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We present estimates in the Hubbard and Heisenberg models for the spectral weight in magnetic neutron-
scattering experiments on the cuprates. With the aid of spin-wave theory and the time-dependent Gutzwiller
approximation, we discuss how the spectral weight is distributed among the different channels and between
high and low energies. In addition to the well known total moment sum rule, we discuss sum rules for each
component of the dynamical structure factor tensor which are peculiar for spin-1

2 systems. The various factors
that reduce the spectral weight at the relevant energies are singled out and analyzed, such as shielding factors,
weight at electronic energies, multimagnon process, etc. Although about 10–15 % of the naively expected
weight is detected in experiments, after consideration of these factors the missing weight is within the experi-
mental uncertainties. A large fraction of the spectral weight is hard to detect with present experimental
conditions.
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I. INTRODUCTION

Magnetic neutron scattering �MNS� in high-temperature
superconducting cuprates usually detects about 10–15 % of
the spectral weight dictated by a naive application of sum
rules. For example, the total weight in a wide range of en-
ergy and momentum in a recent experiment1 in
La2−xBaxCuO4, with x=0.125, is �0.22�B

2 , whereas in the
insulating phase the naive expectation from sum rules is that
one should find 2�B

2 . It is usually argued that this value
should be corrected for the hole destruction of moments by a
1−x factor, which still leaves a large fraction of spectral
weight undetected.

This raises various problems in the interpretation of MNS.
For example, it has been argued that the average of the dy-
namical susceptibility weighted by the Fourier transform of
the magnetic interaction can be used to estimate the energy
involved in magnetic pairing and its temperature
dependence.2–6 Clearly, to obtain an absolute estimate the
spectral weight problem needs to be sorted out first. Further-
more, modeling the dynamical structure factor probed by
MNS becomes rather problematic since sensible theoretical
models do satisfy sum rules. Indeed, any theoretical claim of
intensity agreement with the measured dynamical structure
factor in absolute units needs to explain how the sum rule is
satisfied or why it is violated. This is even more stringent in
spin-only models for which neither 1−x factors nor shielding
corrections apply.

The purpose of this work is to explain this apparent dis-
crepancy. We provide theoretical estimates of the various
factors that correct the sum rule and estimate what fraction of
the spectral weight is accessible to present-day experimental
conditions. Theoretical estimates are performed in the anti-

ferromagnetic �AFM� phase using the Heisenberg and the
Hubbard model combining spin-wave theory, numerical re-
sults, and the time-dependent Gutzwiller approximation
�TDGA�,7–9 and in the doped phase in the Hubbard model
within the TDGA. Apart from the mentioned 1−x factor, we
discuss the so called “shielding factors” due to an incomplete
formation of magnetic moments. We estimate the spectral
weight loss to electronic transitions at energies too high to be
detectable by present-day inelastic magnetic neutron-
scattering experiments and also the weight in multimagnon
processes, which is either at too high energies or is so broad
in energy and momentum that it is not detectable in unpolar-
ized neutron-scattering experiments. After consideration of
all these factors, we arrive at the conclusion that within the
experimental uncertainties the sum rule is not violated
�which is reassuring�, on the other hand a major fraction of
the spectral weight is very hard to detect with present experi-
mental conditions.

The outline of the paper is as follows. In Sec. II, we
briefly review the theory of magnetic neutron scattering and
the relevant sum rules to fix notations. This section also has
a pedagogical character. Apart from the well known total
moment sum rule, we discuss sum rules for each component
of the dynamical structure factor tensor which, to the best of
our knowledge, have not been applied in the present context.
We also highlight some simple experimental facts that are
usually assumed as granted in experimental works, such as
domain averages �Sec. II C�, but are often overlooked in the-
oretical works. In Sec. III, we discuss the spectral weight
distribution in the undoped case and in Sec. IV we discuss
the doped case. We conclude in Sec. V.
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II. MAGNETIC NEUTRON SCATTERING

We start with a short review of magnetic neutron scatter-
ing to fix notations and discuss the sum rules that are rel-
evant to our problem.

The magnetic neutron-scattering cross section is given
by10

d2�

d� dE�
= N

k�

k
� �re

2�B
�2

�F�q��2e−2W�q�

��
��

�	�� − q̂�q̂��S���q,
� , �1�

where e−2W�q� is the Debye-Waller factor, q�k−k� �q̂
�q / �q��, k �k�� is the initial �final� wave vector of neutrons,
and ��re /2�B�2=72.65�10−3 barn/�B

2 . The magnetic form
factor is given by F�q�=	dr eiq·r���r��2, where ��r� is a
Wannier orbital and we defined the dynamical structure fac-
tor tensor,

S���q,
� =
�g�B�2

NZ
�
��

e−�E�
��S−q
� ���
��Sq

����

�	�

 − E� + E�� , �2�

where g is the Landé g factor. For free electrons g=2.0023.
In a solid a different value may be appropriate, which may
also depend on direction. For example, Ref. 11 quotes g
=2.08 in the plane and g=2.36 perpendicular to the plane for
a typical cuprate. For simplicity, we take an isotropic g un-
less otherwise specified. Sq

� is the Fourier transform of the �
component of the spin operator and Z is the partition func-
tion. The dynamical structure factor S���q ,
� obeys detailed
balance S���q ,
�=e�

S���−q ,−
�.

A. Sum rules

We will discuss sum rules for effective models of the
magnetic dynamics. Because effective models restrict the
Hilbert space, sum rules turn out to be model-dependent and
therefore should be applied with care on modeling a real
system, as discussed below. Our considerations are based on
the two most popular models in this context, namely the
Heisenberg and the Hubbard model, respectively.

The so called total moment sum rule is usually formulated
within a Heisenberg model with spin S and reads

M0 �
1

N
�
q�
�

−�

�

d�

�S���q,
� = �g�B�2S�S + 1� . �3�

This applies to a system where magnetic ions have one or
several partially filled orbitals �for example, a rare earth ion
with a partially filled f shell� and well formed magnetic mo-
ments, i.e., when double occupancy of a given orbital is neg-
ligible.

Within this work, we will restrict ourselves to systems
where ions have only one partially filled orbital and the sys-
tem can be modeled with a one-band Hubbard model,

H = − t �

ij��

ci�
† cj� − t� �



ij���
ci�

† cj� + U�
i

ni↑ni↓. �4�

Here ci�
† �ci�� destroys �creates� an electron with spin � at

site i, and ni�=ci�
† ci�. U is the on-site Hubbard repulsion and

both nearest- ��t� and next-nearest- ��t�� neighbor hopping
has been included. Most of our considerations apply also to
other models where ions have only one partially filled orbital
per atom, such as the usual three-band Hubbard model for
cuprates with Cu d and O p orbitals.

We define for later use the spin autocorrelation function
and the zeroth moment of the diagonal components of the
dynamical structure factor as

S���
� �
1

N
�

q
S���q,
� �5�

M0
� � �

−�

�

d�

�S���
� . �6�

When one has one orbital per site �i.e., a spin-1
2 system�,

more stringent sum rules than Eq. �3� apply. Indeed each
component of the dynamical structure factor satisfies a sepa-
rate sum rule. For example, from Eqs. �2�, �5�, and �6� one
finds

M0
z =

�g�B�2

N2Z
�
�q

e−�E�
��S−q
z Sq

z ��� =
�g�B�2

4
�n − 2D� , �7�

where Sq
z =�ie

−iq·riSi
z with Si

z= �ni↑−ni↓� /2 and we used that
ni�

2 =ni�. We also defined the thermal �
¯�� and spacial av-
erages of the orbital occupancy,

n �
1

N
�
i�


ni�� ,

and double occupancy,

D �
1

N
�

i


ni↑ni↓� .

Analogous proofs hold for the other components,

M0
� = �B

2�n − 2D� , �8�

where we took g=2. �We will occasionally restore g below
when convenient for clarity.� Equation �8� also follows from
the fact that the quantization axis in Eq. �7� is arbitrary.

Equation �3� is valid in the Heisenberg model where D
=0 and S is arbitrary. Equation �8� in contrast is valid for
S=1/2 systems but without restriction in D.

The factor �n−2D� in Eq. �8� is the probability to find an
atom singly occupied and reflects the fact that doubly occu-
pied or empty atoms do not produce magnetic scattering of
neutrons reducing the total scattering cross section. This is
sometimes called the “shielding factor.”

One can also prove that the total weight of the off-
diagonal components of S�� adds to zero. First notice that
only the symmetric part of S�� contributes to Eq. �1�,
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�
��

�	�� − q̂�q̂��S���q,
�

=
1

2�
��

�	�� − q̂�q̂��
S���q,
� + S���q,
�� .

Using the Lehmann representation Eq. �2�, one can show that

M0
�� �

1

2N
�

q
�

−�

�

d�

�
S���q,
� + S���q,
��

= 	���B
2�n − 2D� , �9�

which gives us a sum rule for each component of S���q ,
�.
We are not aware of references quoting the sum rule Eq.

�9�, although the result is so simple that we doubt it is origi-
nal.

If Stot
z =�iSi

z is a good quantum number, S���q ,
� be-
comes diagonal with Sxx�q ,
�=Syy�q ,
�.10 In this case, we
can write the cross section as

d2�

d� dE�
= N

k�

k
� �re

2�B
�2

�F�q��2e−2W�q�

�
�1 − q̂z
2�Szz�q,
� + �1 + q̂z

2�Sxx�q,
�� . �10�

We will restrict ourselves to systems where this expression
applies.

B. Ordered states and Bragg scattering

In the presence of long-range magnetic order, the system
shows magnetic elastic scattering. We will consider phases in
which spin rotational invariance is broken with order along
the z axis �i.e., stripes, AFM, etc.�. We assume a magnetic
unit cell with Na

M atoms �Na
M =2 for the AFM state at half-

filling� at positions R+�i, with R the cell position and �i the
position of the atoms within the cell �i=1, . . . ,Na

M�. The vec-
tors R form a Bravais lattice. For such a magnetic structure,
we have


Sq
z� = N�

QM

	q−QM
mQM

,

where the sum is over the magnetic reciprocal basis vectors
and we defined

mQM
�

1

Na
M �

i

Na
M

eiQM·�imi, �11�

and the local site-dependent magnetization mi= 
ni↑−ni↓� /2.
It is convenient to define the fluctuation operator,

	Sq
z � Sq

z − 
Sq
z� .

With these definitions, the longitudinal structure factor
can be set as

Szz�q,
� = �g�B�2�N�
QM

mQM

2 	�q − QM�	�

�

+ �
�

�
0�	Sq����2	�

 − E� + E0�� , �12�

where for simplicity we set T=0 and 	�q� is Kronecker’s 	

whereas 	�

� is Dirac’s 	. The first term in the brackets
describes Bragg peaks. The weight of the peaks is given by
the square of the Fourier transform of the magnetization in-
side the magnetic unit cell Eq. �11�. The second term de-
scribes inelastic scattering. The inelastic part �only� of the
dynamical structure factor is related to the dynamical suscep-
tibility via the fluctuation dissipation theorem.

C. Domain average

For the case discussed above of a diagonal structure factor
tensor, the cross section involves the factors �1− q̂�

2�. These
are polarization factors for scattering with unpolarized neu-
trons and are rooted in the dipolar interaction between neu-
trons and the electron spin. In experimental works, often the
polarization factors �1− q̂�

2� are included in the definition of
the dynamical structure factor and an average over the ori-
entation of domains, 
¯�dom, is done,

Seff�q,
� = �
�


�1 − q̂�
2��domS���q,
� . �13�

For a paramagnet, all directions are equivalent, S���q ,
�
does not depend on �, and 
�1− q̂�

2��dom= 2
3 . Ordered systems

will be characterized by an order parameter that is a vector
like the staggered magnetization. In general, a real sample
will consist of domains with different orientations of the or-
der parameter. For a distribution of orientations that is com-
pletely isotropic in spin space, 
�1− q̂�

2��dom= 2
3 .

Consider now scattering from a quasi-two-dimensional
�2D� system with the c direction defined perpendicular to the
plane and the a and b directions in the plane. In quasi-2D
systems, the most common experimental configuration is that
the planes are perpendicular to the incident neutron beam,
and, depending on the energy, the component of q perpen-
dicular to the plane, qc may be larger than the components in
the plane. In the extreme case that q̂c� q̂a , q̂b, one can put

cf. Eq. �13��

Seff�q,
� = Saa�q,
� + Sbb�q,
� . �14�

This is valid regardless of the domain distribution. In order
to evaluate this expression, it is convenient to use a domain-
dependent reference system in which the z axis follows the
ordered moment of the domain. In the case of an isotropic
distribution of domains, one recovers 
�1− q̂�

2��dom= 2
3 . That

is,

Seff�q,
� =
2

3

Sxx�q,
� + Syy�q,
�� +

2

3
Szz�q,
� , �15�

where we have grouped the transverse contribution. On the
other hand, one usually deals with systems that have easy
planes or easy axes. In cuprates, for example, the ordered
moment is usually in the Cu-O plane or close to that plane.
For a distribution of the ordered moment which is isotropic
within the plane and in the above scattering geometry
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Seff�q,
� =
1

2

Sxx�q,
� + Syy�q,
�� + Szz�q,
� . �16�

The 1/2 factor is due to the fact that one transverse mode is
perpendicular to the plane and becomes silent in this con-
figuration.

For reasons that will be clear below real experiments de-
tect mainly the transverse structure factor. Comparing Eqs.
�15� and �16�, we see that in order to accurately estimate
spectral weights from experiment, precise information is
needed on the domain distribution since the transverse com-
ponent appears with different weight.

The condition q̂c� q̂a , q̂b is rather extreme. Instead, in the
present scattering geometry, q̂c / q̂a, q̂c / q̂b will gradually de-
crease as the energy is increased. This will cause the factors
weighting the transverse and the longitudinal part to depend
on energy. Due to the larger sensibility to the transverse part
in a real experiment, this will lead to an apparent loss of
spectral weight as the energy increases.

In an ideal experiment where all components are detected
with equal sensitivity, one will not see a loss of spectral
weight but rather a transfer of spectral weight from the lon-
gitudinal to the transverse part as the energy increases. In-
deed, Seff�q ,
� satisfies the sum rule

M0
eff �

1

N
�

q
�

−�

�

d�

�Seff�q,
� = 2�n − 2D��B
2 , �17�

independently of what the distribution of domains or the
scattering geometry is.

D. Experimental considerations

On analyzing experimental data, one should take into ac-
count that in unpolarized inelastic neutron scattering experi-
ments, magnetic and nonmagnetic scattering cannot be un-
ambiguously identified. In the insulating phase, this problem
can be reduced by fitting the data with a simple model such
as spin-wave theory. Due to the lack of a simple theory in the
doped phase, a similar procedure is not possible. In this case,
the usual experimental practice is to report as “magnetic
scattering” only those features which satisfy certain criteria
such as being reasonably sharp in momentum space and
show a “magnetic-like” temperature dependence and form
factor dependence across different Brillouin zones. All the
rest is assumed to be background of unknown origin. Below,
we analyze the distribution of weight in the insulator to get a
hint of the distribution of spectral weight in the different
channels and where to expect sharp and where to expect
broad features.

III. HALF-FILLING

A. Spectral weights in the Heisenberg model

We start by neglecting the shielding factors and estimate
the spectral weights in the Heisenberg model within spin-
wave theory �SWT�. We will show below how to apply these
results when shielding factors are important corrections.
Since we are interested in gross distributions of spectral

weight, for simplicity we consider a Heisenberg model with
nearest-neighbor interactions and neglect other terms such as
four-ring exchange.

1. Longitudinal part

In order to write the longitudinal dynamical structure fac-
tor, we introduce the following notations. For an AFM, the Si

z

operator can be written within SWT as

Si
z = �S − Ni�e−iQAFM·ri,

where Ni is the number operator for Holstein-Primakoff
bosons and QAFM= �� ,�� taking the lattice constant a=1.
For the Fourier transform Sq

z =�ie
−iq·riSi

z we have

Sq
z = NS	�q − QAFM� − Nq−QAFM

.

It is convenient to write Nq−QAFM
�
Nq−QAFM

�+	Nq−QAFM
with 
Nq−QAFM

�=N�S	�q−QAFM� and define mQAFM
�m�S

−�S as the reduced sublattice magnetization. Here

�S =
1

N
�

q

1

2� 1

�1 − �q
2

− 1�
is the reduction in the ordered spin moment due to zero-point
quantum fluctuations and �q= 
cos qx+cos qy� /2 comes from
the Fourier transform of the exchanges in the square lattice.

The one-magnon dispersion relation is given by



q = 2JZC
�1 − �q

2, �18�

where J is the superexchange constant and ZC is a quantum
renormalization of the one-magnon energy, near-constant
over the Brillouin zone in a first approximation,12,13 and es-
timated as 1.18 to order 1 /S2 in spin-wave theory12 or by
series expansions.14

With these definitions, we can write the longitudinal dy-
namical structure factor as

SHei
zz �q,
� = g2�B

2�Nm2	�q − QAFM�	�

�

+ �
�

�
0�	Nq−QAFM
����2	�

 − E� + E0�� ,

�19�

where the first term in the brackets is the Bragg elastic con-
tribution of the Néel order and the second term is the inelas-
tic contribution.

The sublattice magnetization is well known to be accu-
rately given by linear SWT,15 therefore we do not expect
significant changes on the elastic intensity if higher-order
corrections are included. In contrast, how the inelastic part is
distributed at low energies �a few J’s� is expected to be sen-
sitive to such corrections.

The inelastic part can be decomposed into a sum over
inelastic processes out of which the dominant term corre-
sponds to two-magnon scattering events with intensity given
by16
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S2M
zz �q,
� = Z2M

g2�B
2

2N �
q1,q2

f�q1,q2�	�

 − 

q1
− 

q2

�

�	�q + q1 − q2� . �20�

The two-magnons have opposite spin Sz= +1 and −1 such
that the total spin ST

z is unchanged. The scattering cross sec-
tion f�q1 ,q2� depends on the wave vectors of the two mag-
nons via16

f�q1,q2� = sinh2��q1
− �q2

�, �q =
1

2
tanh−1 �q. �21�

We have included an ad hoc intensity renormalization factor
Z2M to be discussed below. The line shapes in Eq. �20� can be
evaluated by direct summation or Monte Carlo methods and
the result is illustrated by the dotted areas in Fig. 1.

Two-magnon events contribute a continuum band of scat-
tering at energies above the one-magnon dispersion 

q. In
general, the intensity decreases with increasing energy and it
is strongest for wave vectors near the antiferromagnetic zone
center �� ,��.

Figure 2 shows how the energy-integrated intensity varies
in the Brillouin zone, generally following the same trend as
the one-magnon intensity. The two-magnon signal cancels at
the nuclear zone center �2� ,0� as expected from first-
moment sum rules for an isotropic antiferromagnet, also
made apparent from Eq. �21�, where the cross section for
creating two identical magnons cancels, i.e., for q1=q2 such
that q=0, f�q1 ,q1�=0.

Figure 3 shows the wave-vector-integrated intensity: it in-

creases with increasing energy, linearly at low energies, then
reaches a maximum at the one-magnon zone boundary and
then decreases to zero at energies above twice the maximum
magnon energy. In fact, most of the two-magnon scattering
weight is at energies above the one-magnon cutoff 2ZCJ.

Due to the broadness of the distribution, the two-magnon
spectral weight will be quite hard to detect in unpolarized
neutron experiments, although we note that recent neutron
experiments17 have observed such a high-energy continuum
of excitations in the square-lattice spin-5

2 Heisenberg antifer-
romagnet Rb2MnF4 and the observed intensities were in
agreement with neutron scattering by pairs of magnons as
described by spin-wave theory. In cuprates, in addition, a
large fraction of the spectral weight is at energies that are too
high for neutron scattering.

Integrating Eq. �20� over energy and wave vector in a
Brillouin zone gives Z2M�S�1+�S�g2�B

2 , whereas the Bragg
elastic scattering is �S−�S�2g2�B

2 . The magnetization reduc-

FIG. 1. Two-magnon scattering intensity 
Eq. �20�� as a function
of energy and wave vector along symmetry directions in the Bril-
louin zone �solid lines in Fig. 2 inset�. Density of scattered points
represents intensity. The lower boundary traces the one-magnon dis-
persion relation 

q and corresponds to events where one of the
two magnons has zero energy. The upper bound, 4ZCJ, is reached
when both magnons are on the antiferromagnetic zone boundary
contour �dashed square in Fig. 2 inset� where they have maximum
energy.

FIG. 2. Energy integrated spectral weight in the two-magnon
continuum �dashed line�, S2M

zz �q�=	d�

�S2M
zz �q ,
�, compared with

the weight in the one-magnon peak �solid line�, from Eq. �22�. We
have used Zd=0.57 and Z2M =0.67.

FIG. 3. Momentum integrated spectral function of one- 
Eq.
�22�� and two-magnon excitations 
Eq. �20��. We have used Zd

=0.57 and Z2M =0.67. Integrated areas are �1+2�S�ZdS and
Z2M�S�1+�S�, respectively.
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tion can be evaluated numerically as �S=0.197. The corre-
sponding value of M0

z is shown in Table I. Comparing with
the Ising AFM, also shown in Table I, one sees that the effect
of the transverse fluctuations is to reduce the sublattice mag-
netization with a concomitant transfer of spectral weight
from the Bragg peak to the two-magnon continuum. Most of
the longitudinal scattering is in this spread-out two-magnon
continuum. The spin-only sum rule M0

z =1�B
2 is strongly vio-

lated if intensity renormalization is neglected �Z2M =1�. No-
tice that if transverse fluctuations are neglected �Ising limit�,
the sum rule is exactly satisfied. We can anticipate a similar
result in the Hubbard model.

Including higher-order terms in spin-wave theory is ex-
pected to produce �i� intensity-lowering of the two-magnon
response18 and �ii� spread out at higher energies due to the
contribution of higher multimagnon process.19 For simplic-
ity, we assume the intensity renormalization of the two-
magnon response to be momentum-independent and quantify
it with the constant Z2M.

Since the Bragg intensity is given accurately by SWT, one
can get an upper bound for Z2M by neglecting effect �ii� and
requiring that the sum rule Eq. �7� is fulfilled by Bragg and
two-magnon processes: Z2M �0.67. Perturbative
computations18 suggest a value not far from that, suggesting
that the weight in four-magnon and higher multimagnon pro-
cesses is not high, in agreement with numerical data.19 In the
following, to improve the values of the two-magnon inten-
sity, we tentatively adopt Z2M =0.67 given the lack of better
estimates �Table I�.

It is interesting to remark that the small weight at four-
magnon and higher multimagnon processes is in striking
contrast to the response relevant for infrared experiments,
which show large weights instead.20–25 From a theoretical
point of view, whereas magnon-magnon interactions have
dramatic consequences in the shape of the spectrum of two-
magnon excitation relevant for Raman and IR data,21,22 the

effect on the two-magnon line shape relevant for magnetic
neutron scattering appears much modest.18 This different role
of interactions can be traced back to the fact that optical data
probe two magnons in different sublattices whereas magnetic
neutron scattering probes two magnons on the same
sublattice22 and the interaction is dominant in the first case.
The corresponding Green functions at the RPA level for both
cases are reported in Ref. 22. In optical data, magnon-
magnon interactions are responsible for a shift of the main
feature from �4J to �3J.21,22,26 This effect was obtained in
Ref. 22 using a high-energy approximation. One can easily
see from the RPA equations for the equal-sublattice Green
function22 that at the same level of approximation the same
effect does not show up in the two-magnon neutron-
scattering line shape. We conclude that interaction effects
should be important for the intensity renormalization but
they play a very different role here than the one played in
optical data.

2. Transverse part

The transverse dynamical structure factor is dominated by
one-magnon scattering events with intensity given by15

SHei
xx �q,
� = g2�B

2Zd

S

2

1 − �q

�1 − �q
2
	�

 − 

q� , �22�

Zd is an intensity-lowering renormalization factor of the one-
magnon cross section due to zero-point fluctuations and
magnon-magnon interactions, both neglected at first order in
spin-wave theory 
Zd=Z�ZC, where Z� is the renormalization
of the transverse magnetic susceptibility, ��=Z��g�B�2 /8J�.

The wave-vector dependence of the one-magnon intensity
is shown in Fig. 2. Although wave vectors �2� ,0���0,0�
and �� ,�� are related by symmetry, the spectral weight goes
to zero at wave vector �2� ,0� and diverges at �� ,��. This
difference in intensity is reflected also in doped phases.

Integrating Eq. �22� over energy and wave vector in a
Brillouin zone gives the one-magnon intensity for one trans-
verse direction as �1+2�S�ZdSg2�B

2 /2. Experimental works
often restrict to the magnetic Brillouin zone around �� ,��
�dashed line in the inset of Fig. 2�, hereafter “the magnetic
Brillouin zone,”�MBZ� and neglect the small weight on the
magnetic Brillouin zone around �0,0�, hereafter “the nuclear
Brillouin zone”�NBZ�. For comparison, we split the one-
magnon spectral weight in the two zones M0

x =MMBZ
x

+MNBZ
x . One finds the values reported in Table I.

In this case, as in the longitudinal channel, the sum rule is
overestimated if one neglects the intensity renormalization.
Estimates of the renormalization from higher-order spin-
wave theory give12,18 Zd=0.57 at order 1 /S2, or 0.61�4� by
series expansions.14 Now the sum rule is underestimated.
The lacking weight is expected to lie in three-magnon and
higher multimagnon processes.

An alternative way to estimate Zd is to enforce Eq. �3� at
large S and extrapolate to S= 1

2 . With the choice Zd
=1−�S /S=0.606, the total sum rule S�S+1� 
cf. Eq. �3�� is
exhausted by elastic �S−�S�2, one-magnon �1+2�S��S
−�S�, and two-magnon scattering �S�1+�S� �without renor-

TABLE I. Sublattice magnetization mQAFM
and dynamical struc-

ture factor spectral weights in units of �B
2 . We show exact values for

the Ising AFM and SWT values for the Heisenberg AFM in the
longitudinal channel �z� and in one transverse channel �x�. SWT are
the values neglecting all renormalization factors �Z=1�. We also
include the SWT intensity renormalized by the indicated Z values.
The transverse contribution is split in the contribution from the
magnetic zone and the nuclear zone as MMBZ

x +MNBZ
x . Since we are

considering the Heisenberg model �D=0�, a “1” in the last column
implies that the sum rule is exactly satisfied within the model.

� mQAFM
Elastic Inelastic M0

�

Ising z 0.5 1 0 1

x 0 0.5+0.5 1

SWT z 0.3034 0.368 0.941a 1.309

x 0 1.068+0.325b 1.393b

Z2M =0.67 z 0.3034 0.368 0.632a 1

Zd=0.57c x 0 0.609+0.185b 0.794b

aTwo-magnon contribution.
bOne-magnon contribution.
cAfter Refs. 12 and 18.
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malization�, in units of g2�B
2 . Such a renormalization of the

one-magnon intensity is very close to the results quoted
above. Strictly speaking, this argument applies only for
S�

1
2 since the sum rule for each channel Eq. �8�, which is

exclusive of spin-1
2 systems, is still strongly violated. On the

other hand, the rapid convergence of the 1/S expansions of-
ten produces accurate results for S= 1

2 systems, as seems to
be the case for Zd.

B. Shielding factor in the Hubbard model

We now turn to the more realistic Hubbard model. In this
section, we estimate the shielding factor for n=1, within the
2D single-band Hubbard model Eq. �4�, to gain some insight
into its impact on the sum rule Eq. �9�. Here we take for
simplicity t�=0 and consider the effect of varying U / t. Pa-
rameters more specific for the cuprates will be considered in
Sec. IV.

The shielding factor is given by the single occupancy
probability n−2D. For a noninteracting system, i.e., U=0,
the double occupancy is just �n /2�2 so one gets n−2D= 1

2 .
Indeed, half of the time an atom is singly occupied �up or
down� and half of the time it is either empty or doubly oc-
cupied and hence does not produce scattering.

For a paramagnetic state in the Hartree-Fock approxima-
tion �HF�, one gets the same result independently of U / t
�Fig. 4� since correlations are neglected. Correlations can be
introduced by treating the paramagnet in the Gutzwiller ap-
proximation �GA�,28 which leads to a reduction in double
occupancy as

D =
1

4
�1 −

U

Uc
�

becoming zero at the Brinkman-Rice transition point Uc / t
=128/�2�12.97.28,29 The corresponding value of n−2D is

also plotted in Fig. 4. The Brinkman-Rice point, however, is
never reached since for infinitesimal U the paramagnetic
state is unstable towards a spin-density wave �SDW�, which
can also be treated in the GA and gives the value of n−2D
shown in Fig. 4.

Finally, for large U / t one can use a canonical transforma-
tion to map the Hubbard model to a Heisenberg model.15,29 It
is important to realize that the energies of the low-energy
excitations of both models, the “physical” Hubbard model
and the low-energy “effective” model, coincide to leading
order but the correlation functions in general do not coincide.
In order to get “physical” correlation functions, one needs to
use the inverse canonical transformation to transform back
the “effective” ground-state wave function to a physical
wave function. Indeed, within the Heisenberg model the
double occupancy is zero, but this does not mean that the
double occupancy is zero in the “physical” model. This is
obviously very important in evaluating the right-hand side of
Eq. �8�. Of course if we are interested in evaluating the sum
rule within the Heisenberg model, it is legitimate to take D
=0, as done above, but if we want to compare with experi-
ments �or with the “physical” model� one needs to compute
the “physical” double occupancy. Fortunately this is very
easy in the present case because we can use a trick to avoid
the back transformation. We use the Hellman-Feynman theo-
rem to write the double occupancy in the Hubbard model as

D =
1

N

�E

�U

with E the ground-state energy. For the latter we use the fact
that for large U / t it coincides with the energy of the Heisen-
berg model where very accurate numerical estimates exist,

E

N
= − �� +

1

2
�4t2

U
,

Here we have substituted the superexchange constant by its
definition J�4t2 /U. The 1 � 2 factor is a constant contribu-
tion from the canonical transformation and the best estimate
for � is �=0.6696.15 Since the Heisenberg model has only
one parameter, it is clear that � does not depend on J and we
can perform the derivative to obtain

D = �� +
1

2
�4t2

U2 .

The corresponding value of the single occupancy probability
n−2D is plotted in Fig. 4 and referred to as the “t /U expan-
sion.” This value is asymptotically exact �within numerical
accuracy15� in the large U / t limit and therefore takes into
account all fluctuation effects. Clearly the SDW treated
within the GAs gives a fairly good approximation for
n−2D at large U and interpolates smoothly to the exact re-
sult at U=0 so we expect it to be quite accurate in all the
range of U / t, as can be seen also by comparing with the
exact results in a 4�4 cluster �after Ref. 27�.

We see that the sum rule for one diagonal component of
the dynamical structure factor Eq. �8� changes smoothly
from �B

2 /2 in the noninteracting case to �B
2 in the limit of

FIG. 4. �Color online� Single occupation probability �shielding
factor� for a half-filled Hubbard model in different approximations.
The exact results in a 4�4 site cluster are computed with the
double occupancies given in Ref. 27. The apparent lack of extrapo-
lation of the exact results to the noninteracting limit at U=0 is due
to a finite-size effect.
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U=�. It is reduced by �11% �Table II� with respect to the
full moment value for U / t�8, as relevant for cuprates.30,31

C. Distribution of spectral weight in the Hubbard model

In the previous section we evaluated the shielding factors
that appear due to the finiteness of U and reduce the total
spectral weight compared to spin-only models. Another ef-
fect, which we study here, is that the total weight is split into
a low-energy part at energies of order J and a high-energy
part at energies of order U. Present neutron-scattering facili-
ties can measure the spectra up to energies of the order of a
few tenths of an eV and therefore only the first part is de-
tected. In addition, we discuss how the dynamical structure
factor is modified for finite U with respect to the SWT result.

To estimate the dynamical structure factor, we use the
time-dependent Gutzwiller approximation of Refs. 7–9 
also
called GA plus random-phase-approximation �GA+RPA��
applied to a SDW state. We start in the next section by show-
ing how measurements of the dispersion relation in the insu-
lator can be used to estimate U and t.

1. Transverse part

In the transverse channel, MNS experiments reveal the
spin-wave excitations of the AFM.30 Interestingly, whereas
spin-wave theory in the Heisenberg model Eq. �18� predicts a
flat dispersion between �� ,0� and �� /2 ,� /2�, a substantial
dispersion has been measured �cf. Fig. 5�. It has been argued
that in cuprates, corrections to the Heisenberg model arising
as higher orders in a t /U expansion are relevant.25,30,32–34

The most important of such corrections is a term that cycli-
cally exchanges four spins on a plaquette. A sizable value for
this term has been revealed by analyzing phonon-assisted
multimagnon infrared absorption25 and the dispersion
relation30 shown in Fig. 5. In particular, the dispersion be-
tween �� ,0� and �� /2 ,� /2� is mainly due to this term.
Since the dispersion has its origin in the finiteness of t /U, it
should show up in the transverse excitations of the Hubbard
model. The computation done in GA+RPA is also shown in
Fig. 5. One obtains a very good fit of the dispersion, and this
provides an accurate way to estimate the strength of the re-
pulsion. We find U / t=8 in good agreement with other

estimates,30 whereas U / t=10 gives a too flat dispersion be-
tween �� ,0� and �� /2 ,� /2� �inset�. An equally good fit as
the one shown in the main panel can be achieved with U / t
=8, t� / t=−0.2, and t=353.7 meV. The value of t� / t plays an
important role in the doped phase31,35 and is close to a first-
principle estimate.36

In Fig. 6, we show the momentum integrated spectral
function. We see that for large U / t it approaches the SWT
form �Fig. 3�. For smaller U / t the maximum is not at the
upper edge due to the modified dispersion relation. A small
portion of the spectral weight is at high energy due to spin-
flip transitions from the lower to the upper Hubbard band as
shown in the inset. We will show that this effect is much
larger in the longitudinal channel.

Integrating the spectral intensity, one gets the values of
M0

x shown in Table II. GA+RPA interpolates between the
extreme limits U / t=0 �where the sum rule is exactly obeyed�
and U→� where one recovers the results of linear spin-
wave theory. As a consequence, the sum rule in the trans-
verse channel is increasingly violated as U / t increases with

TABLE II. Spectral weights in units of �B
2 . We show exact values for the Hubbard in the longitudinal

channel �z� and in one transverse channel �x�. The inelastic weight is separated in the low-energy part �Low�
at energy �J and the high-energy part M0,U around energy �U. We also show the sublattice magnetization
mQAFM

and the shielding factor n−2D, both computed in the GA �without RPA correction�.

U � mQAFM
Elastic

Inelastic

M0
� n−2DLow M0,U

�

8 z 0.43 0.74 0 0.15 0.898 0.889

x 0 1.1 0.01 1.11

10 z 0.456 0.83 0 0.096 0.930 0.923

x 0 1.196 0.009 1.205

15 z 0.481 0.927 0 0.0397 0.966 0.965

x 0 1.278 0.002 1.28

FIG. 5. �Color online� Dispersion relation of the low-energy
transverse excitations. We show the experimental result for
La2CuO4 after Ref. 30 and the GA+RPA result for U / t=8 and t
=335 meV. The inset shows that for U / t=10 the fit is noticeably
worse.
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M0
x reaching values similar to the unrenormalized SWT re-

sults �Table I� for large U.
In Fig. 7, we show the experimental intensities as a func-

tion of wave vector together with the GA+RPA result. In
order to fit the experimental results, we introduced an inten-
sity renormalization Zd

U=8t analogous to the SWT intensity
renormalization factor. With Zd

U=8t=0.65, the GA+RPA in-
tensities are essentially equivalent to the intensities reported
in Fig. 3�b� of Ref. 30, which have been renormalized by
Zd

exp=0.51 with respect to LSWT.
This increase in the value of Zd

U reflects the fact that cu-
prates are not in the strict Heisenberg limit U→�. In that
limit, the Zd for the RPA should coincide with the value of
LSWT given the equivalence of the two approximations. In
the extreme case of a noninteracting system, the RPA gives
exact intensities and therefore Zd

U=0=1. As U is decreased

from infinity, the RPA becomes gradually more accurate and
therefore Zd

U should increase with respect to the LSWT
value, as we indeed find.

We caution that the fact that a system is not in the strict
Heisenberg limit does not mean by itself that it cannot be
described by the Heisenberg model. Corrections to the inten-
sity can be introduced as explained in Sec. III D. We estimate
this approach is accurate up to U�15t where the dispersion
is still Heisenberg-like. For smaller U, corrections in the dis-
persion relation due to four spin exchange and other non-
Heisenberg processes become obvious �cf. Fig. 5�.

2. Longitudinal part

The longitudinal structure factor has a Bragg part and an
inelastic part 
cf. Eq. �12��. For the SDW, only one magnetic
reciprocal-lattice vector contributes to the sum in Eq. �12�,
namely QAFM��� ,�� �we take the lattice constant a=1�.
The Bragg weight is determined by the sublattice magneti-
zation mQAFM

.
At lowest order the RPA introduces longitudinal fluctua-

tions in Szz but does not correct one-body expectation values
like the sublattice magnetization. �On the contrary, it intro-
duces a correction in two-body expectation values7 like D.�
Therefore, in the following we consider the sublattice mag-
netization at the GA level together with the effect of the
longitudinal fluctuations at high energies in Szz. The sublat-
tice magnetization can in principle be corrected by including
transverse fluctuations. We will discuss this below.

At the GA we obtain the values of the sublattice magne-
tization shown in Table II. These values lack the transverse
fluctuation corrections and hence converge to the classical
value, 0.5 in the large-U limit.

To help our intuition, it is useful to distinguish between
the permanent moment m= �
ni↑−ni↓�� /2, which determines
the Bragg weight, and an “intrinsic” moment which deter-
mines the shielding factor and which we define as m*

=�
�ni↑−ni↓�2� /2=��n−2D� /2. �Notice that with this defi-
nition a free fermion system has an intrinsic moment which
we denote as “trivial.”� The paramagnet with small D men-
tioned in Sec. III B can be considered as a system with well
formed �nontrivial� intrinsic moments that are purely dy-
namical. Indeed the shielding factor is close to 1 but there are
no Bragg peaks. In this regard, the GA is more flexible than
HF, which is not able to produce nontrivial intrinsic moments
that are not permanent.

Permanent moments are due to the breaking of spin-
rotational symmetry. The GA for the SDW smoothly interpo-
lates between the itinerant limit at small U and the localized
limit at large U with a permanent moment that increases and
reaches 1

2 for U→�. Contrary to the paramagnetic case,
quoted above, the difference between the permanent and the
intrinsic moment in the GA tends to be very small at large U.
Thus despite the ability of the GA to distinguish the two
kinds of moments, this ability is not effective at large U. In
this case, the permanent moment in the GA �cf. Table II� is
reduced with respect to the fully polarized value mainly due
to covalency effects. On top of this, the moment will be
reduced due to transverse fluctuations, as discussed below.

FIG. 6. �Color online� Sxx�
� evaluated for the Hubbard model
within GA+RPA for U / t=8 �solid line� and U / t=10 �dashed line�
with Zd

U=1 for an �80�80�-site system. The inset shows the high-
energy contribution of Sxx�
� at energies 
�U.

FIG. 7. �Color online� Intensity in the spin-wave excitations as a
function of momentum for one transverse spin channel. We show
the experimental result for La2CuO4 after Ref. 30 and the GA
+RPA result for U / t=8 and t=335 meV. The GA+RPA intensity
has been renormalized by a factor Zd

U=8t=0.65 and coincides with
the spin-wave result 
shown in Fig. 3�b� of Ref. 30� renormalized
by Zd

exp=0.51 in Eq. �22�.
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The covalency reduced Bragg peak does not exhaust the
sum rule, as can be seen by comparing the “Elastic” column
with the last column in Table II. Longitudinal fluctuations,
captured by the GA+RPA approach, produce weight at en-
ergies of order U, as shown in Fig. 8. This is not related to
two-magnon processes �as in Sec. III A 1� but to fluctuations
in the length of the intrinsic moment. The weight in the
high-energy part M0,U is also reported in Table II. Adding the
Bragg and the M0,U

z contribution, one obtains the values of
M0

z reported in Table II. Comparing with the last column, we
see that at this level of approximation the sum rule is ex-
hausted �actually slightly overshot� by the Bragg contribu-
tion without transverse fluctuation reductions plus the contri-
bution at energy of order U.

The small overshot in the sum rule is due to the fact that
the last column is computed at the GA level without RPA
corrections, whereas M0

z has RPA corrections to D. �An
analogous method was used in Ref. 7 to compute fluctuation
corrections to D.� The M0

z column can be considered as an
improved computation of the shielding factor. We see that
the difference is very small and for practical purposes we can
use the GA result.

From the above results, it is clear that in neglecting trans-
verse fluctuations the sum rule is well satisfied. This is analo-
gous to the behavior found for the spin-only model in the
Ising limit �Table I�.

At this point, we have weight at the Bragg peak and
weight at energy of order U. How do these weights get af-
fected by transverse fluctuations? On top of the covalency
reduction, transverse fluctuations reduce the permanent mo-
ment �keeping the intrinsic moment constant�. We have seen
above �Sec. III A 1� that the reduction of the moment due to
transverse fluctuations produces a concomitant large reduc-
tion of elastic spectral weight which is transferred to multi-
magnon processes in the longitudinal channel at energy �J.
A direct computation in the Hubbard model is difficult. In the
next section, we show how to estimate this effect in the
Hubbard model using the SWT results.

We expect that this low-energy rearrangement of spectral
weights will affect neither M0,U

z nor the shielding factor com-
puted above, which, as is clear from Fig. 4, is quite accurate

at the present level of approximation. Therefore, we expect
the present values of �n−2D��B

2 −M0,U
z and M0,U

z �without
transverse fluctuations� to be accurate estimates of the total
spectral weight at low �order J� and high �order U� energies.

D. Effective shielding factor

In this section, we would like to show how to use the
spin-wave theory results together with the results of the pre-
vious section to obtain a better distribution of the spectral
weight.

According to the discussion of Sec III B, to obtain the
“physical” dynamical structure at low energies from the
Heisenberg model response, one should apply the canonical
transformation back from the effective model to the Hubbard
model. Since the processes involved in a t /U expansion have
a short spatial range and involve intermediate states at high
energies, we do not expect this procedure to lead to a mo-
mentum or low-energy-dependent correction. Thus the
“physical” dynamical correlation functions at low energy can
be obtained from the requirement that the sum rule is satis-
fied as

S���q,
� = �n − 2D − M0,U
� /�B

2�SHei
�� �q,
� , �23�

where SHei
�� �q ,
� is the dynamical correlation function of the

Heisenberg model and M0,U
� is the weight transferred to high

energies due to the finiteness of U computed in Sec. III C.
Alternatively, a model with higher-order corrections �ring ex-
change, etc.� can be taken to compute the response on the
right-hand side of Eq. �23�.

We can consider �n−2D−M0,U
� /�B

2� in Eq. �23� as an ef-
fective shielding factor for low-energy spectral weight. One
can check from the results of Table II that this works for the
Bragg intensities neglecting transverse fluctuations. Indeed,
we have

4mQAFM

2 �B
2 = �n − 2D��B

2 − M0,U
z , �24�

where the left-hand side is the Bragg weight in the GA for
the Hubbard model without RPA correction and the right-
hand side is the effective shielding factor times the Bragg
weight in the Ising limit of the spin-only model �1�B

2�.
Due to the separation of energy scales, D and M0,U

z will be
insensitive to transverse fluctuations. The effect of the latter
will be to transfer weight from the Bragg peak to the low-
energy continua without affecting the total low-energy spec-
tral weight. Thus Eq. �24� tells us that the total low-energy
spectral weight �Bragg plus multimagnon contribution� is ac-
curately given by the mean-field value 4mQAFM

2 �B
2 .

As a corollary, we see that a good estimate of the longi-
tudinal effective shielding factor is given by the moment in
the GA without the need of an RPA computation, i.e., the
low-energy part of the longitudinal dynamical structure fac-
tor gets rescaled by the mean-field value of 4mQAFM

2 . This is
consistent with the findings of Hirsch and Tang from numeri-
cal data37 if one takes into account that the HF approxima-
tion, used by Hirsch and Tang, gives very similar values of
mQAFM

as the GA in the range of U analyzed.
In Fig. 9, we show the two-magnon contribution com-

puted in the Heisenberg model and translated into a Hubbard

FIG. 8. �Color online� Inelastic part of Szz�
� in the GA+RPA
for different values of U / t in an �8�8�-site system.
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response according to Eq. �23�, together with the longitudi-
nal response at energy �U computed directly in the Hubbard
model. Additionally, there is a Bragg peak �not shown� with
weight 16mQAFM

2 �B
2�S−�S�2, where mQAFM

is computed at the
mean-field level and 4�S−�S�2 takes into account the effect
of transverse fluctuations. This is our best estimate for the
distribution of spectral weight in the longitudinal response of
the insulator.

Notice that the transition across the Hubbard bands ap-
pears at 2 eV. One should remember that on the mapping
from the three-band Hubbard model to the one-band Hub-
bard model,38 the transition across the Hubbard bands of the
latter represents the charge-transfer transitions of the former,
which according to optical data should occur close to
�2 eV.39 Indeed, in the ionic limit the lower Hubbard band
of the one-band model corresponds to O p6 states and the
upper Hubbard band to Cu d10.

E. Estimation of the weights in La2CuO4

and Cu„DCOO…2 ·4D2O (CFTD)

In La2CuO4, the dynamical structure factor can be fitted30

in a wide range of momentum and energy by the SWT ex-
pressions Eq. �22� with an intensity-lowering renormaliza-
tion factor Zd

exp=0.51±0.13. We can use this result to esti-
mate the different contributions to the moments for the one-
magnon processes in La2CuO4,

MNBZ
x = 0.16 ± 0.04�B

2 ,

MMBZ
x = 0.54 ± 0.13�B

2 ,

and

M0
x = 0.71 ± 0.18�B

2 .

The last value should be interpreted as the weight for one
transverse direction in the spin-wave-like excitations of

La2CuO4. This is not the total weight since part of the weight
will be in higher multimagnon processes.

The experimental determination of the intensity-lowering
factor, Zd

exp, neglected shielding factors. Therefore, the ex-
perimentally determined quantity can be set as Zd

exp=Zd
eff

= �n−2D−M0,U
x /�B�Zd. Using an effective shielding factor

for U / t=8 as appropriate for La2CuO4, �n−2D−M0,U
x /�B�

=0.88 and Zd=0.57 �SWT�, one obtains Zd
eff=0.50 in agree-

ment with the experiment �inclusion of t� / t=−0.2 does not
change this number appreciably�.

Subtracting the observed one-magnon weight from the to-
tal expected transverse weight of 0.88�B would then leave a
total of 0.17±0.18�B

2 in three, five, and higher multimagnon
processes, which is within the error bars as illustrated in Fig.
10. Notice that the detected one-magnon spectral weight is
significantly lower than 1�B, the value expected from the
sum rule neglecting the shielding factors and quantum cor-
rections.

For Cu�DCOO�2 ·4D2O �CFTD�, Rønnow et al.40 also
find Zd

exp=0.51±0.04 within LSWT. For this compound the
ratio of U / t is much larger than in the cuprates and the
shielding factor correction should therefore be close to 1.
Since the error bars are smaller than in the cuprates, this
experiment shows, not surprisingly, that multimagnon pro-
cesses are needed to satisfy the sum rule �see Fig. 10�. The

FIG. 9. �Color online� Momentum integrated longitudinal spec-
tral function for the Hubbard model with U=8t, t=335 meV, and
Zc J=153 meV. We show the contribution of two-magnon excita-
tions computed in SWT 
Eq. �23�� with an effective shielding factor
of 0.74 �Table II� and Z2M =0.67. We also show the contribution due
to scattering across the Hubbard bands computed in GA+RPA.

FIG. 10. �Color online� Zeroth moment and shielding factor as a
function of doping. We show the shielding factor for U / t=8 and
t� / t=−0.2 for the SDW at x=0 and bond-centered metallic stripe
solutions as a function of doping �solid line� and for U / t=� �dotted
line�. For the zeroth moment, MBZ means that the integration was
restricted to the magnetic Brillouin zone. La2CuO4 �Ref. 30� and
CFTD �Ref. 40� label the moments estimated in insulators �Sec.
III E�. Their value coincide so CFTD was slightly shifted in doping
for clarity. La2−xBaxCuO4 �Ref. 1� labels the experimental value of
M0 in the magnetic Brillouin zone, corrected by the polarization
factor. In the last case, the error bars indicate the two extreme
possibilities for the polarization factor 2 /3 and 1/2 �cf. Sec. II�. The
relative true error should be larger than at zero doping, where the
error bars have the usual sense. Finally, we show the zeroth moment
of the GA+RPA transverse spectra at x=1/8 in the whole Brillouin
zone ��� and in the MBZ �. The two lower � include a Zd

U=8t

=0.65 renormalization factor and for the lower one the energy in-
tegration was restricted to energies smaller than 0.23 eV.
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similarity for Zd
exp found for the two compounds is to some

extent unexpected since there should be a difference due to
the shielding factors, however the expected difference is
within the current experimental errors. Notice also that g
may also differ in the two compounds.

IV. AWAY FROM HALF-FILLING

A. Shielding factors

Taking g=2 and defining the doping as x=1−n, the
shielding factor for general doping changes from �1−x2� /2
for U=0 to 1− �x� for U=�, the latter form being used often
in experimental works. In general, we expect a dependence
on U / t qualitatively similar to the one shown at x=0 �cf. Fig.
4�.

In order to proceed in the doped phase, we need a model
for the ground state. In this work, we are interested in overall
distributions of weights and we expect this to be to a large
extent insensitive to the details of the ground state if corre-
lations are taken reasonably well into account. This can be
seen already at x=0 �cf. Fig. 4�, where we see that the para-
magnet and the SDW within the GA give similar shielding
factors although the nature of the ground state is completely
different. Detailed distributions of spectral weight as mea-
sured in Ref. 1 and computed in Ref. 31 will, of course,
depend strongly on the ground state and so can be quite
helpful to determine it. Since those issues are beyond our
present scope, we restrict the description of the mean-field
states to a minimum.

For the specific system La2−xXxCuO4 �X=Sr,Ba�, we use
a ground state consisting of stripes as suggested by
experiment.1,41 Metallic stripes parallel to the CuO bond can
be obtained within the GA for the Hubbard model where a
next-nearest-neighbor hopping t� / t=−0.2 has to be imple-
mented in order to have one doped hole per every second
unit cell along the stripe35 �so called “half-filled” stripes� in
agreement with experiments. Note that a similar value for
t� / t is predicted by first-principle computations36 for
La2−xSrxCuO4.

It should be mentioned that the results at half-filling re-
ported in the previous sections are rather insensitive to the
next-nearest-neighbor hopping. For U / t=8 and t� / t=−0.2,
we obtain an analogous dispersion to that reported in Fig. 5,
with the only difference being that the value for the nearest-
neighbor hopping has to be scaled to t=353.7 meV. This
latter parameter set has been used31 in order to explain a
recent MNS experiment on Ba-codoped LSCO.1 Overall
spectral weights with this extended parameter set are practi-
cally the same as those reported in Sec. III C 1 with t�=0.

In Fig. 10, we show the shielding factor obtained averag-
ing �n−2D� in the mean-field solutions as a function of dop-
ing. We see that the shielding factor has a linear behavior
similar to the one for the U / t=� case. As expected, we find
that the shielding factor is similar for other low-energy tex-
tures �not shown�. For doping x=1/8 we obtain n−2D
=0.79, so there is an extra 10% reduction with respect to the
undoped case.

B. Spectral weights

1. Longitudinal part

Because the stripe solutions are magnetic, the longitudinal
structure factor has a Bragg part and an inelastic part 
cf. Eq.
�12��.

Since the stripe solutions are metallic, low-energy
particle-hole excitations are allowed. Therefore, contrary to
the result in the insulator �Sec. III C 2�, already at the RPA
level one finds weight at magnetic energies ��0.3 eV� as
shown in Fig. 11. This weight, however, is broadly distrib-
uted in momentum space and will most likely pass unnoticed
in unpolarized MNS as discussed in Sec. II D. Just as shown
in Fig. 9, for the insulator a more elaborate computation,
taking into account longitudinal fluctuations, will show in
addition weight at the two-magnon excitations. Since the in-
elastic longitudinal component due to multimagnon scatter-
ing is already quite featureless in the insulator �Secs. III A 1
and III C 2�, it is reasonable to expect that it will be even
more featureless in the doped phase. We conclude that within
standard protocols �Sec. II D� to a first approximation all the
inelastic longitudinal spectral weight will be assigned to the
background.

For the specific case of a striped ground state, we can also
estimate the elastic spectral weight in the longitudinal chan-
nel 
Eq. �12��. For doping x=1/8 and an array of d=4 SC
stripes, we find elastic peaks at Q1= �1/2±� ,1 /2�2� and
Q2= �1/2±2� ,1 /2�2� with �=1 � 8 and mQ1

=0.215 and very
small weight, mQ

2 , in the higher harmonics mQ2
=0.018.

It was shown in the insulator that if one neglects trans-
verse fluctuations, the sum rule in the longitudinal channel is
exhausted with a good degree of approximation by the Bragg
weight plus the inelastic high-energy weight. Is there an
analogous behavior in the doped phase? The elastic weight
neglecting transverse fluctuations is 0.37�B

2 and the inelastic
longitudinal spectral weight is 0.59�B

2 . This includes low-

FIG. 11. �Color online� Longitudinal and transverse components
of the spin autocorrelation function for x=1/8 in a 16�4 site clus-
ter for U / t=8 and t� / t=−0.2 and t=353.7 meV. Only the inelastic
part is shown and we neglect the intensity renormalization �Z=1�.
The ground state consists of 4 SC stripe running along the short
dimension.
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energy particle-hole excitations and weight due to transitions
across the Hubbard bands. The total weight in the longitudi-
nal channel is 0.96�B

2 , to be compared with a shielding factor
of 0.79. In this case, we find an overstrike of the sum rule
which is more severe than in the insulator and which is even
larger than the maximum allowed value 1−x=0.875. This is
because the RPA becomes less accurate in the metallic phase
due to the presence of small energy denominators. The vio-
lation, however, is not as severe as for the transverse chan-
nels as reported below.

The elastic weight neglecting transverse fluctuations is
roughly half of the one found in the insulator �0.74�B�. Just
as in the insulator, a large fraction of this weight �at least
60%� will be transferred to multimagnon excitations if trans-
verse fluctuations are taken into account. It is conceivable
that all the weight in the Bragg peak is transferred, in which
case the system becomes quantum critical or quantum
disordered.42

2. Transverse part

The transverse component of the dynamical structure fac-
tor shows sharp features due to the propagating spin-wave-
like modes of the stripes. In addition, since the stripes are
metallic, a fraction of the spectral weight is in a broad par-
ticle hole continuum. The latter features, however, are
mainly located in the nuclear Brillouin zone.31

In the magnetic Brillouin zone, we find mainly sharp
propagating collective modes which are good candidates to
be easily detected. These collective modes are analogous to
the spin-wave modes of the insulator and therefore we expect
that their spectral weight will be overestimated in the RPA
and should be corrected by a quantum renormalization Zd

U as
in the insulator. Zd

U may be smaller than in the insulator due
to stronger quantum fluctuations. On the other hand, for a
heavily doped system one should recover the noninteracting
value Zd=1. Since doping is small, we tentatively take the
same value as in the insulator Zd

U=8=0.65.
The momentum distribution of the transverse spectral

weight has been shown in Ref. 31. In Fig. 10, we show the
transverse integrated spectral weight compared with the ex-
perimental results. At zero doping, the spectral weight coin-
cides with the theoretical value �not shown for clarity� as
discussed in Sec. III. At finite doping, the weight in the
MBZ decreases roughly as the shielding factor, as can be
seen by comparing the points labeled La2CuO4�MBZ� and
RPA�Zd

U=8t�MBZ�. Comparing Fig. 6 and Fig. 11, we see
that whereas in the insulator almost all of the spectral weight
is at magnetic energies, in the doped phase a large fraction of
the spectral weight is at intermediate energies not accessible
to MNS. In other words, doping induces a transfer of spectral
weight from low energies to intermediate energies in this
channel. Interestingly, optical spectra show that doping also
generates structure at the same energies in the charge
channel.39,43,44

The lower “�” at x=1/8 in Fig. 10 is the RPA moment in
the MBZ renormalized by Zd

U=8t and restricting the integral
only up to the highest energy measured in Ref. 1, 

�0.23 eV. We see that the obtained value is roughly 50%
higher than the experimental weight.

In order to see at what energy the disagreement arises, we
show in Fig. 12 the experimental Seff compared with the
theoretical one using 1

2 as polarization factors 
Eq. �16�� and
neglecting the longitudinal weight. The lower panel shows a
comparison of the partial sum rule weight with the two lim-
iting values of the polarization factor. The theoretical com-
putation shows a strong resonance at 
=58 meV which in
the experiment appears with a reduced spectral weight and is
distributed in part on a broader energy range. �The resonance
appears at higher energy if one looks only at the QAFM
response.31� The overall weight integrated up to energies im-
mediately above the resonance is in agreement with the ex-
perimental one. As the energy increases, there are strong de-
viations between theory and experiment.

The simplest explanation for the smaller weight in the
experiment is that some of the structures that contribute at
high energy may be broad and assigned to the background
�see Ref. 31�. We should say that because we neglect lifetime
effects even the sharp structures of our computation will be
much broader in reality and this will be more important as
the energy increases since, quite generally, the phase space
for decay processes increases. Also high-energy excitations
will be much more sensitive to disorder since they involve
short wavelengths, and this will also tend to make them
broader. The broad structures will be assigned to the back-
ground explaining the difference between theory and experi-
ment. We should also take into account that Zd can be more
depressed due to the larger impact of quantum fluctuations in
the metallic phase.

In order to have a broader view of the trends in the evo-
lution of the spectral weight, we show in Fig. 13 a compila-

FIG. 12. �Color online� The upper panel shows the theoretical
and the experimental result for Seff�
� using U / t=8, t� / t=−0.2, t
=353.7 eV, and 
�1− q̂x

2��dom= 
�1− q̂y
2��dom=1/2, in a �96�96�-site

lattice, together with the experimental data for La2−xBaxCuO4 x
=0.125 �Ref. 1�. The lower panel shows the partial sum rule weight.
M0

eff�
���1/N��q	−0

 d�

��Seff�q ,
��.
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tion of measurements of Seff from different groups and at
different dopings. For x=0, 0.125, and 0.14, the overall
weight seems to be roughly conserved, whereas for x=0.16
the detected weight seems to be significantly smaller. It will
be interesting to see whether this is due to a transfer to high
energies where absolute measurements are not available.
After this work was completed we became aware of Ref. 47
where a systematic decrease of the low energy spectral
weight as a function of doping is reported.

V. CONCLUSIONS

In this work, we have analyzed the distribution of spectral
weight in neutron-scattering experiments in cuprates.

In the insulator, the spectral weight has been estimated in
detail in the Heisenberg model and then translated into a
Hubbard response with the use of an effective shielding fac-
tor. We find an effective shielding factor which essentially
coincides with a proposal of Hirsch and Tang obtained by
analyzing numerical data.37 In addition we have estimated,
with the aid of the TDGA, the weight at the energy of the
charge-transfer transitions.

The inelastic longitudinal spectral weight at low energies
is in broad features and thus hard to detect, although progress
has recently been made.17 The transverse part has the well
known quantum renormalized propagating spin wave modes
which will be the features more accessible to experiment.
Theory and experiment agree well in the insulator.

For the doped phase, we computed the dynamical re-
sponse within the TDGA. We considered metallic stripes but
we expect our results for overall weights to be largely insen-
sitive to the specific texture. One finds extra broad features
due to the particle-hole continua plus propagating collective
modes. In analogy with the insulator, we expect the latter to
be reduced in intensity due to quantum fluctuation and to
dominate the spectral weight reported in experiments.

Our motivation was to understand why such a small frac-
tion of the naively expected spectral weight is actually de-
tected. We see that after taking into account all the reduction
factors, we passed from a weight that was an order of mag-
nitude smaller than expected to a weight that is � 2

3 of that
expected. Given the uncertainties involved, we think this
value is reasonable.

By far the most important factor in reducing the detect-
able weight turns out to be the fact that a large fraction of the
spectral weight is in broad features or at too high energies
and this makes the detection of the total spectral weight ex-
perimentally very challenging. In the doped phase, a consis-
tent fraction of the transverse spectral weight is predicted to
lie at intermediate energies, which may become accessible to
experiment in the near future.

We see no reason why the broad/high-energy modes can-
not have a strong impact on the effective attraction between
holes relevant for superconductivity, and therefore their ex-
perimental characterization remains an important open prob-
lem.
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