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A sign-free Monte Carlo method for the Hubbard model has recently been proposed by Corney and Drum-
mond. High-precision measurements on small clusters show that ground-state correlation functions are not
correctly reproduced. We argue that the origin of this mismatch lies in the fact that the low-temperature density
matrix does not have the symmetries of the Hamiltonian. Here we show that supplementing the algorithm with
symmetry projection schemes provides reliable and accurate estimates of ground-state properties.
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I. INTRODUCTION

The understanding of low-temperature properties of
doped Mott insulators is a central challenge in solid-state
physics. From the numerical point of view, this problem has
remained elusive due to the sign problem. Recently Corney
and Drummond1 have proposed a stochastic method in which
the sign problem does not explicitly occur. They show that
the density matrix of an arbitrary model Hamiltonian may be
expressed as a positive sum over Gaussian operators. The
imaginary time propagation of the density matrix boils down
to a Fokker-Planck equation governing the time evolution of
the probability distribution in the space of Gaussian opera-
tors. One can then solve the Fokker-Planck equation by in-
tegrating, numerically, the corresponding stochastic differen-
tial equation �SDE�. For the Hubbard model on arbitrary
lattice topologies and at arbitrary band fillings, the SDE has
real stochastic and drift forces thereby leading to no explicit
sign problem.

The aim of this paper is to test the precision of the method
with respect to ground state properties. We will see—on the
basis of simple examples—that the low-temperature density
matrix obtained by numerically solving the SDE does not
have the symmetry of the Hamiltonian, thereby producing
biased ground-state properties. The problem stems from the
fact that a single Gaussian operator breaks spin, lattice as
well as translation symmetries. Since the weighted summa-
tion over the Gaussian operators produces the density matrix,
the summation has to restore the symmetries of the problem
at hand. However, the summation is carried out stochasti-
cally, and it is a priori not clear that the sampling is efficient
enough to restore symmetries. At high temperatures this
poses no further problems, but as the temperature is lowered
symmetry restoration fails. We show that one can solve this
problem by projecting the density matrix onto the symmetry
sector of the ground state.

The organization of this paper is as follows. In Sec. II, we
briefly review the formulation of the Gaussian quantum
Monte Carlo approach �GQMC� applied to the Hubbard
model and, in Appendix C, present the generalization to four-
fermion terms arising from Coulomb interactions. We will
highlight the implicit assumptions used to derive the Fokker-

Planck equation, namely the absence of boundary terms. In
Appendix B, we discuss stochastic gauges which may serve
as a means of suppressing the possible occurrence of bound-
ary terms. In Sec. III we show, in detail, how to implement
the symmetry projections and demonstrate their efficiency in
Sec. IV. Finally, we draw conclusions.

II. GAUSSIAN QUANTUM MONTE CARLO METHOD
FOR THE HUBBARD MODEL

In this section we summarize the results of Ref. 1. Al-
though the GQMC is general and can be generalized to arbi-
trary Coulomb interactions as discussed in Appendix C, we
will concentrate here on the Hubbard model

Ĥ = ĉ†Tĉ −
U

2 �
i�

�ĉ
i�
†
�ĉi��2, �1�

where ĉ†= �ĉ1
† ,… , ĉNs

† �. ĉx
† creates a fermion with quantum

numbers x= �i�,�� where i� denotes the lattice site and � the z
component of spin. Hence x runs from 1 to Ns�2N , N being
the number of lattice sites. T is the hopping matrix. It is
diagonal in spin indices and takes the value −t�−t�� for next
neighbors �next-nearest neighbors�. Finally � denotes a Pauli
spin matrix and ĉ

i�
†
= �ĉ

i�,↑
†

, ĉ
i�,↓
† �. Setting �=1 yields the attrac-

tive Hubbard model whereas setting � to �x or �z the repul-
sive case.12

Corney and Drummond1 propose to expand the density
matrix in terms of Gaussian operators

�̂�n� = det�1 − n�:e−ĉ†�2+�nT − 1�−1�ĉ: �2�

with n an Ns�Ns real matrix. The Gaussian operators are

normalized, Tr��̂�n��=1 and obey Wick’s theorem such that

Tr��̂�n�ĉx
†ĉy� = nx,y ,

Tr��̂�n�ĉx
†ĉyĉw

† ĉz� = nx,ynw,z + nx,z�1 − n�w,y . �3�

The major result of Ref. 1 is that one can expand the
density matrix in terms of a positive sum of Gaussian opera-
tors
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�̂��� = �
i

Pi����̂�ni�, Pi � 0. �4�

Clearly Tr��̂������iPi��� grows exponentially with �. One
can account for this exponential growth by attaching a
weight factor to the Gaussian operators thereby obtaining

�̂��� =� d�P��,���̂��� , �5�

with �= �� ,n�, �̂���=��̂�n�, and �d�P�� ,��=1.
The aim is now to formulate a stochastic process which

samples the probability distribution P�� ,�� in the space of
Gaussian operators. To this end one considers the imaginary
time evolution of the density matrix

d

d�
�̂��� = −

1

2
�Ĥ, �̂����+, �6�

so that in conjunction with Eq. �5� we are left with the evalu-

ation of the anticommutator − 1
2 �Ĥ , �̂����+. The anticommu-

tator can be transformed into a differential form acting on

�̂���:

−
1

2
�Ĥ,�̂����+ = 	− �h�n�

�

��
− �

x,y
Ax,y

�

�nx,y

+
1

2 �
i�,x,y,w,z

Bx,y
�i�� Bw,z

�i�� �2

�nx,y � nw,z

+
1

2 �
i�,x,y,w,z

Cx,y
�i�� Cw,z

�i�� �2

�nx,y � nw,z

�̂��� , �7�

with

h�n� = Tr„�̂�n�Ĥ… , �8�

A =
1

2
n�T − UM�n̄ +

1

2
n̄�T − UM�n ,

Bx,y
�i�� =�U

2 �
�,��

nx,�i�,����,��n̄�i�,���,y ,

Cx,y
�i�� =�U

2 �
�,��

n̄x,�i�,����,��n�i�,���,y . �9�

In the above, n̄=1−n and

M�i�,��,�j�,��� = 	i�,j� �

,
�

n�i�,
�,�i�,
����,���
,
�

+ 	1

2
− n


�i�,
�,�i�,
��
��,
�
�,��.

Partial integration, under the assumption that boundary terms
vanish, yields the Fokker-Planck equation for the probability
distribution P�� ,��

�

��
P��,�� = � �

��
�h�n� + �

x,y

�

�nx,y
Ax,y

+
1

2 �
i�,x,y,w,z

�2

�nx,y � nw,z
Bx,y

�i�� Bw,z
�i��

+
1

2 �
i�,x,y,w,z

�2

�nx,y � nw,z
Cx,y

�i�� Cw,z
�i�� P��,�� .

�10�

The form of the diffusion matrices, D�x,y�,�w,z�
C =�i�Cx,y

�i�� Cw,z
�i�� and

D�x,y�,�w,z�
B =�i�Bx,y

�i�� Bw,z
�i�� is important. It depends on the manner

in which we have written the Hubbard interaction term or, in
other words, on the choice of the Fermi gauge. The fact that
the diffusion matrices factor out as above allows us to for-

mulate the SDE. Furthermore, the fact that Bi� and Ci� are real
for real values of n will lead to positiveness of the weights.
The appropriate choice of Fermi gauges for general Hamil-
tonians is considered in Appendix C.

The assumption of vanishing boundary terms is essential
to justify the approach and boils down to the requirement
that the probability P�� ,�� has tails decaying sufficiently fast

as ��� �→�. At this point, one has to recall that the Gaussian
basis is overcomplete, such that different probability distri-
butions P�� ,�� will yield the the same density matrix. This
degree of freedom is reflected in a stochastic gauge invari-
ance, which is reviewed in Appendix B. Hence, even if
boundary terms appear the hope remains of eliminating them
by an appropriate stochastic gauge choice.

To proceed, let us assume that we can neglect the bound-
ary terms. The Fokker-Planck equation can conveniently be
transformed into an Ito SDE,2

d� = − �h�n�d� ,

dn = − Ad� + �
i�

B�i��dWi� + �
i�

C�i��dW
i�
�, �11�

with Wiener increments �dWi��= �dW
i�
��= �dWi�dW

j�
��=0, and

�dW
i�
�dW

j�
��= �dWi�dWj��=d�	i�,j�. Equation �11� describes the

time evolution of walkers in the space of Gaussian operators.
At �=0, ���=0�1 such that all the Walkers can be param-
etrized by �= �1, 1

2
�. At imaginary time � they are distributed

according to P�� ,�� so that we have access to the density
matrix. In particular, any equal time observable is given by

�Ô� �
�

i

Tr��̂��i�Ô�

�
i

Tr��̂��i��
, �12�

where the sum runs over the set of walkers generated by the
SDE. Since Wick’s theorem applies for a single Gaussian
operator the numerator of the above equation may easily be
calculated.

ASSAAD et al. PHYSICAL REVIEW B 72, 224518 �2005�

224518-2



As apparent from Eq. �11�, the weight of a Walker at
imaginary time � reads

���� = e−�0
�d��h�n�����. �13�

Since the “equal-time Green functions” n are real, h�n� is
real and the weight remains positive. Hence the algorithm
shows no explicit manifestation of the sign problem. How-
ever, the weights grow exponentially with imaginary time,
thus yielding an exponential increase in the variance. To cir-
cumvent this problem, we have adopted the reconfiguration
scheme proposed in Ref. 3. In this approach the population
of walkers is kept constant. Walkers with large weights are
cloned and those with small weights suppressed in such a
way that in the large population limit the density matrix re-
mains invariant. Finally, after reconfiguration the weights of
all walkers is equal to their average.

We can now test the accuracy of the method on a 2�2
Hubbard model �see Fig. 1�. As apparent from Fig. 1�a� at
high temperatures the GQMC result for the energy �bullets in
Fig. 1�a�� compares well with the exact result �solid line�.
However, at low temperatures there is a systematic deviation.
We have failed to account for this mismatch by �i� enhancing
the number of walkers, �ii� using different schemes for the
integration of the SDE, �iii� varying the imaginary time step,
�iv� setting � to �x instead of �z in Eq. �1�, and finally, �v�
using different stochastic gauges �see Appendixes B and C�.
Writing the Hubbard term as HU=− U

4 �i��ĉi�
†
�zĉi��2+ �ĉ

i�
†
�xĉi��2

thereby adding additional noise terms only seemed to make
things worse. Concerning point �ii� we tried implicit and ex-
plicit Euler schemes and a higher order Milstein integrator.4

As the latter changes the order of the algorithm from O�N3�
to O�N4� without reducing the systematic error, we prefer the
Euler schemes.

To acquire more insight into the origin of the mismatch,
we compute the charge and spin susceptibilities

�c =
�

N
��N̂2� − �N̂�2�

�s
z =

�

N
��Ŝz

2� − �Ŝz�2�

�s
xy =

1

2

�

N
��Ŝx

2� − �Ŝx�2� +
1

2

�

N
��Ŝy

2� − �Ŝy�2� , �14�

where N̂=�i�ĉi�
†
ĉi� and Ŝ�=�i�ĉi�

†
��ĉi�. Those quantities are plot-

ted in Figs. 1�b� and 1�c�. As apparent, the charge suscepti-
bility as well as �s

z follow rather precisely the exact result.
On the other hand, �s

xy diverges as 1/T thereby signaling that
the low-temperature density matrix has nonvanishing over-
laps with s�0 spin sectors. To solve this problem so as to
produce accurate ground-state results, we propose to imple-
ment symmetry projection schemes.

III. SYMMETRY PROJECTIONS

Here we will assume that the low-temperature density ma-
trix has a large overlap with the ground-state density matrix

and a small admixture of excited states. If this assumption is
correct, then projection onto the symmetry sector of the
ground state will filter out the excited states and produce an
accurate estimate of low-temperature properties. Let us note
that symmetry projection schemes have been used success-
fully in the framework of the path-integral renormalization
group approach where the ground-state wave function is ap-
proximated by a sum of Slater determinants.5 Here, we first
review the mathematics of symmetry projections and then
show how to implement them in the context of the GQMC.

Let us first consider finite groups with elements R and
irreducible representations D��R�. Group theory then tells us
that

FIG. 1. �Color online� �a� Energy as a function of inverse tem-
perature as obtained from exact diagonalization �solid line�, from
the GQMC �bullets� and from the GQMC supplemented by the
symmetry projection �squares�. Here we have projected onto the
total spin s=0 state and d-wave lattice symmetry. �b� The charge
susceptibility and �c� the longitudinal and transverse spin suscepti-
bilities. In the above, we use 60 000 walkers, an imaginary time
step of ��t=0.0001, an explicit Euler scheme with adaptive time
step, and �=�z in Eq. �1�
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�R
Di,j

� �R�†Di�,j�
� �R� =

�
R

l�

	�,�	i,i�	 j,j�, �15�

where l� corresponds to the dimension of the representation.
For continuous groups, the sum has to be replaced by the
invariant integral: �R→�dR.6

To show how symmetry projections rely on the above
identity let us first consider the group of translations by lat-

tice vectors R� .

T̂�R� �ĉ
i�,�

†
T̂�R� �−1 = ĉ

i�+R� ,�

†
, �16�

with T̂�R� �=eiR� ·�p� ,�p� ĉp� ,�
†

ĉp� ,� and ĉp� ,�
† = �1/�N��i�e

ip� ·i�ĉ
i�,�

†
. In the

above, N denotes the number of lattice sites. Since the group
of translations is an Abelian group, the irreducible represen-
tations are one-dimensional and labeled by the total momen-

tum K� . Classifying states in Fock space according to their

total momentum K� yields DK� �R� �= �K� ,�K� �T̂�R� ��K� ,�K� ��eiR� ·K� .

Here, 1=�K� ,�K�
�K� ,�K� ��K� ,�K� �, where �K� labels all the states

in Fock space with total momentum K� . The projection opera-

tor onto the Hilbert space with total momentum K� 0 reads

P̂K� 0
=

1

N
�
R�

�K� 0�T̂�R� ��K� 0�†T̂�R� � . �17�

This expression may readily be verified:

�18�

Within the very same framework, we can define the pro-
jection on the Hilbert space with total spin s. We first param-
etrize the rotations in terms of the Euler angles, �
= �� ,� ,��, such that with

T̂��� = ei�Ŝz
ei�Ŝy

ei�Ŝz
, �19�

a spinor transforms as

T̂���c
i�
†
T̂−1��� = c

i�
†
ei��/2��z

ei��/2��y
ei��/2��z

. �20�

Here, Ŝz corresponds to the total z component of spin,

�i�
1
2c

i�
†
�zci�, and a similar definition holds for Ŝy. Using Eq.

�15� and noting that Dm,m�
s ���= �s ,m�T̂����s ,m�� where the

quantum numbers m ,m� denote the z component of spin, the
projection onto the Hilbert space with definite spin s, and
vanishing z component of spin reads

P̂s =
2s + 1

� d�

� d��s,0�T̂����s,0�†T̂��� . �21�

Since we have chosen to parametrize rotations in terms of
Euler angles the invariant integral reads �d�
=�0

2�d��0
�d� sin����0

2�d� and

�s,0�T̂����s,0� = Ps�cos���� , �22�

where Ps denotes the sth Legendre polynomial.
Since the GQMC method is a grand canonical approach,

we have equally implemented projection onto fixed particle
number. To this purpose, we define the gauge transformation

T̂��� = ei��
i

c
i�
†
ci� �23�

such that T̂���c
i�
†
T̂−1���=ei�c

i�
†
. Projection onto a given par-

ticle number sector then reads:

P̂N =
1

2�
�

0

2�

�N�T̂����N�†T̂��� . �24�

Finally, we have implemented the C4 lattice symmetries to
classify states according to �i� s-wave, even under parity and
� /2 rotations, �ii� d-wave, even under parity and odd under
� /2 rotations, and �iii� px+ ipy, odd under parity and acquires
a phase factor ei�/2 under � /2 rotations. We denote this pro-

jection by P̂latt.
Since the Hubbard Hamiltonian is invariant under lattice

vector translations, spin rotations, gauge transformations,
� /2 rotations, the ground-state density matrix will have defi-
nite momentum, spin, particle number, and lattice symmetry.
Our aim is now to project the density matrix produced by the
GQMC onto a given symmetry sector and then use the pro-
jected density matrix

P̂�̂P̂† �25�

to compute observables. Here, P̂ is a product of all or only
some of the above symmetry projectors with general form

P̂ =� dxg�x�T̂�x� , �26�

where T̂ is unitary and P̂†= P̂.
To simplify the calculation, we will assume that the ob-

servable Ô commutes with P̂

�P̂,Ô�− = 0, �27�

such that

�Ô�P =
Tr�P̂�̂P̂O�

Tr�P̂�̂P̂�
=

Tr�P̂�̂Ô�

Tr�P̂�̂�
, �28�

since P̂2= P̂. Estimating the right-hand side of Eq. �28� boils

down to the calculation of P̂�̂ where �̂����̂���, and the
sum runs over the walkers produced by integrating the SDE.
Hence, using the result of Appendix A,
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�Ô�P =
�� � dxg�x�Tr�T̂�x��̂���Ô�

�� � dxg�x�Tr�T̂�x��̂����

=
�� � dxg�x�Tr��̂���x��Ô�

�� � dxg�x���x�
, �29�

where T̂�x��̂���= �̂���x��.
We test the above procedure on the 2�2 lattice of Fig. 1.

As seen in Fig. 1�a� �solid squares�, by projecting onto the
spin-singlet and d-wave state we obtain a very accurate esti-
mate of the ground-state energy already at �t=5. Averaging
over subsequent imaginary times yields the results presented
in Table I. It is important to note that not only the ground-
state energy is very well reproduced but that reliable esti-
mates for the spin and charge structure factors,

S�q�� =
4

3N
�
i�,j�

eq� ·�i�−j���Ŝi� · Ŝ j�� ,

N�q�� =
1

N
�
i�,j�

eq� ·�i�−j���n̂i� · n̂j�� , �30�

are also obtained.

IV. ACCURACY TESTS

Here we provide further tests triggered at assessing the
accuracy of the method. Unless mentioned explicitly, all
simulations we carry out in this section suffer from the same
problem discussed in detail for the 2�2 lattice in Sec. II;
that is, ground-state energy values, which are systematically
too high, and spin-spin correlation functions, which take dif-
ferent values depending on if we measure in the transverse or
longitudinal directions. We first consider systems where the
sign problem is absent in auxiliary field QMC methods; that

is, the particle-hole symmetric Hubbard model. Table II pre-
sents results at half filling for both 4�4 and 6�6 lattices. In
both cases, one sees that the agreement with benchmark re-
sults �exact diagonalization for the 4�4 lattice and auxiliary
field projector QMC �PQMC� for the 6�6 lattice� is excel-
lent. Furthermore, the real-space spin-spin correlations agree
very well with the benchmark results �see Fig. 2�.

The crucial point is to show that in situations where the
sign problem plagues the auxiliary field QMC, the Gaussian

TABLE I. GQMC with symmetry projection for the 2�2 half-
filled Hubbard model at U / t=4. Here we have projected onto the
d-wave and spin-singlet Hilbert spaces. To impose the spin projec-
tion, we have to integrate over the three Euler angles. This integra-
tion is done numerically by replacing the three-dimensional integral
by a Riemann sum over 53 points. The thus-produced systematic
error is not included in the error bars. The results and error bars
stem from averaging the data over imaginary time �squares in Fig.
1�.

2�2,U / t=4 GQMC+Symm. Proj.

�n�=1 s=0, d-wave Exact

Energy/ t −2.1021±0.0007 −2.1026

S�� ,�� 2.1933±0.0010 2.1947

N�� ,�� 0.2667±0.0004 0.2664

TABLE II. Comparison between GQMC and benchmark results
for the 4�4 and 6�6 Hubbard model. For both parameter sets, we

project onto total spin s=0 and total momentum P� =0. The L
=4�L=6� simulations were carried out with 12 000 �6000� walkers,
an explicit Euler scheme, and an imaginary time step ��t
=0.0005���t=0.001�. The exact diagonalization results for the L
=4 lattice stem from Ref. 7. For the L=6 lattice, we compare to the
auxiliary field projector QMC �PQMC� algorithm.

U / t=4, t� / t=0, �n�=1

GQMC+Symm. Proj.

L=4 s=0, P� =0 Exact

Energy/ t −13.630±0.016 −13.6224

S�� ,�� 3.66±0.013 3.64

N�� ,�� 0.386±0.001 0.385

GQMC+Symm. Proj.

L=6 s=0, P� =0 PQMC

Energy/ t −30.87±0.04 −30.87±0.02

S�� ,�� 5.86±0.05 5.82±0.03

N�� ,�� 0.400±0.004 0.418±0.025

FIG. 2. �Color online� Real-space spin-spin correlations as ob-
tained from the GQMC and comparison to benchmark results. See
caption of Table II for details of the GQMC simulations.
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approach remains accurate. Table III presents three data sets
where the sign problem in the auxiliary field approach varies
from mild to very severe.

�i� Let us start with the 4�4 Hubbard model with nearest-
neighbor hopping t and �n�=10/16. The agreement between
the GQMC and exact diagonalization is excellent. It is worth
pointing out that in this specific case, the GQMC results with
and without symmetry projections are identical meaning that
the GQMC automatically produces the ground-state density
matrix with correct symmetries. We believe that this is due to
the fact that at this large doping away from half filling the
ground state is very well described by a paramagnetic mean-
field solution. Such a mean-field solution is exactly repro-
duced by the GQMC approach.

�ii� Our second example is the half-filled 4�4 frustrated
Hubbard model at U / t=8. Here frustration stems from a
next-nearest-neighbor hopping t� / t=−0.3. Both Table III and
Fig. 3�a� show that we obtain excellent agreement with the
exact result. Note that for those model parameters, the finite
temperature auxiliary field approach has an average sign of
�sign��0.2 at �t=10 and of �sign��0.1 at �t=15.

�iii� We now consider a parameter set that is out of reach
for the auxiliary field approach, U / t=8, �n�=0.875 and t� / t
=−0.3. Table III shows that we are capable of reproducing
the exact results. However, the fluctuations and hence the
error bars in the MC data are large in comparison to the
half-filled case. Those large fluctuations stem from the sym-
metry projection. In particular, the denominator in Eq. �28�,
Tr�P̂�̂�, is small and has large relative fluctuations. In other
words, the low-temperature density matrix �here we have
propagated the walkers up to �t=40� produced by the
GQMC still includes many excited states, and it is hard to

filter out ground-state properties by imposing symmetries.13

Nevertheless, and as seen in Fig. 3�b�, comparisons to exact
diagonalization results show that we are capable of accu-
rately reproducing the details of real-space spin-spin correla-
tion function.

V. CONCLUSIONS

We have shown that the GQMC method produces inaccu-
rate ground-state properties since the numerical solution of
the SDE fails to produce a low temperature density matrix
with the symmetry properties of the Hamiltonian. To repair
this sampling problem, we propose to a posteriori project the
density matrix onto the symmetry sector of the ground state.
We have shown ample nontrivial tests, including situations
where auxiliary field methods fail due to the sign problem,
where this approach yields accurate and reliable results.
Those results confirm the point of view that the low-
temperature density matrix produced by the GQMC has a
good overlap with the exact zero-temperature density matrix,
but that the GQMC density matrix contains excited states
because the symmetries are not correctly reproduced. Those
excited states are filtered out by the projection.

There are many open questions that deserve further work.
In particular, is it possible to improve the sampling by incor-
porating aspects of the symmetry projections directly into the
SDE? Also, we have not yet fully exploited the flexibility of
the stochastic gauges. It is, at present, not clear if, with a
suitable choice of stochastic gauge, the here-mentioned sym-
metry problems may be solved.

TABLE III. Comparison between GQMC and exact diagonaliza-
tion results. Here we have used 12 000 walkers and a time step of
��t=0.0005. The GQMC is a grand canonical simulation. Hence in
cases where charge fluctuations are not negligible we project onto
fixed particle number Hilbert spaces so as to allow comparison with
exact diagonalization results.

U / t=4, t� / t=0 GQMC+Symm. Proj.

�n�=0.625 s=0, s-wave, N=10 Exact

Energy/ t −19.576±0.012585 −19.584

S�� ,�� 0.737±0.002 0.73

N�� ,�� 0.5075±0.001

U / t=8, t� / t=−0.3 GQMC+Symm. Proj. Exact

�n�=1 s=0, P� =0, s-wave

Energy/ t −8.498±0.012 −8.4884

S�� ,�� 5.09±0.07 4.985

N�� ,�� 0.191±0.004 0.1920

U / t=8, t� / t=−0.3 GQMC+Symm. Proj. Exact

�n�=0.875 s=0, P� =0, N=14

Energy/ t −12.01±0.40 −12.50293

S�� ,�� 0.941±0.17 0.964776

N�� ,�� 0.266±0.01 0.27962 FIG. 3. �Color online� Real-space spin-spin correlations as ob-
tained from the GQMC and comparison with exact-diagonalization
results. See caption of Table III for details of the GQMC
simulations.
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APPENDIX A: UNITARY TRANSFORMATION
OF A GAUSSIAN OPERATOR

In this appendix, we show that

eiĉ†hĉ�̂��� = �̂��̃� , �A1�

with

�ñT − 1�−1 = ��eih − 1�nT + 1��nT − 1�−1,

�̃ = � det��eih − 1�nT + 1� .

Here, h†=h, �̃= ��̃ , ñ�, and �= �� ,n�.
Before showing the above, let us fist recall some identities

of the Grassmann algebra8

�A2�

Here �x are Grassmann variables and ��� fermion coherent
states.

In a first step it is convenient to transform eiĉ†hĉ into a
normal ordered form. Since h is hermitian, h=UDU† with D
a diagonal and U unitary. With the canonical transformation
�̂†= ĉ†U, we obtain

eiĉ†hĉ = �
x

ei�̂x
†�̂xDx = �

x

�1 + �eiDx − 1��̂x
†�̂x�

= �
x

:e�eiDx−1��̂x
†�̂x: = :e�

x
�̂x

†�eiDx−1��̂x: = :eĉ†�eih−1�ĉ: .

�A3�

We can now compute the quantity eiĉ†hĉ :eĉ†Bĉ:, where B is
an arbitrary matrix

eiĉ†hĉ:eĉ†Bĉ: = :eĉ†�eih−1�ĉ::eĉ†Bĉ:

=� D�D�D�e−�†�−�†�−�†�������:eĉ†�eih−1�ĉ:

� ������:eĉ†Bĉ:������

=� D�D�D�e−�†�−�†�−�†����e�†eih�e�†�B+1�����

=� D�D�̃D�e−�†�−�̃†�̃−�†����e�†�̃e�̃†eih�B+1�����

=� D�D�̃D�e−�†�−�̃†�̃−�†��������̃�

� ��̃�:ec†�eih�B+1�−1�c:������ = :ec†�eih�B+1�−1�c: .

�A4�

Here, we have carried out the substitution �̃=eih�, baring in
mind that eih is unitary matrix.

The result of Eq. �A1� follows from

�A5�

APPENDIX B: DRIFT GAUGES

Since the Gaussian operator basis is overcomplete, there
are many probability distributions P�� ,�� which will result
in the same density matrix. This degree of freedom on
P�� ,�� is reflected in the choice of stochastic gauges.
Clearly, the aim is to find a gauge that will suppress bound-
ary terms that could potentially show up in the partial inte-
gration step required to obtain the Fokker-Planck equation.
Here, we introduce drift gauges and then propose some ideas
on how to choose the appropriate gauge.

To formulate stochastic gauge invariance, it is useful to
introduce the index � :0 ,… ,Ns

2 such that for example ��=0
=� and ��=nx�,y�

for � :1 ,… ,Ns
2. Then Eq. �7� may con-

veniently be written as

−
1

2
�Ĥ,�̂����+ = 	− �

�

A�

�

���

+
1

2 �
i�,�,�

B�
�i��B�

�i�� �2

��� � ��

+
1

2 �
i�,�,�

C�
�i��C�

�i�� �2

��� � ��

�̂��� , �B1�

with A= ��h�n� ,A�, B�i��= �0,B�i��� and with C�i��= �0,C�i���.
Eq. �B1� remains invariant under the transformation

B�i�� = �0,B�i��� → ��g�i��,B�i��� ,

C�i�� = �0,C�i��� → ��f �i��,C�i��� ,

A = ��h�n�,A� → ��h�n�,A + �
i�

g�i��B�i�� + f �i��C�i��� ,

�B2�

where g�i�� and f �i�� are arbitrary functions of n. This invari-
ance stems from the fact that
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�
�

��
�̂��� = �̂��� . �B3�

For a given stochastic gauge, the Ito SDE reads

d� = − ��h�n�d� − �
i�

g�i��dWi� − �
i�

f �i��dW
i�
� ,

�B4�

As apparent, one can modify the drift force from A to Ã at
the expense of adding noise in the weights �. Since our aim
is to suppress the potential occurrence of boundary terms,

one can follow the idea of choosing the gauge such that Ã
prohibits the walkers, n, of drifting to infinity. In other

words, Ãx,y should have the same sign as nx,y. Fulfilling this
requirement for each pair of indices x ,y leads to Ns

2 equali-

ties. But since we only have have 2N �gi� and f i� for

i�:1 , ¯ ,N� degrees of freedom, we can only fulfill the above
condition on average. Defining a scalar product

�n,Ã� � �
x,y

nx,yÃx,y �B5�

we require that

�n,Ã� � 0. �B6�

APPENDIX C: FERMI GAUGES—POSITIVE-P
REPRESENTATION FOR THE GENERAL ELECTRONIC

STRUCTURE PROBLEM

One can also take advantage of gauge degrees of freedom
by adding terms to the Hamiltonian that cancel each other �or
are identically zero� and hence do not affect the observables.
If these terms are of fourth and second order in the fermionic
operators, they add a contribution to the diffusion part of the
SDE, which is compensated in the drift part, while the equa-
tion for the weight � remains unaffected. In this appendix,
we will show how such a Fermi gauge allows one to gener-
alize the positive-P representation of the fermionic Hubbard
model to the general electronic structure problem, including
arbitrary hybridization, Coulomb, and exchange terms.

Since electronic structure calculations have important ap-
plications in quantum chemistry and the corresponding
Hamiltonian

Ĥ = − �
i�j�

tijĉi�
† ĉj� − ��

i�

ĉi�
† ĉi� +

1

2 �
ijkl���

Vijklĉi�
† ĉk��

† ĉl��ĉj�

�C1�

has even been dubbed the “theory of everything,”9 a simula-
tion approach without uncontrolled approximations or sys-

tematic errors is highly desired. In Eq. �C1�, ĉi� denotes the
destruction operator for an electron with spin � in the orbital
i , tij the hopping amplitude and � the chemical potential.
The four fermion terms ĉi�

† ĉk��
† ĉl��ĉj� arise from Coulomb

interactions.
The many-body problem �C1� can be mapped to a system

of stochastic differential equations with positive weights, by
an appropriate choice of Fermi gauge, which generalizes the
gauge proposed by Corney and Drummond for the Hubbard
model.1,10 Similar to Sec. II, we choose a basis of Gaussian
operators parametrized by �, which can be represented in
this case by block-diagonal matrices with No

2 elements for
spin up and spin down, respectively �No is the number of
orbitals�. The Fokker-Planck equation �10� for the probabil-
ity distribution P�� , �� reads

d

d�
P��, �� = L�P��, ��� . �C2�

For a suitably chosen Fermi gauge, the operator L in Eq.
�C2� takes the form

L = − �
�

�

���

A� +
1

2�
��

�

���

B�

�

���

B� +
1

2�
��

�

���

C�

�

���

C�,

�C3�

with B� and C� real coefficients �we present here the formu-
lation that leads to the smallest number of noise terms�. In
this case, the Monte Carlo sampling can be done by integrat-
ing the Stratonovich SDE11

d����� = A����d� + B����dW��� + C����dW���� , �C4�

where �dW���dW�����=0 and �dW���2�= �dW����2�=d�.
Gauge degrees of freedom can be used to modify the form

of the operator L in �C2�. In Ref. 1, the identity

n̂ii�
2 − n̂ii� = 0 �C5�

was used to map the Hubbard model to a system of real SDE.
Here we will show how the identity

n̂ij�
2 − 	ijn̂ij� = 0 �C6�

can be used to obtain real SDE and positive weights � for
the more general Hamiltonian �C1�. First, we note that the
latter can be written as

Ĥ = − �
ij�

tijn̂ij� + �
ijkl���

Wijkln̂ij�n̂kl��, �C7�

with �n̂ij� , n̂kl���=0. In particular, for �=�� only terms with
i�k , l and j�k , l appear. The tii� correspond to the chemi-
cal potential. We define

Ĥij� = − tij�n̂ij�, �C8�

and using Eq. �C6� express the ijkl��� contribution in Eq.
�C1� in the form �sW

kl��
ij� denotes the sign of Wkl��

ij� �

ASSAAD et al. PHYSICAL REVIEW B 72, 224518 �2005�

224518-8



Ĥijkl��� � Wkl��
ij� n̂ij�n̂kl��

= −
�Wkl��

ij� �

2
�n̂ij� − sW

kl��
ij� n̂kl���

2 +
�Wkl��

ij� �

2
�	ijn̂ij�

+ 	kln̂kl��� . �C9�

Each term Ĥm �m= ij� or ijkl���� gives a contribution
Am

��nxy�� to the drift term and the contributions Bm
nxy� , Cm

nxy� to
the diffusion term of the �stochastic� differential equations
�C4� for � and nxy�. No diffusion term appears in the equa-
tion of motion for �, and we can write

d�

d�
= �

m

Am
�� , �C10�

nxy�

d�
= �

m

�Am
nxy� + Bm

nxy��m + Cm
nxy��m� � , �C11�

where the �m , �m� are independent Gaussian random variables
with variance 1/d�. The hopping term �C8� yields only the
drift contributions

Aij�
� = tij�nij�, �C12�

Aij�
nxy� =

tij�

2
�nxj��	iy − niy�� + �	xj − nxj��niy��	��.

�C13�

With the gauge choice �C9�, the interaction terms yield a
Fokker-Planck equation of the form of Eqs. �C2� and �C3�
with drift terms

Aijkl���
� = − Wkl��

ij� nij�nkl�� + Wkl��
ij� nil�nkj��	���, �C14�

Aijkl���
nxy� =

�Wkl��
ij� �

2
��nxj��	yi − niy�� + �	xj − nxj��niy��

� �nij� − sW
kl��
ij� nkl�� − 	ij/2�	��

+ �nxl���	ky − nky��� + �	xl − nxl���nky���

��nkl�� − sW
kl��
ij� nij� − 	kl/2�	���� , �C15�

and diffusion terms

Bijkl���
nxy� = ��Wkl��

ij� �/2�nxj��	iy − niy��	�� − sW
kl��
ij� nxl��

��	ky − nky���	���� , �C16�

Cijkl���
nxy� = ��Wkl��

ij� �/2��	xj − nxj��niy�	�� − sW
kl��
ij�

��	xl − nxl���nky��	���� . �C17�

Note that the right-hand side of Eq. �C10� is −hm�n��, with

hm�n�=Tr��̂�n�Ĥm�. Furthermore, since the nij� are real vari-
ables, which remain real during the integration of Eq. �C11�,
it follows from Eqs. �C12�, �C14�, and �C10� that the weight
� will always stay positive.

For the actual implementation, it is simpler to use the Ito
SDE, which is also numerically more stable. In this case, the
drift terms have to be modified as11

A�
Ito = A�

Stratonovich +
1

2�
�

B�

�

���

B�
�n� +

1

2�
�

C�

�

���

C�
�n�,

�C18�

while the diffusion terms remain unaffected. The four-
fermion term �C9� thus yields a contribution

Aijkl���
nxy�,Ito = −

Wkl��
ij�

2
��nxj��	iy − niy�� + �	xj − nxj��niy��nkl��	��

+ �nxl���	ky − nky��� + �	xl − nxl���nky���nij�	���

− ��nxl��	iy − niy�� + �	xl − nxl��niy��nkj�

+ �nxj��	ky − nky�� + �	xj − nxj��nky��nil��	���	���

�C19�

to the right-hand side of �C11�.
We have tested the Ito-SDE for the two-site model

H = Ht + H� + Hu + Hc + Hx + Hs + Hh1
+ Hh2

, �C20�

where the individual terms are

Ht = − t�
�

�n̂12� + n̂21�� , �C21�

H� = ��
�

�n̂11� + n̂22�� , �C22�

Hu =
1

2�
�

�u1n̂11�n̂11−� + u2n̂22�n̂22−�� , �C23�

Hc = vc�
�

�n̂11�n̂22� + n̂11�n̂22−�� , �C24�

Hx = vx�
�

n̂12�n̂21−�, �C25�

Hs = vs�
�

�n̂12�n̂12−� + n̂21�n̂21−�� , �C26�

Hh1
= h1�

�

�n̂11�n̂12−� + n̂11�n̂21−�� , �C27�

Hh2
= h2�

�

�n̂22�n̂12−� + n̂22�n̂21−�� . �C28�

The �stochastic� differential equations �C10� and �C11� were
integrated using an implicit Euler scheme and adaptive time
steps. Every nreconf steps, the family of random walkers was
reconfigured according to the method of Ref. 3. Although the
high-temperature behavior is correctly reproduced, similar
and even more severe problems as those observed in the
simulations of the Hubbard model—most notably systematic
errors in the energy at low temperature—also plague the
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simulation of the two-site model with Coulomb interactions.
For example, if either of the amplitudes vc , vx , vs , h1, or h2
is of the order of the hopping t, deviations in energy from the
exact solution appear around �t�1. We have not yet
checked whether symmetry projections can be successfully
applied in this case.

For realistic electronic structure calculations, we propose
to start with a Hartree Fock calculation of the electronic
structure problem and to use both the occupied and unoccu-
pied Hartree Fock orbitals in a subsequent quantum Monte
Carlo simulation. This is the same Hamiltonian and basis set

used in full-CI �configuration interaction� or coupled cluster
methods �CCM� in quantum chemistry, but the algorithm de-
scribed here would enable to study a larger number of basis
functions than in a full-CI calculation. Using the Hartree
Fock density matrix instead of a multiple of the unit matrix
as initial density matrix �̂�0� has the advantage that the initial
energy is already that of the Hartree-Fock solution, which
will then be lowered further by the projection in imaginary
time. Already a projection over a short imaginary time �
�which can now not be interpreted as inverse temperature�
will give an energy lower than the Hartree-Fock solution.
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