of
spectral weight as the locus where A��k ,Ek

ons� equals a given

threshold �as is done, for example, in Ref. 2�, the resulting
Ek

ons appears to be almost dispersionless, as can be seen in
Fig. 2�a� �black dots�. This is due to the fact that the width of
the peaks increases with increasing binding energy, and is
ultimately related to the observation that the scattering rate is
roughly proportional to the spectral density.

D. Isotope effect on the spectral properties

We shall now analyze the consequences of a change in the
boson frequency on the spectral properties. Unless otherwise
specified, we shall consider a relative shift ��0 /�0=−6%,
that can be achieved through the substitution 16O→ 18O in
the case of a lattice mode with predominantly oxygen
character.32 The value inferred from the photoemission ex-
periments in Ref. 17 on the mode at �0=70 meV is compa-
rable with this value, ���0� /�0�7%, pointing to a strongly
phononic character of the bosonic excitation.

By direct inspection of Eq. �5�, we immediately see that
any isotopic effect will be strongly temperature dependent,
on the scale of the boson frequency itself: At low tempera-
tures, where �2=EP�0, a modification of �0 directly affects
the distribution �4� of the lattice displacements, and there-
fore, modifies the spectral properties described above. How-
ever, this effect is rapidly suppressed when the thermal fluc-
tuations become dominant, in which case �2=2EPT is
independent on the boson frequency. In the following, we
shall present the results at T=0, where the IE is maximum.
The IE at any temperature can be obtained straightforwardly
by multiplying the results by an appropriate coefficient

��T� =
��2

��0
= �1 −

�0

T

sinh
�0

T
�coth	�0

2T

 , �10�

which is maximum at T=0 ��=1�, and rapidly drops at tem-
peratures T�0.2�0, where ���0 /3T.

The inset of Fig. 2�a� shows the IE on the peaks in
A��k ,�� at various �k close to the edge of the lower Hubbard
band �LHB�. The reduction of the boson frequency leads to a
weak shift of the peak position, corresponding to a slight
reduction of the slope vhe, which is too weak to be observed
at such moderate values of EP �see also the inset of Fig. 2�b�,
where we have reported the renormalized dispersion close to
the upper edge of the band�. On the other hand, we know
from the previous section that the effect of the electron-
boson coupling is much stronger on the linewidths than on
the dispersion, and indeed some reduction of the peak widths
is already visible in the plots of A��k ,��. For a more quan-
titative analysis, we have reported in Fig. 2�c� the IE on the
scattering rate, defined as �
=
��0+��0�−
��0�. It shows
an interesting dependence on the energy: It is rather flat in-
side the Hubbard bands, but exhibits pronounced peaks of
width �� around the band edges, because this is the region
where the spectra are mostly affected by the bosonic fluctua-
tions. The variation of the linewidth in the flat region well
inside the Hubbard bands is approximately given by �see
Appendix�
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�
min

��0

 3�2

EP

D
�11�

and gives a direct measure of the strength of the electron-
boson coupling. Note that although the precise numerical
coefficient is specific to the semicircular DOS considered
here, analogous formulas can in principle be derived for any
choice of the noninteracting band �in fact, a similar result
also holds in the weak coupling regime33�.

Above the band edges, the IE decays exponentially, fol-
lowing the fluctuation induced tails in the spectral density.
This gives rise to an extremely asymmetric peak of �
 at the
band edge, which becomes more and more symmetric as � is
increased �cf. the discussion on the spectral function in the
previous section�. For sufficiently large ��D, �
��� tends
to a skewed gaussian, whose maximum is located in �

−U /2+2�, whose width is proportional to � and height
scales as

�
max

��0
��EP

�0
. �12�

III. POLARONIC SEMICONDUCTOR

In this section, we use the approximate theory presented
above to address the spectral properties in a system with
electron-boson interactions, but in the absence of electron-
electron correlations. For this problem, extensive results are
available in the litterature for the weak coupling regime,33

and for the polaronic anti-adiabatic regime, where the boson
frequency is assumed to be much larger than the noninteract-
ing bandwidth.35 We shall focus instead on the polaronic
adiabatic regime �i.e., moderate to strong electron-boson
couplings EP�D and adiabatic bosons �0
D�, which is
more often encountered in solids,36–39 and for which a simple
formulation of the spectral properties is not clearly estab-
lished.

For the problem of a single electron coupled to a disper-
sionless boson, a complete characterization of the excitation
spectrum has been given in Refs. 16 and 34 based on the
dynamical mean field theory �DMFT�. In the adiabatic re-
gime, the spectra are composed of one �or several, depending
on the coupling strength� narrow features at low energy,
equally spaced by �0, coexisting with a continuous high en-
ergy background centered around the polaron binding energy
EP. As the coupling strength increases, the low-energy fea-
tures are rapidly suppressed and the spectral weight becomes
dominated by the high-energy incoherent background. It
should be stressed that, contrary to what happens in the anti-
adiabatic limit, the high-energy features here are dispersive
due to the strong hybridization with the free-electron states
�see, e.g., Fig. 14 in Ref. 16�.

The high-energy incoherent excitations are well described
by an equation analogous to �3�,

G��� =� dyP�y�
1

G0
−1��� − y

, �13�

where the boson field obeys the same gaussian distribution of

Eq. �4�. In fact, the above equation can be shown to be rig-
orously valid in the framework of the DMFT in the adiabatic
limit �0=0 �see Ref. 16 Eq. �46��. A similar relation also
holds for a system of spinless polarons at finite density,25,26

leading to very similar results as in the single particle case
presented here.41

Note that the chemical potential is undefined in the
present single particle problem. To make direct contact with
the results of the previous section, we shall interpret the re-
sults for the spectral function as corresponding to the lower
“Holstein band” �i.e., to excitations at negative binding en-
ergies as in a direct photoemission experiment�, setting the
chemical potential at the extremum of the polaron band, with
the replacements �=−�+E0 and �k→−�k in Eq. �13�. Here
E0�−D is the polaron binding energy taken from the DMFT
solution, which tends to −EP in the strong coupling limit
EP /D	1 �see Fig. 4 in Ref. 16�.

We shall first solve the coupled equations �Eqs. �13� and
�2�� in a regime where the variance � of the boson field is
smaller than the noninteracting bandwidth, which is typically
the case for moderate values of the electron-boson coupling.
The opposite limit ��D, where the spectral density takes
the form of a gaussian, multiboson shakeoff peak, will be
treated at the end of this section.

A. Intermediate coupling regime

The spectral density for EP /D=0.9 and �0 /D=0.1 ��
=0.3D� is illustrated in Fig. 1�b� �blue dotted line�. As in the
correlated case, the boson fluctuations result in an overall
broadening of the original band �green dashed line�. The
agreement with the DMFT result �black solid line� is excel-
lent in the smooth region at high binding energies, while in
the low energy region, the CPA clearly misses the detailed
structure of the narrow peaks. However, even there it gives a
fair description of the integrated spectral weight, which is
what one would measure experimentally in the presence of a
sufficient energy broadening.

1. High-energy features

The results for the spectral function are illustrated in Fig.
3�a�. As in the correlated case treated in the previous section,
the high energy part of the spectra is characterized by broad
features, whose dispersion �Fig. 3�b�� sensibly deviates from
the noninteracting case. The variation of the scattering rate
under a shift of the boson frequency �Fig. 3�c�� is also very
similar to the correlated case, corroborating the fact that the
magnetic fluctuations only play an indirect role in the isotope
effect: �
��� is rather flat at the center of the band, and
attains its maximum in a narrow region of width � around
the band edges.

For a more quantitative understanding, analytical expres-
sions can be obtained by an expansion to lowest order in the
variance, as was done previously for the Mott-Hubbard insu-
lator. In the present case the coupled equations �Eqs. �13�
and �2�� become

� 
 �2G �14�
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G 

1

� − �D2/4 + �2�G
�15�

which is valid inside the band, far from the edges. The
Green’s function has the noninteracting form, but with a
renormalized bandwidth given by D→�D2+4�2. The slope
of the dispersion of the high-energy features is renormalized
accordingly: vhe=dEk /d�k=1/ �1−2�2 /D2�, i.e., it does not
coincide with the value in the absence of interactions, as can
be seen in Fig. 3�b�. The boson induced variation is of the
same order as what was calculated in Sec. II C in the pres-
ence of electronic correlations.

From the first equation we see that the scattering rate
within the band is proportional to the spectral density,

���
��2N*���. Note that it is weaker than in the corre-
lated case, due to the absence of magnetic disorder. Never-
theless, the modification of the scattering rate under a shift of
the boson frequency is of the same order as in the previous
case �although with a smaller prefactor, cf. Eq. �11��, namely

�


��0
=

2EP

D
, �16�

being directly proportional to the strength of the electron-
boson coupling.

The existence of a maximum of �
 near the band edge
�Fig. 3�c�� also compares well with the DMFT result, al-
though its actual position is slightly shifted to higher binding
energies. This can be understood by observing that the true
edge of the incoherent dispersion is at �=−�0 �not at �=0�,
which marks the boundary between the high-energy and low-
energy regions in the excitation spectra �see below�. Note
that �
 rapidly drops in the region −�0���0, where 

itself is extremely small due to our assumption of dispersion-
less �gapped� bosons.

2. Low-energy features

The low-energy part of the spectral function is shown in
the inset of Fig. 3�a�. The DMFT result shows that the broad
incoherent peak progressively disappears when the band
edge is approached �i.e., at low momentum transfers�, while
a narrow “quasi-particle” peak arises at binding energies
�����0. The evolution of such peak-hump structure, which
is characteristic of the intermediate coupling regime �in the
strong coupling regime, the narrow features are too weak to
be observed� causes a discontinuous jump, or kink, in the
dispersion, which clearly separates the high and low-energy
regions with different slopes, as illustrated in Fig. 3�b� �see
also Fig. 3 in Ref. 34�. The isotope effect on the kink region
is shown in the inset. Note that in this plot, the isotope shift
vanishes at �=0 by definition, since the origin of energies
has been shifted to coincide with the band edge �see the
discussion at the beginning of this section�.

B. Strong coupling limit

At extremely large values of the coupling strength EP /D
�D /�0	1 �or at sufficiently high temperatures T /D
�D /EP�, the variance of the boson field can become com-

FIG. 3. �Color online� From top to bottom: �a� Energy scans of
the spectral function A��k ,�� in a polaronic semiconductor, at dif-
ferent �k �equally spaced between the two edges �k= ±D� within
approximation Eq. �13� �solid blue lines�. The parameters are
EP /D=0.9, �0 /D=0.1. The curves for �k /D=1,0.8,0.6, obtained
using the exact DMFT solution, are shown for comparison �thin
black lines�. The inset shows the effect of a shift ��0 /�0=−6% of
the boson frequency on the spectral function at the same values of
�k �dotted red line is with the modified frequency�. �b� The disper-
sion of the broad peaks deduced from momentum scans at constant
energy using DMFT �thin black line� and the approximate theory
�solid blue line�. The slope of the noninteracting band is indicated.
The inset shows the IE on the dispersion obtained in DMFT �the red
dotted line is with the modified frequency�. �c� Absolute value of
the isotope effect on the scattering rate �
 using DMFT �thin black
line� and the approximate theory �solid blue line�. Data from exact
DMFT are shown after convolution with a Gaussian filter of width
0.05D.
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parable with the noninteracting bandwidth ���D�. The lat-
ter can therefore be neglected in Eq. �3�, replacing G0

−1=�.
Note that this does not correspond to the usual atomic, anti-
adiabatic limit,35 where it is assumed from the beginning that
D→0 is the smallest energy scale in the problem, resulting
in dispersionless high energy features. The present theory is
valid in the opposite limit, D	�0, which is more often re-
alized in solids.36–38 Due to the large transfer integrals be-
tween molecular units, the discrete shakeoff spectrum char-
acteristic of isolated molecules is converted here into a
continuous Gaussian spectral density,16 and a sizeable high-
energy dispersion is recovered.

We recognize from Eq. �13� that the spectral density in
this case coincides with the gaussian distribution itself,

N*��� = P�� + EP� �17�

whose width is governed by the variance � �we have per-
formed the shift �=−�−EP using the fact that E0→−EP in
the strong coupling limit�. The full Green’s function G can
be read directly from Eq. �6�:

G��� = − i� �

2�2W	− � − EP + i�
�2�2 
 �18�

At the center of the polaron peak, the self-energy ����
=−�−EP−1/G��� tends to

� ��� = − �� + EP��1 −
2

�
� − i�2�2

�
�19�

As a consequence, the dispersion of the broad peaks in
A��k ,�� tends to Ek=−EP+ �� /2��k, which defines an appar-
ent bandwidth=�D for the incoherent features, sensibly
larger than the noninteracting value 2D �this should not be
confused with the width of the polaron peak in the
momentum-integrated spectral density of Eq. �17�, which is
governed by the variance ��. Correspondingly, the slope of
the high-energy dispersion saturates to a finite value in the
strong electron-boson coupling limit, which is independent
of the coupling strength, and is larger than the noninteracting
value �cf. the opposite situation in the Mott-Hubbard insula-
tor at strong U, Sec. II B�.

In the energy interval spanned by the dispersion Ek, the
scattering rate is roughly constant and directly proportional
to �. Its variation under a change of the boson frequency is
given by

�


��0
=� EP

2��0
. �20�

which is similar to the behavior encountered near the edges
of the Hubbard bands �cf. Eq. �12��.

IV. CONCLUDING REMARKS

In this work, we have presented an approximate analytical
theory which addresses the high energy spectral properties in
systems characterized by a strong electron-boson coupling,
both in the presence and in the absence of electronic corre-
lations. Concerning the electron-boson interaction alone, the

present approach gives accurate results in the adiabatic re-
gime �i.e., opposite to the standard strong-coupling polaron
theories�, where its validity can be controlled by direct com-
parison with the results of the dynamical mean field theory.
For the correlation part, on the other hand, it reduces to the
CPA treatment of Ref. 19 which qualitatively accounts for
the incoherent high-energy excitations located in the upper
and lower Hubbard bands.

Although the microscopic mechanisms in the cuprates
certainly go beyond the simple model and approximations
presented here, our results reproduce at least qualitatively
several characteristics of the observed photoemission spec-
tra, such as the existence of broad peaks with a sizeable
momentum dispersion, which sharpen and become more
asymmetric �in the energy distribution curve �EDC� scans� as
the band edge is approached.

More specifically, we have calculated the isotope effect on
the high-energy spectral features. In the present framework,
where the bosonic and magnetic fluctuations are effectively
decoupled, the overall behavior in the Mott insulator and in
the polaronic semiconductor is qualitatively similar. The
most notable result is the existence of a strongly energy de-
pendent IE on the linewidths, which is maximum in a narrow
energy interval of width ���EP�0 near the band edges,
because this is the region where the excitation spectrum is
mostly affected by the electron-boson interaction �new spec-
tral weight is created there, due to the presence of boson
fluctuations�.

The present approach also predicts a strong temperature
dependence of the IE, which should be strongly suppressed
when the temperature reaches some fraction of the boson
frequency �typically T�0.2�0�. This occurs because at high
temperatures, the fluctuations of the boson field are domi-
nated by thermal effects, which are independent on the boson
frequency, and is in no way related to the existence of a
temperature dependent electron-boson coupling. Note that,
according to the above general arguments, an analogous en-
ergy and temperature dependence of the IE can also be ex-
pected in more accurate treatments of the electron correla-
tions.

The results of Sec. II can be tentatively compared with the
experimental results of Refs. 17 and 18. If we associate the
variance � with the observed width �0.2 eV of the active IE
region, and take the value �0=0.07 eV for the boson energy,
a “polaron” binding energy EP�0.5 eV is obtained. Assum-
ing a noninteracting bandwidth of the order of 1 eV places
this value in the intermediate electron-boson coupling re-
gime. The same value of � is also compatible with the mag-
nitude of the observed IE on the scattering rate. From the
frequency softening ��0=5–10 meV deduced from the shift
of the kink energy, the theory predicts a decrease of the scat-
tering rate around the band edges of the order �


���0 /�0�10–30 meV �see the end of Sec. II D�, in
agreement with the experimental observations of Ref. 18.

It should be stressed that the present theory, based on a
momentum independent electronic self-energy, clearly fails
in addressing the strongly anisotropic dispersion observed in
the cuprate superconductors, which demands to go beyond a
local �and classical� treatment of the bosonic and magnetic
fluctuations. In particular, the edges of the Hubbard bands at
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low temperature are strongly affected by the “spin density
wave” dispersion, especially at intermediate values of U. An-
other point which is beyond the range of validity of the
present approach is the enhancement of the low energy IE
due to proximity to a Mott metal-insulator transition. In this
case, even a weak electron-boson interaction may produce a
huge effect when the boson frequency is varied.15
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APPENDIX: IE IN THE LARGE U LIMIT

1. Inside the Hubbard bands

Well inside the LHB, we can expand �6� for small �2, and
neglect the effect of the UHB in Equation �3� for sufficiently
large U. In the case of a semicircular DOS, we obtain

G 

1/2

� − D2G/4 + U/2
�1 +

�2

�� − D2G/4 + U/2�2�



1/2

� − �D2/4 + 2�2�G + U/2
�A1�

where we have used the fact that �−D2G /4+U /2=1/ �2G�
to lowest order in �2. The solution for G reads

G��� =
1

D*2 �� + U/2 − ��� + U/2�2 − D*2� �A2�

with D*2=D2 /2+4�2. From the self-consistency relation
G−1=�−D2G /4−� we obtain

� ��� 
 − � − U + �D2/4 + 4�2�G��� �A3�

The scattering rate 
���=−Im ���� is, therefore, directly
proportional to the spectral density at this energy. At the
center of the band, it is given by


 =
D�2

4
	1 +

12�2

D2 
 �A4�

Its isotope effect at T=0

�


��0
= 3�2

EP

D
�A5�

gives a direct measure of the strength of the electron-boson
interaction.

2. Fluctuation induced tails

In the gap region between the Hubbard bands, additional
spectral weight is created by the boson fluctuations. For
small � and sufficiently far from the band edges, both terms
in �3� can be replaced by their atomic counterparts leading to
the following exponential decay �for the LHB�


��� 
� �

8�2

��2 − U2/4�2

�2 e−�� + U/2 − D2�/4/�2 − U2/4�2/2�2

�A6�

�note that this formula is not valid close to the band edge,
i.e., where the IE is maximum�.

A simpler result is obtained for sufficiently large �, i.e., in
the strong electron-boson coupling regime U	�2�D. In
this case, the variation �
��� of the scattering rate under a
shift of the boson frequency takes the form of a skewed
gaussian, which is maximum at �
−U /2+2�, where

�
max

��0
��EP

�0
. �A7�
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