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We study the tails of the density of states �DOS� in a diffusive superconductor–normal-metal–
superconductor junction below the Thouless gap. We show that long-wave fluctuations of the concentration of
impurities in the normal layer lead to the formation of subgap quasiparticle states, and calculate the associated
subgap DOS in all effective dimensionalities. We compare the resulting tails with those arising from mesos-
copic gap fluctuations, and determine the dimensionless parameters controlling which contribution dominates
the subgap DOS. We observe that the two contributions are formally related to each other by a dimensional
reduction.
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I. INTRODUCTION

The properties of hybrid superconductor–normal-metal
�SN� structures continue to attract considerable attention
both experimentally1 and theoretically,2–9 though the funda-
mental process governing the physics of such systems, An-
dreev reflection,10 has been discovered long ago. In fact,
while it is well known that generically the proximity to a
superconductor leads to a modification of the density of
states in the normal metal, the nature and extent of this effect
depends on the details the hybrid structure. In particular, it
was recently pointed out2 that when a closed mesoscopic
metallic region is contacted on one side to a superconductor,
the resulting density of states �DOS� turns out to depend on
its shape. If integrable, the DOS is finite everywhere but at
the Fermi level, where it vanishes as a power law. On the
contrary, in a generic chaotic metallic region one expects the
opening of a gap around the Fermi level, the Thouless gap.3

In analogy with the considerations above, a diffusive metal-
lic region sandwiched between two bulk superconducting
electrodes has been predicted to have a gapped density of
states, the gap being at energies comparable to to the Thou-
less energy ETh=D /Lz

2, where D is the diffusion constant and
Lz the width of the normal layer4–7 �see Fig. 1�.

In a diffusive superconductor–normal-metal–
superconductor �SNS� structure with transparent SN inter-
faces, the density of states in the normal part, averaged over
its thickness, and at energies E right above the gap edge
Eg�3.12ETh, is ��1/�V��E−Eg� /�0

3, where �0= �Eg�2�1/3,
�=1/ ��0V�, and V=LxLyLz is the volume of the normal re-
gion. This dependence is reminiscent of the density of states
at the edge of a Wigner semicircle in random matrix theory
�RMT�, �0 being the effective level spacing right above the
gap edge. Using this analogy, Vavilov et al.8 realized that the
disorder-averaged DOS should not display a real gap, but
have exponentially small tails below the gap edge, analogous
to the Tracy-Widom tails11 in RMT. A rigorous study in
terms of a supersymmetric � model description of the SNS
structure has shown that this is indeed the case.9 However, in
analogy to the theory of Lifshits tails12 in disordered conduc-
tors, the nature of the resulting subgap quasiparticle states

depends additionally on the effective dimensionality d, de-
termined by comparing the interface length scales Lx,Ly, with
the typical length scale of a subgap quasiparticle state, L�. In
particular, if Lx	L�
Ly or Lx ,Ly 	L� the subgap quasipar-
ticle states are localized either in the x direction or in the x
-y plane along the interface, respectively. Correspondingly,
the asymptotic tails of the DOS deviate from the universal
RMT result, applicable only in the zero-dimensional case
�Lx ,Ly �L��.

The analogy with RMT applies, within the appropriate
symmetry class, to other physical situations, such as diffu-
sive superconductors containing magnetic impurities,8,13,14

and superconductors with inhomogeneous coupling
constants.15 In both cases, at mean field level the density of
states has a square-root singularity close to the gap edge.16,17

Correspondingly, accounting for mesoscopic RM-like fluc-
tuation, the disorder-averaged density of states has tails be-
low the gap edge, with an asymptotics similar to the one
calculated in Ref. 9 for SNS structures. On the other hand, in
the case of diffusive superconductors containing magnetic
impurities, it was shown18,19 that, in addition to mesoscopic
fluctuations, subgap quasiparticle states can form as a result
of classical fluctuations, i.e., long-wave fluctuations of the
concentration of magnetic impurities associated with their
Poissonian statistics. Similarly, also in superconductors with
inhomogeneous coupling constant long-wave fluctuations of
the coarse-grained gap lead to the appearance of subgap qua-
siparticle states, and consequently to tails of the DOS.17 In-
terestingly, in both cases the tails originating from mesos-
copic fluctuations and from classical ones are formally
related by a dimensional reduction.18

FIG. 1. A schematic plot of a SNS junction: two bulk supercon-
ducting electrodes �S� connected to a diffusive metal �N� of thick-
ness Lz. The interfaces have linear size Lx,Ly.
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In this paper, we close this set of analogies, studying the
contribution to the subgap tails of the DOS in a diffusive
SNS junction arising from long-wave fluctuations of the con-
centration of impurities in the normal layer. Combining the
results of this analysis with those obtained by Ostrovsky,
Skvortsov, and Feigel’man,9 who considered the subgap tails
originating from mesoscopic fluctuations, we provide a con-
sistent picture of the physics of the subgap states. In particu-
lar, a quantitative comparison of the two contribution shows
that mesoscopic fluctuations dominate in long and dirty junc-
tions, while classical fluctuations dominate in wider and/or
cleaner ones. In analogy with diffusive superconductors with
magnetic impurities, and superconductors with inhomoge-
neous coupling constants, also in the present case the two
contributions to the subgap tails, arising from mesoscopic
and classical fluctuations, are related by a dimensional reduc-
tion.

The rest of the paper is organized as follows. In Sec. II we
present the details of the analysis of the subgap DOS arising
from fluctuations of the concentration of impurities nimp in an
SNS junction. In Sec. III, we compare the two contributions
to the subgap DOS associated to mesoscopic and classical
fluctuations. In Sec. IV, we present our conclusions.

II. SUBGAP DOS ASSOCIATED WITH FLUCTUATIONS
OF nimp

Let us start by considering a diffusive metallic layer be-
tween two superconducting bulk electrodes, a geometry rep-
resented schematically in Fig. 1. Assuming kFl	1, where l
is the mean free path, this system can be described in terms
of the quasiclassical approximation. In particular, at mean-
field level �i.e., neglecting both mesoscopic and classical
fluctuations�, neglecting electron-electron interaction, and as-
suming the thickness of the metallic layer Lz	 l, one can
describe the SNS structure by the Usadel equation20,21

D

2
�2� + iE sin��� = 0, �1�

where D=vF
2 /3 is the diffusion constant, and E is the en-

ergy measured from the Fermi level, assumed to be �E���,
where � is the gap in the bulk electrodes. The field � is
related to the quasiclassical Green’s functions and the
anomalous Green’s function by the relations g�r ,E�
=cos���r ,E��, f�r ,E�= i sin���r ,E��. In addition, assuming
the interfaces to be perfectly transparent, the proximity to the
two superconducting regions can be described by the bound-
ary conditions ��z= ±Lz /2�=� /2.

It is convenient to measure all lengths in units of Lz, and
set �=� /2+ i�. Therefore, Eq. �1� becomes

�2� + 2
E

ETh
cosh��� = 0, �2�

where ETh=D /Lz
2 is the Thouless energy. The boundary con-

ditions for the field � are simply ��z= ±1/2�=0.
In terms of � the DOS is �=2�0Im�sinh����, where �0 is

the density of states of the normal metal at the Fermi level.
The DOS can be calculated by looking for solutions of Eq.

�2� uniform in the x-y plane.4–6,9 In particular, for E�Eg
�C2ETh�C2�3.122� all solutions of Eq. �2� are real, imply-
ing �=0. Therefore, one identifies Eg with the proximity-
induced gap within the normal metal layer. The mean-field
DOS right above Eg averaged over the z direction is found to
be

� � 3.72�0�E − Eg

Eg
. �3�

Let us proceed by analyzing the tails of the DOS at ener-
gies E�Eg arising from fluctuations of the concentration of
impurities, i.e., long-wave inhomogeneities in the x-y plane
of 1 /. We first consider a SNS structure such that the linear
size of the SN interfaces is much larger than the thickness of
the metallic layer �Lx ,Ly 	Lz�. In the framework of the Us-
adel description of the metallic layer �Eq. �2�� one can ac-
count for long-wave transversal fluctuations of the concen-
tration of impurities by promoting ETh, or equivalently Eg
=C2ETh, to be a position-dependent random variable, charac-
terized by the statistics

Eg�x� = Eg + �Eg�x� , �4�

	�Eg�x�
 = 0, �5�

	�Eg�x��Eg�x��
 =
Eg

2

ndLz
d��x − x�� , �6�

where d is the effective dimensionality of the system and nd
the effective concentration of impurities. As shown below, d
is determined by comparing the linear sizes of the interface
Lx,Ly to the linear scale of the subgap states L��Lz / ��Eg

−E� /Eg�1/4. If Lx,Ly 	L� the system is effectively two di-
mensional, and n2=nimpLz. On the other hand, if Lx�L�

�Ly �or Ly �L��Lx�, the system is effectively one dimen-
sional, and n1=nimpLzLx.

Accounting for these fluctuations, the Usadel equation Eq.
�2� becomes

�z
2� + �x

2� + 2C2
E

Eg
�1 − ��g�x��cosh��� = 0, �7�

where ��g=�Eg /Eg.
Our purpose is to calculate the DOS averaged over fluc-

tuations of �Eg at energies E�Eg. For this sake, let us intro-
duce �E=Eg−E, and ���z ,x�=��z ,x�−�0�z�, where �0 is
the solution of Eq. �2� at E=Eg. Expanding Eq. �7� and keep-
ing the lowest-order nonlinearity in �� one obtains

��z
2 + f0�z���� + �x

2�� +
g0�z�

2
��2 = g0�z���� − ��g� ,

�8�

where ��=�E /Eg, g0�z�=2C2 cosh��0�z��, and f0�z�
=2C2 sinh��0�z��.

In order to simplify further Eq. �8�, it is useful to notice
that the operator H=−�z

2− f0�z�, diagonalized with zero
boundary conditions at ±1/2, admits an eigenstate �0 with
zero eigenvalue. Physically, �0 determines the shape of the
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mean-field z-dependent DOS obtained from Eq. �2�. There-
fore, it is natural to set

���z,x� � �A1/A2��x��0�z� , �9�

with A1=�dz g0�0�7.18, and A2=�dz�g0 /2��0
3�2.74.

Substituting Eq. �9� in Eq. �8�, and projecting the resulting
equation on �0, one obtains

�2� + �2 = �� − ��g�x� , �10�

where we rescaled the length by �A1A2�−1/4, and

	��g�x���g�x��
 = � ��x − x�� , �11�

with ���A1A2�1/4 / �ndLz
d�.

Let us now split �=−u+ iv, and obtain the system

− �2u + u2 − v2 = �� − ��g, �12�

−
1

2
�2v + u v = 0. �13�

Interestingly, this set of equations is analogous to the equa-
tions obtained by Larkin and Ovchinikov in the context of
the study of gap smearing in inhomogeneous
superconductors,17 and to the equations obtained by Silva,
and Ioffe in the context of the study of subgap tails in diffu-
sive superconductors containing magnetic impurities.18

Let us now proceed with the calculation of the DOS. In
the present notation, the DOS averaged over the thickness of
the normal layer is given by

��x,�����g�x��
�0

� 3.72 v�x,�����g�x�� . �14�

We are interested in calculating the average density of states
	�
 /�0�3.72	v
 at energies below the Thouless gap ���

0�. In this parameter range, the corresponding functional
integral

	v
 �
� D���g�v�x,�����g�x��exp�− 1/�2�� � dx���g�x��2�

� D���g�exp�− 1/�2�� � dx���g�x��2�
,

�15�

receives its most important contributions by exponentially
rare instanton configurations of ��g such that, at specific lo-
cations along the interfaces of the junction, ��g�x����. The
remaining task is to select among all these fluctuations the
one that dominates the functional integral Eq. �15�, i.e., the
optimal fluctuation.

The action associated with a configuration of ��g is

S =
1

2�
� dx���g�2 �� dx��2u − u2 + ���2, �16�

where we used Eq. �12� to express ��g in terms of u, v and,
with exponential accuracy, neglected the term v2 in the ac-
tion. In order to find the optimal fluctuation one has to find a
nontrivial saddle point u0 of S, tending asymptotically to the
solution of the homogeneous problem �u0→����, and sub-

ject to the constraint of having nontrivial solutions for v of
Eq. �13�.

Since the normal metal layer is diffusive, and momentum
scattering isotropic, it is natural to assume the optimal fluc-
tuation to be spherically symmetric. The Euler-Lagrange
equation associated with S is

−
1

2
��d� + u����d�u − u2 + ��� = 0 �17�

where

��d� � �r
2 +

d − 1

r
�r �18�

is the radial part of the Laplacian in spherical coordinates.
An obvious solution to Eq. �17� is obtained by setting

��d�u − u2 + �� = 0. �19�

This equation is equivalent to the homogeneous Usadel
equation with uniform Eg, i.e., Eq. �10� with ��g=0. Al-
though this equation has definitely nontrivial instanton solu-
tions for u with the appropriate asymptotics, it is possible to
show that the constraint of Eq. �13� is satisfied only by v
=0. This is physically obvious since Eq. �19� describes a
uniform system where all long-wave fluctuations of 1 / have
been suppressed, and thus, within the present approximation
scheme, the subgap DOS must vanish. However, it should be
pointed out that, accounting for mesoscopic fluctuations, the
instanton solutions of Eq. �19� describe the optimal fluctua-
tion associated with mesoscopic gap fluctuations, as shown
in Ref. 9.

Let us now look for the nontrivial saddle point. Equation
�17� is equivalent to the system

−
1

2
��d� + u�h = 0, �20�

��d�u − u2 + �� = h , �21�

which can be reduced to a single second-order instanton
equation setting h= �2�ru� /r. With this substitution, Eq. �20�
becomes the derivative of Eq. �21�, which now reads

��d−2�u − u2 + �� = 0. �22�

Notice that this equation is, upon reduction of the dimension-
ality by 2, identical in form to the one associated with me-
soscopic fluctuations, Eq. �19�. As we will see later, this
reduction of dimensionality relates in a similar way the de-
pendence of the action associated with classical and mesos-
copic fluctuations on ��.

It is now straightforward to see that the instanton solution
u0 of this equation with the appropriate asymptotics de-
scribes indeed the optimal fluctuation, the constraint of Eq.
�13� being automatically satisfied by virtue of Eq. �20�, with
v0� �2�ru0� /r. Moreover, the corresponding optimal fluctua-
tion of ��g is ��g=2�ru0 /r.

It is clear that the instanton solutions of Eq. �22� must
have the form u0=�����r /��, with �=1/ ����1/4. The corre-
sponding equation for ��r� is �r

2�+ �d−3� /r�r�−�2+1=0.
The instanton solution of this equation can be easily found
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numerically, and the corresponding action S calculated. The
result is

Sd = adndLz
d���8−d�/4 �23�

where the constants ad are a1�0.88 and a2�7.74.
Within our approximation scheme, the density of states is

	�
�W exp�−S�, where W is a prefactor due to Gaussian
fluctuations around the instanton saddle point. The calcula-
tion of W can be performed using the standard technique due
to Zittarz and Langer,22 and is similar to those reported in
Refs. 18,17. To leading order in the saddle point approxima-
tion, the final result is

	�

�0

� �d
�ndLz

d���d�10−d�−12�/8e−Sd, �24�

where �1�0.1 and �2�0.5.
The result in Eq. �24� relies on a saddle point approxima-

tion, which is justified provided Sd	1. This translates into
the condition

�� 	  1

adndLz
d�4/�8−d�

. �25�

As mentioned before, the effective dimensionality, and
therefore the asymptotic density of states, is determined by
comparing the linear size of the optimal fluctuation, in di-
mensionfull units L��Lz�=Lz /��1/4, to the linear dimen-
sions of the interfaces Lx, Ly. If Lx ,Ly 	L� the asymptotics
is effectively two dimensional �d=2�, while for Ly 	L�, Lx

�L� the asymptotic DOS is effectively one dimensional
�1D� �d=1�. Since L� increases as the energy gets closer to
the average gap edge, it is clear that in any finite size system
the applicable asymptotics might exhibit various crossovers,
2D→1D→0D, as ��→0. In particular, the tails are zero
dimensional when Lx ,Ly �L�, in which case the asymptotic
form of the DOS is obtained by calculating the integral

	�

�0

� 3.72� d���g�
�2��0

���g − ��e−��g
2/2�0 �

1

��3/2e−S0,

�26�

where �0=1/ �nimpV� �V=LxLyLz� and S0=1/ �2�0���2.

III. MESOSCOPIC VS CLASSICAL FLUCTUATIONS

In the previous section we have discussed the asymptotic
density of states below the Thouless gap originating from
classical fluctuations, i.e., inhomogeneities in the concentra-
tion of impurities or equivalently in 1/. As discussed in the
Introduction, this mechanism to generate subgap states is
complementary to mesoscopic fluctuations of the gap edge.

The tails associated with mesoscopic gap fluctuations
have been calculated by Ostrovsky, Feigel’man, and
Skvortsov in Ref. 9. To exponential accuracy, the subgap
DOS associated with mesoscopic fluctuations is 	�
 /�0

�exp�−S̃d�, where

S̃d � ãdGd�����6−d�/2, �27�

where ãd is a constant �ã0�1.9, ã1�4.7, and ã2�10�, and
Gd is the effective dimensionless conductance

G0 = 4��0D
LxLy

Lz
, �28�

G1 = 4��0DLx, �29�

G2 = 4��0DLz. �30�

The scale of the optimal fluctuation associated with mesos-
copic fluctuations is also L��Lz / ����1/4. Therefore, the ef-
fective dimensionality d is to be determined according to the
criteria presented in the previous section.

Before discussing the comparison of mesoscopic and clas-
sical fluctuations, let us first explain the rationale behind the
separation these two contributions. Although it is clear that
the only physical fluctuations in a real sample are associated
with fluctuations in the positions of impurities, these fluctua-
tions can affect the DOS in two ways: �i� depress the Thou-
less gap edge by increasing locally the scattering rate �clas-
sical fluctuations�, or �ii� take advantage of interference
effects in the quasiparticle wave functions to generate quasi-
particle states that couple inefficiently to the superconducting
banks �mesoscopic fluctuations�. It makes sense to think of
two types of effects separately if the actions associated with

them are very different in magnitude �S̃	S or vice versa�.
Obviously, in the crossover region, where S� S̃ the separa-
tion of these two mechanisms is meaningless, because the
system can take advantage of both at the same time.

With this caveat, let us proceed in the comparison of these
two contributions, starting with the zero-dimensional case.
Since the dimensionless conductance is G0�Eg /�, where �
�1/ ��0V� is the level spacing, then the d=0 action associ-
ated with mesoscopic fluctuations can be written as

S̃0 � �E

�0
�3/2

, �31�

where �0= �Eg�2�1/3, where �=1/ ��0V� is the level spacing
in the metallic layer. Physically, �0 can be interpreted as
being the effective level spacing right above the gap edge.
Indeed, from Eq. �3� one sees that

� �
1

�V
��E

�0
3 . �32�

Therefore, the result of Eq. �31� indicates that tails originat-
ing from mesoscopic fluctuations of the gap edge are univer-
sal �in d=0�, in accordance with the conjecture formulated in
Ref. 8 on the basis of random matrix theory. In turn, in the
zero-dimensional case the action associated with classical
fluctuations is

S0 �  �E

�E0
�2

, �33�
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where �E0=Eg /�nimpV is the scale of typical fluctuations of
the gap edge associated with fluctuations of the concentra-
tion of impurities. The dimensionless parameter controlling
which mechanism dominates is therefore

�0 =
�0

�E0
. �34�

Clearly, for �0	1 mesoscopic fluctuations dominate the sub-
gap tails, while for �0�1 classical fluctuations give the larg-
est contribution to the subgap DOS.23

Let us now write �0 in terms of elementary length scales.
One can estimate

�0 �
1

kFl

1

�kF
2�

�Lz/l�7/6

�LxLy/l
2�1/6 �

1

kFl

�Lz/l�7/6

�LxLy/l
2�1/6 , �35�

where we used the fact that the scattering cross section of a
single impurity � is typically of the same order as �F

2 . Within
the assumptions of the theory, �0 is the ratio of two large
numbers, and therefore its precise value depends on the sys-
tem parameters. However, from Eq. �35� we see that making
the junction longer and longer, i.e., increasing Lz, tends to
favor mesoscopic fluctuations. Intuitively, this is due to the
fact that as Lz increases, the dimensionless conductance of
the junction diminishes while the average number of impu-
rities increases, therefore suppressing the associated fluctua-
tions of the gap edge. At the same time, increasing the area
of the junction, or making them cleaner, reverses the situa-
tion. In summary, mesoscopic fluctuations are favored in
long and dirty junctions, while classical fluctuations are fa-
vored in wider and/or cleaner ones.

Since in higher dimensionalities the linear scale of the
optimal fluctuation associated with the two mechanisms is
identical �L�=Lz / ����1/4�, it is possible, and physically sug-
gestive, to reduce the form of the actions in d=1, 2 to a
zero-dimensional action calculated within the typical volume
of the optimal fluctuation. The latter is V�=LxL�Lz for d
=1, and V�=L�

2 Lz in d=2. For example, for d=1 one can
write

S1 � nimpLxL�Lz����2 �  �E

�Eef f
�2

, �36�

where �Eef f =Eg /�nimpV�. Similarly,

S̃1 �  �E

�ef f
�2

, �37�

where �ef f = �Eg�ef f
2 �1/3, �ef f =1/ ��0V�� being the level spac-

ing in the volume of the optimal fluctuation. In analogy to
the zero-dimensional case, one is therefore led to conclude
that also for one-dimensional tails long and dirty junctions
are dominated by mesoscopic fluctuations, while wider
and/or cleaner junctions favor classical ones. This qualitative
statement is indeed correct, but the proof is complicated by
the energy dependence L�.

The appropriate way to proceed for d=1,2 is to write the
actions associated with classical and mesoscopic fluctuations
in compact form as

S = Eg − E

�Ed
��8−d�/4

, �38�

S̃ = Eg − E

�d
��6−d�/4

, �39�

where �Ed=Eg / �adndLz
d�4/�8−d� and �d=Eg / �ãdGd�4/�6−d�.

Therefore, the dimensionless parameter that determines
which contributions dominates the subgap DOS is

�d �
�d

�Ed
. �40�

If �d	1, the subgap DOS is dominated by mesoscopic gap
fluctuations, and the applicable result is Eq. �27�. On the
other hand, for �d�1 the DOS below the gap is determined
by long-wave fluctuations of 1 / �Eq. �24��. Finally, estimat-
ing �d in terms of elementary length scales, one obtains

�1 �
1

�kFl�16/35

�Lz/l�8/7

�Lx/l�8/35 , �41�

�2 �
1

�kFl�2/3 �Lz/l� . �42�

In analogy to Eq. �35�, the fact that �d is proportional to a
power of Lz / l implies that mesoscopic fluctuations are domi-
nant in long junctions, while the inverse proportionality of �d
on a power of kFl and of the linear size of the interface �in
d=0,1� implies that wide interfaces and/or cleaner samples
may favor the contribution arising from classical fluctua-
tions.

IV. CONCLUSIONS

In this paper, we discussed the effect of inhomogeneous
fluctuations of the concentration of impurities, or equiva-
lently of 1 /, on the tails of the DOS below the Thouless gap
in diffusive SNS junctions. We have shown that these clas-
sical fluctuations lead to the formation of subgap quasiparti-
cle states and are complementary to mesoscopic fluctuations
in determining the asymptotic DOS. Finding the dimension-
less parameter that controls which mechanism gives the
dominant contribution to the subgap tails, one finds that,
qualitatively, mesoscopic fluctuations are favored in long and
dirty junctions, while classical ones dominate in wider and/or
cleaner ones.

We have observed that, as for diffusive superconductors
containing magnetic impurities, and for diffusive supercon-
ductors with an inhomogeneous coupling constant, the two
contributions are formally related by a dimensional reduction
by 2, both at the level of instanton equations determining the
optimal fluctuation, and in the dependence of the DOS on the
distance from the gap edge ��. As in other physical
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systems,24 it is natural to expect that supersymmetry is at the
root of dimensional reduction also in this context. This fact
could in principle be elucidated generalizing the � model
describing mesoscopic fluctuations to include the physics as-
sociated with classical fluctuations.
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