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The propagation of the classical wave in disordered media at the Anderson localization transition is studied.
Our results show that the classical waves may follow a different scaling behavior from that for electrons. For
electrons, the effect of weak localization due to interference of recurrent scattering paths is limited within a
spherical volume because of electron-electron or electron-phonon scattering, while for classical waves, it is the
sample geometry that determines the amount of recurrent scattering paths that contribute. It is found that the
weak localization effect is weaker in both cubic and slab geometry than in spherical geometry. As a result, the
averaged static diffusion constant D�L� scales like ln�L� /L in cubic or slab geometry and the corresponding
transmission follows �T�L��� ln L /L2. This is in contrast to the behavior of D�L��1/L and �T�L���1/L2

obtained previously for electrons or spherical samples. For wave dynamics, we solve the Bethe-Salpeter
equation in a disordered slab with the recurrent scattering incorporated in a self-consistent manner. All of the
static and dynamic transport quantities studied are found to follow the scaling behavior of D�L�. We have also
considered position-dependent weak localization effects by using a plausible form of position-dependent dif-
fusion constant D�z�. The same scaling behavior is found, i.e., �T�L��� ln L /L2.
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I. INTRODUCTION

The Anderson localization transition in three dimensions
occurs when the Ioffe-Regel criterion k�0�1 is met, where k
is the wave vector and �0 is the bare mean free path.1 In the
diffusive regime, it is known that the averaged transmission
coefficient decays with the sample size like �T�L����0 /L. In
the localized regime, it is also known that the geometrical
mean of the transmission coefficient falls off exponentially
with L, i.e., �T�L��g�exp�−L /��, where � is the localization
length. At the localization transition, it has been predicted
that �T�L�����0 /L�2.2 This 1 /L2 behavior is obtained by
considering the reduction of the Boltzmann diffusion con-
stant, D0, due to weak localization �WL� effects in a spheri-
cal volume of size L3. It arises from the contributions of all
recurrent scattering paths returning to the origin inside the
volume, i.e., those paths of length longer than L do not con-
tribute to the reduction of D0. As a result, the renormalized
diffusion constant, D�L�, becomes size dependent and has
the form D�L��D0�0 /L at the localization transition.
Equivalently, the mean free path is renormalized to �
��0

2 /L. This renormalization of intrinsic transport param-
eters gives rise to the scaling behavior of �T�L���D�L� /L
�1/L2.2,3 In one dimension �1D� and two dimensions �2D�,
the recurrent scattering paths give divergent contributions to
the reduction of D0 when L is large, i.e., �D�L in 1D and
�D� ln L in 2D.1 Thus all states are believed to be localized
in 1D and 2D random media.4 For electrons, inelastic scat-
tering due to electron-electron or electron-phonon interaction
provides a natural cutoff length for the recurrent scattering
paths. Since the inelastic scattering time is inversely propor-
tional to some power in the temperature, i.e., �in�T−p, WL
leads to a temperature-dependent conductivity, which de-
creases like −T−p/2 in 1D and p ln T in 2D as long as the
dephasing length Ldep���in is smaller than the sample length
L. Such temperature-dependent conductivity has been ob-

served in disordered metal wires and films.1,5 For classical
waves, the observation of light localization and the scaling
behavior of �T�L�����0 /L�2 have been reported.6,7 However,
these reports have come under close scrutiny because of the
presence of absorption in the samples.

Here, we would like to point out that the renormalization
of D0 discussed above may not be valid for classical waves
or for electrons when the dephasing length Ldep is larger than
the sample size L. In this case, the sample geometry deter-
mines the cutoff of the recurrent scattering paths. For classi-
cal waves, samples used for the transmission measurements
are usually not in spherical geometry.6,7 For example, slab
geometry are often adapted in optical7 and ultrasonic
measurements.8 Since the recurrent scattering paths in a slab
are different from those in a spherical sample, it is natural to
ask whether the previously obtained scaling behaviors for
electrons are actually applicable to classical waves? If not,
what should be correct scaling behaviors for classical waves?
The purpose of this work is to address these questions.

In this work, we study the propagation of classical waves
in finite size disordered samples at the localization transition
or mobility edge under the framework of the self-consistent
theory of localization.9,10 The contributions from all recur-
rent scattering paths within the slabs are calculated in the
framework of self-consistent theory of localization. We show
that the averaged static diffusion constant D�L� is propor-
tional to ln L /L at the mobility edge for both cubic, cylindri-
cal, and slab geometries, in contrast to to the behavior of
D�L��1/L obtained previously for elecrons or spherical
samples.2 The corresponding static transmission follows the
scaling �T�L��� ln L /L2. For dynamics, we have studied the
time-dependent wave propagation in disordered slabs by us-
ing both the Bethe-Salpeter �B-S� equation and the diffusion
equation with a frequency-dependent diffusion constant. In
both equations, the effects due to WL are incorporated in a
way that renormalizes the mean free path.11 It will be shown
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that the diffusion equation produces the same scaling behav-
ior as that of the B-S equations when L��0.

We have also considered the position-dependent WL ef-
fects by using a plausible form of position-dependent diffu-
sion constant D�z�. We find that the scaling behavior
�T�L��� ln L /L2 holds when L /�0 is large. Since the localiza-
tion effect studied in this work is a general wave phenomena,
these new scaling laws are not limited to classical waves, but
may also apply to electrons if Ldep is larger than the sample
size L.

II. THEORY

A. Scaling behavior of renormalized averaged diffusion
constant at mobility edge

Weak localization due to interference of recurrent scatter-
ing paths can be signified by the reduction of the diffusion
constant in the frequency domain. By summing all the maxi-
mally crossed diagrams12 in self-consistent diagrammatic
theory, the renormalized diffusion constant in a bulk can be
written as9,10

1

D��,k�
=

1

D0
�1 +

2�v
k2 G̃��;r,r�� , �1�

where D�� ,k�=v��� ,k� /3, D0=v�0 /3 is the Boltzmann dif-

fusion coefficient and G̃ is the Green’s function that satisfies
the diffusion equation in the frequency domain

�D0�2 + i��G̃��;r,r�� = − ��r − r�� . �2�

The diagonal term of the Green’s function, G̃�� ;r ,r��, rep-
resents the return probability of waves that travel diffusively
in the bulk. For an infinite medium, D��� has already been
studied previously in different dimensions.13–17 To study the

scaling behavior in a slab, we first solve for G̃ in a cylinder
of length L and radius R��0 with open ends in cylindrical
geometry. A slab can then be obtained by taking the limit of
R /L→	. Later we will explain that either the cylindrical
geometry or the cubic geometry would give the same scaling
behavior that is different from that in spherical geometry.
The result can be written as

G̃��;z = z��

=
1

2�2L̃
	
n=1

nc

sin2
qn�z + ze���
1/R


/�0 2�qdq

− i� + D0�qn
2 + q

2�
,

�3�

where qn=n� / L̃, nc=
L̃ /�l0 is the upper momentum cutoff
in the z direction, q is the momentum in the x-y plane,

L̃=L+2ze is the effective thickness of the slab and
ze�0.7104�0 is the extrapolation length.1 We let 
=1 in our
calculations. A different choice of 
 will only change the
mobility edge, kc, not the scaling behaviors of wave trans-
port. Equation �3� indicates that the renormalized diffusion
constant is z dependent. In order to simplify our calculations,
we take the spatial average along the z axis and replace the

factor of sin2
qn�z+z0�� by 1/2. This averaging replaces the
position-dependent diffusion constant by its harmonic mean.
The situation of z-dependent diffusion constant will be con-
sidered in Sec. II C.

Here, we define a renormalization factor �L�� ,k� that
renormalizes the diffusion constant in a finite size slab of
thickness L according to

DL��,k� =
v�L��,k�

3
=

D0

1 + �L��,k�
, �4�

where �L�� ,k��2�vG̃ /k2 by comparing Eq. �4� with Eq.
�1�, and �L�� ,k�=�0 / 
1+�L�� ,k�� is the renormalized mean
free path. By using Eqs. �3� and �4�, we obtain

�L��,k� =
v

2k2L̃
	
n=1

nc �
1/R

1/�0 2qdq

− i� + D0�qn
2 + q

2�
. �5�

Equation �5� is then solved self-consistently by replacing D0
with DL�� ,k�.9,10 Physically, the self-consistency of �L�� ,k�
or DL�� ,k� assures the successive renormalization of the re-
current scattering paths inside the samples.

The scaling properties of disordered slabs can be obtained
by investigating the scaling behavior of the renormalization
factor �L�0,k� in the static limit. When L��0, the summa-
tion in Eq. �5� can be replaced by an integral, leading to

�L�0,k� �
v

2�k2DL�k��L−1

�0
−1

dq��
R−1

�0
−1 2qdq

q�
2 + q

2 , �6�

where DL�k��DL�0,k� and dq���qn. Each of the double
integrals in Eq. �6� can be split into two parts, i.e.,

�
L−1

�0
−1 �

R−1

�0
−1

= ��
0

�0
−1

− �
0

L−1 ���
0

�0
−1

− �
0

R−1 � ,

and thus, Eq. �6� can be expressed as the sum of four terms

�L�0,k� �
v

2�k2DL�k�
��A + �B + �C + �D� , �7�

where

�A � �ln 2 +
�

2
�� �0,

�B � − �2�0/L�
ln�L/�0� + 1� ,

�C � − ��0/R2 + �/R� ,

�D � L/R2 + �/R . �8�

The mobility edge in a bulk can be obtained by taking the
limits of L→	 and R→	 in Eq. �8�. At such limit,
�B=�C=�D�0 and Eq. �7� becomes

�	�0,k� =
v

2�k2D	�k��0
�ln 2 +

�

2
� , �9�

where D	�k��D	�0,k�. By substituting Eq. �9� into Eq. �4�,
we obtain the following expression for D	�k�:
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D	�k�
D0

= 1 −
3

2��k�0�2�ln 2 +
�

2
� . �10�

For the convenience of discussion, here we set �0 as the unit
of length and let k vary. Since the Anderson transition
occurs when D	�kc�=0, Eq. �10� gives the mobility edge
kc�0��3�ln 2+� /2� /2��1.039. We can now rewrite Eq.
�10� as

D�k�
D0

= 1 − � kc

k
�2

. �11�

For either a “cubic-like” sample �R=L� or a slab �R→	�, �B

dominates and Eq. �7� can be approximately written as

�L�0,k� �
D0

DL�k�
� kc

k
�2�1 − ��0

L
�2 ln�L/�0�

ln 2 + �/2
� . �12�

By using the relation D0 /DL�k�=1+�L�0,k� in Eq. �12�, it is
easy to see that �L�0,k��L / ln L when k=kc. By substituting
Eq. �12� into Eq. �4�, the static diffusion constant DL�k� in a
finite slab but with L��0 can be expressed as

DL�k�
D0

� 1 − � kc

k
�2�1 − ��0

L
�2 ln�L/�0�

ln 2 + �/2
� . �13�

Equation �13� gives D�L��DL�kc�� ln L /L at k=kc,
which can also be obtained from Eq. �4� by using
�L�0,kc��L / ln�L�. In Sec. II B, we will see that the scaling
of D�L� dictates the scaling behaviors of many measured
static and dynamic transport quantities. When kkc, Eq.
�13� gives the following L-dependent static diffusion con-
stant for slabs:

DL�k�
D0

�� ��0/L�ln�L/�0� , L � �s

��0/�s�ln��s/�0� , L � �s

,� �14�

where �s is the saturation thickness beyond which DL�k� be-
comes virtually independent of L. �s can be estimated by
requiring the L-independent term equal to the L-dependent
term in Eq. �13�, yielding

�0

�s
ln� �s

�0
� �

0.72�k − kc�
kc

. �15�

Equation �15� gives a scaling behavior of �s
−1� �k−kc�ln�k

−kc�. The above results are different from those obtained
previously for electrons or spherical samples. For a spherical
sample of radius L, Eq. �2� gives10,18

�L�0,k� �
v

4�2k2DL�k��L−1

�0
−1 dq

q2 . �16�

By substituting Eq. �16� in Eq. �4�, we obtain

DL�k�
D0

� 1 −
3

�

1

�k�0�2�1 −
�0

L
� , �17�

from which we obtain D�L��DL�kc���0 /L at k=kc, and
when kkc,

DL�k�
D0

���0/L , L � �

�0/� , L � �
,� �18�

where � is the correlation length and is proportional to
�k−kc�−1.19

Here, we clearly see that the scaling behavior of an intrin-
sic transport parameter in slabs can be very different from
that in spherical systems due to different sets of recurrent
scattering paths. Equations �13� and �17� indicate that the
reduction of D�L� /D0 at k=kc due to WL in slabs is smaller
than that in spherical systems by a factor of ln L. This can be
explained by the difference between Eqs. �6� and �16� in
volume of integration of the diffusion pole in momentum
space. Figure 1�a� shows the schematic diagram for the mo-
mentum space of the cylindrical system. The rectangles
shown here are the surfaces for volume of evolution about
the q� axis. The shaded region represents the momentum
space that allows diffusion, which is schematically equal to
the total volume of the whole largest square minus the two
grey rectangles and the small white rectangle. This can also
be seen from Eqs. �7� and �8�. The term of �A represents the
largest square with a length equal to the upper cutoff of �0

−1

in Eq. �6�, which determines the mobility edge, i.e., the value
of kc. ��B�+ ��C�− ��D� represents the sum of the grey and
white rectangles, which are to be excluded from diffusion.
For cubic-like samples or slabs, the value of �B dominates in
Eq. �7� and this is the term which makes these samples dif-
ferent from the spherical samples. The exclusion of the grey
regions implies that diffusion is not allowed when the mo-
mentum in each direction is smaller than the lower momen-
tum cutoffs, i.e., q �1/R and q��1/L. This restriction ef-
fectively decreases the total return probability and thus
reduces the effect of WL significantly. The same argument
also applies to the cubic geometry, which also involves the
separation of variables in momentum space into two or more
directions.

FIG. 1. �Color online� The schematic diagrams to show the mo-
mentum spaces of diffusion for the �a� cylindrical and �b� spherical
geometry. The shaded areas represent the regions of momentum
space that allow diffusion. For �a�, the momentum space is a cylin-
drical volume and the rectangles shown are the surfaces for volume
of evolution about the q� axis. For �b�, the momentum space is a
spherical volume and the circles shown are the cross-sections of the
concentric spheres about the origin.
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However, there is no such restriction in the spherical sys-
tem. The schematic diagram for momentum space of the
spherical system is shown in Fig. 1�b�. The circles shown are
the cross-sections of the concentric spheres about the origin.
The shaded area shows the region of allowed diffusion
modes, which is represented by the volume integral in Eq.
�16�. In spherical geometry, the isotropy of the momentum
space retains the most recurrent scattering paths and thus has
the largest WL effect among all geometries in three dimen-
sions. At k=kc, the static diffusion constant depends only on
L and it can be written as D�L�� f�L� /L. Equation �17� in-
dicates f�L� is constant in the spherical system, while Eq.
�13� indicates f�L�� ln L in the cylindrical system. Although
we do not have a simple analytical expression of D�L� for the
cubic system, we also expect f�L�� ln L in a cube. In Fig. 2,
we plot the function f�L� versus ln�L /�0� for a cylindrical
slab of thickness L with radius R=10L and a cube of length
L. In this graph, we can see that f�L�� ln L and D�L� is
indeed proportional to ln L /L in both cylindrical and cubic
systems as expected.

B. Scaling behavior of wave propagation through disordered
slabs at the mobility edge

To study the scaling behavior in the dynamics of wave
propagation, we consider a pulsed plane wave normally in-
cident on the front surface of a disordered slab of thickness L
at z=0. We assume that there is no gain or absorption in the
medium and that scattering is isotropic. The physical quan-
tity we are interested in here is the ensemble averaged inten-
sity �I�t ,r�� which can be obtained from the Fourier trans-
form of the field-field correlation function in frequency, i.e.,
C��� ;r�= ���+�r���−

* �r�� and8,20

�I�t,r�� =
1

2�
� d� exp�− i�t�C���;r� , �19�

where �±=�±� /2, � is the central frequency, � is the
modulation frequency, and ���r� is the wave field at position

r inside the sample with a frequency �. C��� ;r� can be
obtained by solving for the space-frequency correlation func-
tion in the following B-S equation,

C���;r,r�� = ���+�r�����−
* �r���

+� dr1dr2dr3dr4�G�+�r,r1���G�−
* �r�,r3��

� U���;r1,r2;r3,r4�C���;r2,r4� , �20�

where ����r�� is the coherent source inside the sample, and
�G��r ,r1��=−exp�i��r−r1�� /4��r−r1� is the ensemble-
averaged Green’s function that represents the coherent part
of wave propagation from r1 to r.12 The complex wave vec-
tor �=k+ �i /2�� describes the ballistic propagation inside the
disordered slab, where k=� /v is the wave vector, v is the
phase velocity, and � is the scattering mean free path, which
is determined from the imaginary part of the self-energy of
�G�. In the absence of WL, the bare mean free path �0 is
determined from the single-scattering diagram via �0=1/n�,
where n is the density of scatterers and � is the total scatter-
ing cross section. The vertex function U� represents the sum
of all irreducible vertices. Here, we approximate U� as

U���;r1,r2;r3,r4� =
4�

�0

1 + �L��,k����r1 − r2�

���r1 − r3���r1 − r4� . �21�

The first term in the vertex function with a scattering
strength 4� /�0 represents self-avoiding paths and generates
all the ladder diagrams that give rise to wave diffusion when
L��0.12 The second term with a vertex strength
4��L�� ,k� /�0 represents WL contribution to the vertex
function.11 The presence of this term renormalizes the bare
mean free path to a frequency-dependent mean free path, i.e.,
�L�� ,k�=�0 / 
1+�L�� ,k��. For flux conservation to hold, the
Ward identity10,16 requires that the mean free path � that
appears in �G� should also be replaced by the same �L�� ,k�.
Since the second term represents recurrent scatterings, it is
obtained by summing all maximally crossed diagrams due to
weak localization. The renormalization factor �L�� ,k� is ob-
tained by solving Eq. �2� with appropriate boundary condi-
tions and for the slab geometry considered here, we can use
Eq. �5� by taking the limit of R→	.

By using a pulsed plane-wave excitation, the averaged
intensity is uniform over the transverse cross section of the
slab and Eq. �20� can be expressed as8

C���,z� = exp� i�z

v
−

z

�L�0��
+

1

4��L��,k��0

L

dz�H��,z − z��C���,z�� ,

�22�

where �L�0���L�0,k� and

FIG. 2. The function f�L� in D�L�� f�L� /L at k=kc is plotted
versus ln�L /�0� for a cubic of length L and a cylindrical slab of
thickness L and radius R=10L.
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H��,z − z�� = �� d�2

�

exp�� i�

v
−

1

�L��,k����2 + �z − z��2�
�2 + �z − z��2 .

�23�

Equation �22� is then numerically solved for C��� ,z�. The
transmitted intensity �I�t ,L�� is calculated from the Fourier
transform of C��� ,L� as in Eq. �19� and C��0,L� gives the
static transmitted intensity �I�L��.

In the second method, to obtain �I�t ,r��, we solve the
diffusion equation in the frequency domain with a frequency-
dependent diffusion constant, DL�� ,k�. The WL effects are
incorporated through DL�� ,k� according to Eqs. �4� and �5�
with R→	. The solution to the diffusion equation in a slab
takes the form

C���,z� =
2

L̃
	
n=1

	
sin
qn�z̄e + z̄p��sin
qn�z + z̄e��

− i� + DL��,k�qn
2 , �24�

where qn=n� / L̃ is the transverse momentum, L̃=L+2z̄e is
the effective length, z̄e�0.71�L�0,k� is the extrapolation
length, and z̄p��L�0,k� is the penetration length. Here,
we use the renormalized mean free path �L�0,k�
=�0 / 
1+�L�0,k�� in the evaluation of the extrapolation
length z̄e and the penetration length z̄p. This replacement is
consistent with the replacement of �0 by �L�� ,k� in both the
averaged Green’s function �G� and vertex function U� in the
B-S equation as required by the Ward identity. It should be
mentioned that the dynamic diffusion constant D��� has
been studied for electrons near the mobility edge.14,15 In
these studies, a behavior of D�����1/3 was found at mobil-
ity edge for an unbounded medium.

The static transmitted intensity �I�L�� can be obtained
from Eq. �24� by setting �=0, yielding

�I�L�� =
z̄e + z̄p

L + 2z̄e

z̄e

DL�k�
. �25�

The transmission �T�L��= �−DL�k�d /dz�I�z���z=L and has the
form

�T�L�� =
z̄e + z̄p

L + 2z̄e

. �26�

At k=kc, Eqs. �25� and �26� give the same scaling behavior
of ln L /L2 for both �I�L�� and �T�L��. It is worth noting that
it is the replacements of z̄p��0 by z̄p��L�0,k� and
z̄e�0.71�0 by z̄e�0.71�L�0,k� that change the scaling of
�I�L�� and �T�L�� from 1/L2 to ln L /L2.

C. Discussion on the position-dependent diffusion constant

In an open system, the WL effects should vary in space as
the probability of returning to each point inside the sample
can be different. Thus, in Eq. �1�, the renormalized diffusion

constant D can also be position dependent. In arriving at Eq.
�12� for slab geometry, we have simplified the calculation by

taking the spatial average of G̃ along the z axis and assumed
that the diffusion constant is independent of z. Effectively,
this simplification replaces D�z� by its harmonic mean, i.e.,

D̄�L���1/D�z��−1 as can be seen from Eq. �1�. A complete
theory requires self-consistent solutions of both D�z� and

G̃�r ,r��, from which one can obtain �T�L��. In the case of
slab geometry and the static limit, Eq. �2� is replaced by the
following position-dependent diffusion equation,21 i.e.,

d

dz
�D�z�

dG̃�q;z,z��
dz

� − D�z�q
2G̃�q;z,z�� = − ��z − z�� ,

�27�

where

G̃�r,r�� =
1

�2��2 � dq exp�iq · ��G̃�q;z,z�� . �28�

In an operator form, we can write Eq. �27� as

L�G̃�q ;z ,z���=−��z−z��, where the self-adjoint linear op-
erator L is given by

L �
d

dz
�D�z�

d

dz
� − D�z�q

2. �29�

For a rigorous approach, one should solve Eq. �1� and Eq.
�27� simultaneously with the appropriate boundary condi-
tions at two surfaces for each fixed sample thickness L. The
transmission coefficient is then obtained from the relation21

�T�L�� = �ze + zp��2ze + �
0

L

dz
D0

D�z��−1

, �30�

where the extrapolation length ze and the penetration length
zp are determined by the diffusion constant at the sample
boundary.21 By repeating the same calculation at different Ls,
one can obtain the scaling behavior of �T�L��. For L��0, Eq.
�30� can be written as �T�L����ze+zp�
�0

LdzD0 /D�z��−1

��ze+zp�D̄�L� / �LD0�. By comparing Eq. �30� with Eq. �26�,
we can see that the scaling of �T�L�� for both the position-
dependent and position-independent diffusion constants are

determined by the scaling of D̄�L�. However, there is a subtle
difference between the two situations. In Eq. �26�, the scaling
of �T�L�� is affected by the scaling of z̄e and z̄p through the

scaling of �L or D̄�L�. However, in Eq. �30�, the scaling of

�T�L�� arises directly from D̄�L� /L. Since �T�L�� is domi-
nated by the small values of D�z� deep inside the sample, an
accurate numerical calculation for �T�L�� is difficult when L
is large. In this work, we do not intend to solve this problem
self-consistently. Instead we would like to propose a plau-
sible form of D�z� and show that the corresponding transmis-
sion is close to the self-consistent solution and behaves like
�T�L��� ln L /L2 when L is large.
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For a semi-infinite medium, van Tiggelen et al. have per-
formed the self-consistent calculations discussed above and
suggest an analytical form of D�z� at the mobility edge,21

i.e.,

D	�z� =
D	�0�

1 + z/�c
, �31�

where D	�0� is the diffusion constant at the boundary of a
semi-infinite medium. Equation �31� shows D	�z� decreases
like 1/z from its value at the boundary when z is moving into
the semi-infinite medium. In the absence of internal reflec-
tion, they find D	�0� /D0=0.642 and �c /�0=1.5. For a finite
slab of thickness L, based on Eq. �31�, they have also sug-
gested that DL�z��D	�zL�, where zL= �L /2�− ��L /2�−z�,21

from which they found �T�L���1/L2. In the case of finite
slabs, we expect that DL�z� should decrease slower than 1/z
as z moves well inside the sample due to reduced WL effects
in the presence of the other boundary. By taking this into
account, we propose here the following modified form for
DL�z�:

DL�z� = D	�0���1 +
�zL/�0�
2 ln�zL/�0 + w� − 1�


ln�zL/�0 + w��2 �−1�
�32�

with L�w��c. The above DL�z� is symmetric with respect
to the central plane at L /2. Its value decreases monotonically
from the boundary to its minimum at the center. In this work,
we choose w�10.65 in Eq. �32� to match the behavior of Eq.
�31� near the sample boundaries with �c /�0=1.5. In order to
make the comparison between Eqs. �31� and �32�, in Fig. 3,
we plot both DL�z� /D	�0� of Eq. �32� for the case of a finite
slab with L /�0=1000 �solid line� and D	�z� /D	�0� of Eq.
�31� for semi-infinite medium �dashed line�. From Fig. 3, it is
easy to see DL�z� decays like D	�z� near the boundary, but

decreases in a slower rate than 1/z away from the boundary.
Since the value of �T�L�� is dominated by the small values of
DL�z� inside the sample as it can be seen from Eq. �30�, a
scaling behavior which is different from �T�L���1/L2 is ex-
pected. By substituting Eq. �32� into Eq. �30� and setting
zp=3D	�0� /v=0.642�0 and ze=0.71zp,21 we obtain the trans-
mission, �T0�L��, which is shown by the dashed curve in Fig.
4. In order to show more clearly its scaling behavior, we
replot the function 
�T0�L���−1ln L in the inset of Fig. 4 using
the log-log scale. A linear line of slope 1.98 clearly shows
the scaling relation �T�L��� ln L /L2.

In order to test the self-consistency of this result, we sub-
stitute Eq. �32� into Eq. �29� and solve for the eigenvalue
problem of L�Un�q ,z��=En�q��Un�q ,z�� by using the
method described in Ref. 22. The diagonal Green’s function

G̃�r ,r� of Eq. �27� can be obtained by the eigenfunction
expansion

G̃�z,z� =
1

�2��2 � dq	
n=0

nc �Un�q,z��2

En�q�
. �33�

In Sec. II A, we have shown that the ln L factor found in �B
of Eq. �8� arises from the exclusion of phase space volume
bounded by the lowest order mode q�=� /L when q �0 as
shown in the grey area of Fig. 1. Here, we would like to
show that this volume exclusion effect holds even when a
position-dependent D�z� is considered. Since we are inter-
ested in the scaling of �T�L��, only the spatial average of

G̃�z ,z� is relevant as can be seen from Eq. �30�. The normal-
ization of eigenfunctions requires �Un�q��2=1/L for all n
and q. We can see that the forbidden volume in phase space

FIG. 3. D�z� /D�0� for a finite slab with L=1000�0 �solid line�
and the semi-infinite medium �dashed line�, which are obtained
from Eqs. �32� and �31�, respectively, are plotted as functions of
z /�0.

FIG. 4. �T�1��L�� obtained from the first iteration of Eq. �33�
�solid line� and �T�0��L�� obtained directly from DL�z� in Eq. �32�
�dashed line� are plotted against L /�0. In the inset, �T�1��−1�ln L�
�solid line� and �T�0��−1�ln L� �dashed line� are plotted versus L /�0

in the log-log scale. The slope of their linear fitting lines are 1.95
and 1.98, respectively. Also plotted in the inset is �T�A��−1�ln L�
obtained from Eq. �26� �dotted line� with a linear fitting line of
slope 1.97.
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is determined by En�q�. For a fixed q, the lowest order

eigenvalues for different slab thickness L divided by D̄�L�,
i.e., E0�q� / D̄�L�, are plotted versus q

2�0
2 in Fig. 5. The y

intercepts for each curve are also shown in the inset of Fig. 5.
The linear fits to the curves for each L suggest that

E0�q��E0�0�+ D̄�L��q
2. For sufficiently large L, ��0.55.

By using the y intercepts of the fitted lines in Fig. 5,

E0�0� / D̄�L� are also plotted against L /�0 in the log-log scale
in Fig. 6, which are well fitted by the formula

E0�0��1.35D̄�L��� /L�2. The combined results indicate that

E0�q�� D̄�L�
1.35�� /L�2+�q
2� and the exclusion of phase

space volume is retained for finite L. By using this result in
Eq. �33�, we would expect to obtain the same scaling behav-
ior for the transmission. In order to confirm our assertion, we

first calculate the averaged diffusion constant, D̄�1��L� from
Eq. �1� by using the results shown in Figs. 5 and 6. By

substituting D̄�1��L� into Eq. �30�, we obtain �T�1��L��. This
result is plotted as the solid curve in Fig. 4. The excellent
agreement between �T�0��L�� and �T�1��L�� when L�100�0

indicates that Eq. �32� is close to the self-consistent solution
when L /�0 is large. This result strongly indicates that the
scaling behavior of D�L�� ln L /L or �T�L��� ln L /L2 found
in Sec. II B holds even when a position-dependent diffusion
constant is considered. In fact, we will show in Sec. III that
the transmission coefficient shown in Fig. 4 agrees very well
with that obtained from an averaged diffusion constant D�L�
given in Eq. �14� through the use of Eq. �26�, which is shown
by the dotted line in the inset of Fig. 4. In Sec. III, we
present the numerical results of wave propagation through
disordered slabs at mobility edge based on the averaged
frequency-dependent diffusion constant DL�� ,k� shown in
Eqs. �4� and �5�.

III. NUMERICAL RESULTS AND DISCUSSIONS

Before presenting the dynamic results, we would like to
show that Eq. �25� of the diffusion approximation �DA� is
capable of producing the results of the B-S equation when
L��0. We first consider a case in the diffusive regime with
k�kc. In Fig. 7, we plot the reciprocal of static transmitted
intensity �I�L��−1 at k�0=8 against the dimensionless slab
thickness L /�0 in the log-log scale. Both the results from the
B-S equation and the DA are shown. It can be seen that the
results from the DA agrees well with those from the B-S
equation apart from a small constant shift. The dashed line

FIG. 5. The quantity E0�q� / D̄�L� for L /�0=500 and 1000 are
plotted against q

2�0
2. In the inset, the curves near q

2�0
2�0 for

L /�0=500 �solid line� and 1000 �dashed line� are amplified by a
factor of 105 to show the y-intercepts. The fit to the curves suggest

that E0�q��E0�0�+ D̄�L��q
2 with ��0.55.

FIG. 6. The values of E0�0� / D̄�L� are plotted against L /�0 in the
log-log scale. The slope and the y intercept of the linear fitting are

−1.99 and 2.59, respectively, thus E0�0��1.35D̄�L��� /L�2.

FIG. 7. The reciprocal of static transmitted intensity �I�L��−1 for
k�0=8 is plotted as a function of L /�0 in the log-log scale. Both
B-S results and DA results are shown. The dashed line with slope of
1 is plotted as �I�L���1/L. The scaled reciprocal static transmitted
intensity �I�L��−1�ln L� for k=kc is also plotted with the logarithmic
scale on the right. The solid line with slope of 2 shows that
�I�L��� ln L /L2 at k=kc.
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with a slope of 1 is plotted to show that �I�L���1/L for both
the B-S and the DA results. At the mobility edge, i.e., k=kc,
we would expect �I�L��� ln L /L2. On the right scale of Fig.
7, we plot the calculated result of �I�L��−1�ln L�. The solid
line with a slope of 2 is also plotted to show that �I�L��
calculated from both the B-S equation and the DA indeed
give the scaling behavior of ln L /L2. We have also calculated
the transmission coefficient using Eq. �26�. These results are
denoted as �T�A�� and plotted as the dotted line in the inset of
Fig. 4. The excellent agreement between �T�A�� and �T�0�� or
�T�1�� supports the use of an averaged diffusion constant in
the transmission calculations.

In Fig. 8, we plot �I�t����I�t ,L�� for L /�0=20 at k=kc

obtained from the B-S equation �in solid line� and the DA
�in dashed line� as functions of time t /�R, where

�R= L̃2 /�2D�L� is the renormalized diffusion time. Our re-
sults show that they agree with each other for a rather large
range of t /�R, indicating the validity of Eq. �24� when L
��0. In the same graph, we also plot the result obtained
from Eq. �12� of Ref. 23, in which a time-dependent diffu-
sion constant D�t�=D0��0 / tv�1/3 is used in the time-
dependent diffusion equation. Since such a local scaling ap-
proach does not consider the retardation effect of the
recurrent scattering paths, it overestimates the WL effects
and, therefore, produces a smaller �I�t�� and with a slower
decay rate as shown in Fig. 8. Such an approach has also
been used in the study of coherent backscattering24 and ab-
sorbing media25 near mobility edge. In our theory, it is the
frequency dependence of the factor �L in Eq. �5� that makes
the reduction of intrinsic diffusion constant causal in time. It
is also interesting to point out that, unlike a pure diffusion
process, the decay of �I�t�� shown in Fig. 8 is not a simple
exponential decay. The slowdown of decay rate in time is a
result of increasing WL effect contributed by the presence of

longer recurrent scattering paths. Such nonexponential decay
has also been reported first for electronic systems26,27 and
recently observed in the microwave experiments in a nomi-
nally diffusive region.28 Here, the cause of the nonexponen-
tial decay is also due to WL effects, but in a quasi-1D
geometry.11,27,29

The nonexponential decay shown in Fig. 8 becomes more
transparent in the time-dependent diffusion coefficient
D�t�, which is defined via the relation D�t� /D0

=−�Dd ln�I�t ,L�� /dt, for t��R, where �D��R / �1+�L� is the
diffusion time.28 In Fig. 9, we plot D�t� /D0 at k=kc, obtained
from the DA, for various sample thicknesses L /�0 as func-
tions of t /�R. It is easy to see that D�t� /D0 is not a constant
in time and its maximum value decreases as L increases. This
is in contrast to the case of the diffusive regime, i.e., when
k�kc, in which the WL effect is weak and the change of
slope in D�t� is very small.30

Since the static diffusion constant D�L� has a scaling that
is different from that of the spherical samples, it is also in-
teresting to investigate the scaling of the time-dependent dif-
fusion coefficient D�t�. Here, we are interested in D�t� in the
long time limit, i.e., D�t→	�, because the WL contribution
of the long recurrent scattering paths is expected to saturate
eventually. In the inset of Fig. 10, we show the fitting of the
long time tail of D�t� /D0 �in solid line� against the function
a+b / t in dashed line for the case of L=20�0 at k=kc. We
perform the similar fitting to each of the curves in Fig. 9.
From these fittings, we obtain D�t→	�=a for different slab
thickness L /�0 and they are used to plot D�t→	� /D0 ln L as
a function of L /�0 in the log-log scale in Fig. 10. The solid
line is the fit to the curve with a slope of −0.99, which
suggests that D�t→	� /D0� ln L /L and is consistent with the
scaling of D�L� given by Eq. �13�.

Figures 9 and 10 show that the ln L factor appears when
waves see the boundary of the sample, i.e., t�R. When
t��R, waves have not reached the output surface and the
ln L factor should not appear. In fact, we find D��� behaves

FIG. 8. The logarithmic time-resolved transmitted intensities
ln�I�t�� at k=kc for L /�0=20 obtained from the B-S equation �in
solid line� and diffusion approximation �in dashed line� are plotted
as functions of t /�R. The numerical result from the local diffusion
approximation �in dot-dashed line� with the same parameters is also
plotted for comparison.

FIG. 9. The time-dependent diffusion coefficient D�t� /D0 at
k=kc for L /�0=20, 30, 40, 50, 80, 100, and 500, obtained from the
diffusion approximation, are plotted as functions of time t /�R.

S. K. CHEUNG AND Z. Q. ZHANG PHYSICAL REVIEW B 72, 235102 �2005�

235102-8



like �1/3 when ��1/�R. This is consistent with the previous
studies.14,15 When ��1/�R, we find D���−D�L���2, which
represents the saturation of WL effects, or equivalently, the
saturation of D�t� when t / tR�1 as shown in the inset of Fig.
10.

Besides the static intensity and the diffusion coefficient,
the time of peak intensity Tpeak, i.e., the time it takes waves
to diffuse across the sample, also follows the scaling of
�L�0,k�. Tpeak can be obtained from the peak position of the
time-resolved transmitted intensity �I�t��. In standard diffu-
sion theory, Tpeak�L2 /3D0.19 If weak localization is in-
cluded, the Boltzmann diffusion coefficient D0 should
be replaced by DL�k�, and thus, Tpeak��1+�L�L2 /3D0

= �1+�L�L2 /v�0. Tpeak versus L /�0 at k�0=8 in the log-log
scale is plotted in Fig. 11 with the logarithmic scale shown
on the right. Both B-S and DA results are shown and they
agree with each other except for small sample thickness. The
slope of the dashed line is 1.99, which confirms that
Tpeak�L2 at the weak scattering limit. The scaled peak time
of intensity, Tpeak ln L, at k=kc versus L /�0 is also plotted on
the same graph with the logarithmic scale shown on the left.
The slope of the fitted line is 3.01, which indicates that
Tpeak�L3 / ln L and is consistent with the scaling of
�L�0,kc��L / ln L.

We have also studied the position of the peak intensity
zpeak obtained from B-S equation, which represents the col-
lective transport of diffusive waves in the sample. If weak
localization is present, the recurrent scattering paths enhance
the backscattering of waves and thus delay the propagation
of the peak intensity. zpeak�L� /L at k=kc for L /�0=20 and 50
are plotted as functions of �t /�R in Fig. 12. The fitted line
with a slope of 0.33 is added to highlight the region of dif-
fusive transport. This suggests that zpeak /L�0.33�t /�R and
thus zpeak��D�L�t for t��R, which is consistent with the
diffusion theory. When t��R, the curves start to deviate from

the dashed line because the diffusive waves have reached the
open end. As we can see in Fig. 9, the value of zpeak /L is
always less than 0.5 and this implies the wave interference
under strong scattering can stop the peak intensity from ap-
proaching the central plane of the slab.

IV. CONCLUSIONS

In summary, the scaling behavior of wave transport at the
Anderson transition, i.e., k=kc has been studied. We found
that both the static and dynamic transport properties at
k=kc follow the scaling of the averaged static diffusion con-

FIG. 10. The scaled long time diffusion coefficients
D�t→	� /D0 ln L at k=kc, obtained from the fitted values of a from
the curves in Fig. 5, are plotted as a function of L /�0 in the log-log
scale. The slope of the fitted line is −0.99. In the inset, the dashed
line shows the fitting of D�t→	� /D0 �in solid line� by the function
a+b / t for the case of L=20�0.

FIG. 11. The time of peak intensity Tpeak�L� at k�0=8 is plotted
against L /�0 in the log-log scale, with the logarithmic scale shown
on the right. Both B-S results and DA results are shown. The slope
of the fitted line �dashed line� is 1.99. The scaled time of peak
intensity, Tpeak ln L, at k=kc versus L /�0 is also plotted with the
logarithmic scale shown on the left. The slope of the fitted line
�solid line� is 3.01.

FIG. 12. The position of peak intensity zpeak�L� /L obtained from
the B-S equation is plotted against �t /�R. The dashed line is the
fitting to the linear region, which has a slope of 0.33.
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stant D�L�. D�L� is found to scale as ln L /L in cubic, cylin-
drical samples or slabs, in contrast to the scaling of
D�L��1/L found previously for electrons or spherical
samples. The corresponding static transmission �T�L�� scales
like ln L /L2, in contrast to the 1/L2 behavior found previ-
ously. Our results indicates that the weak localization effects
in other geometry are in general weaker than that of the
spherical system by a factor of 1 / ln L. This factor arises
from the existence of larger volume exclusion in the phase
space of allowed diffusion modes in nonspherical samples.
For dynamic transport, we solved both the Bethe-Salpeter
equation and the diffusion equation with weak localization
included self-consistently. The numerical results calculated
by the two methods agree qualitatively with each other and
they are found to produce the same scaling behavior when

L��0. The scaling for the long time diffusion coefficient and
the time of peak intensity are D�t→	� /D0� ln L /L and
Tpeak�L3 / ln L, respectively, which are consistent with the
scaling of D�L� in slabs. In addition, the position of peak
intensity in a slab zpeak /L is found to scale as �t /�R when
t��R, which is also consistent with the diffusion theory of
D�L�. We have also studied the position-dependent weak lo-
calization effects by using a plausible form of position-
dependent diffusion constant D�z�. The same scaling behav-
ior is obtained for the transmission, i.e., �T�L��� ln L /L2.
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