
Josephson current through a molecular transistor in a dissipative environment

Tomáš Novotný,1,2,* Alessandra Rossini,1,3 and Karsten Flensberg1

1Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
2Department of Electronic Structures, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague,

Czech Republic
3Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano, Italy

�Received 2 August 2005; published 6 December 2005�

We study the Josephson coupling between two superconductors through a single correlated molecular level,
including Coulomb interaction on the level and coupling to a bosonic environment. All calculations are done
to the lowest, i.e., the fourth, order in the tunneling coupling and we find a suppression of the supercurrent due
to the combined effect of the Coulomb interaction and the coupling to environmental degrees of freedom. Both
analytic and numerical results are presented.
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I. INTRODUCTION

Mesoscopic systems connected to superconducting leads
have been investigated for a number of years. If the mesos-
copic system itself is superconducting the transport is influ-
enced by the so-called parity effect in the Coulomb blockade
regime.1,2 For normal metal grains, the effect of the super-
conductivity is merely to modify the tunneling density of
states due to the density of the superconducting leads, thus
introducing an additional gap in the current-voltage charac-
teristics.

Naturally, the Josephson current is also affected by the
Coulomb correlations, because the transfer of a Cooper pair
charges the mesoscopic system by two electron charges. This
process is similar to a cotunneling event, and in the limit of
large Coulomb repulsion, the path that involves double oc-
cupancy of the central region is not allowed, which results in
a suppression of the Josephson coupling. This has been stud-
ied extensively in a number of theoretical works, starting
with the work of Shiba and Soda3 and Glazman and
Matveev,4 who calculated the Josephson current in the limit
of infinite Coulomb repulsion and in perturbation theory, the
leading order being the fourth order in the tunneling ampli-
tudes. Interestingly, the Josephson current was shown to
change its sign when the level which supports the tunneling
current becomes occupied. This so-called � junction behav-
ior, which is consequently also relevant in the Kondo regime,
has been studied in a number of papers.5–11 For larger dots
the interplay of the abovementioned parity effect and the
Josephson effect has also been addressed.12

Experimentally, there has been a number of studies of
metallic wires connected to superconductors,13,14 but only a
few studies in the Coulomb blockade regime. Buitelaar et
al.15,16 have observed multiple Andreev reflections and
Kondo physics in carbon nanotube quantum dots. The super-
current was not directly observed.

In this paper, we study the Josephson coupling through a
single level system coupled to vibrational or dissipative en-
vironments. This is relevant for molecular transistor systems
where strong influence of the coupling to various vibrational
modes have been observed.17–19 In the case of normal metal
leads this has lead to a number of related theoretical

works.20–25 However, so far the combination of the vibra-
tional coupling and correlation transport has not been studied
in the context of supercurrent. Being a groundstate property
the dissipative environment is expected to have a more dra-
matic effect on the supercurrent as compared to usual elec-
tron tunneling. This is indeed what we find in the case of
strong coupling, where the Franck-Condon factors strongly
suppress the supercurrent.

The paper is organized as follows. In the next section our
model Hamiltonian is presented and a convenient unitary
transformation is performed. In Sec. III, the basic formula for
the Josephson current is derived to the fourth order in the
tunneling amplitudes, and the different ingredients in this
formula are discussed. Section IV gives the supercurrent
without coupling to the bosons, both with and without Cou-
lomb interaction, while the Sec. V studies the full case and
discusses different limiting cases. Finally, in Sec. VI our con-
clusions are stated. The technical details of analytic calcula-
tions are put into two Appendixes.

II. MODEL HAMILTONIAN

The model we study in this paper consists of two super-
conducting leads and a central region described by a single
level with Coulomb interaction and its charge occupation
coupled to one or many harmonic oscillator modes, see
Fig. 1.

The model Hamiltonian is given by

H = H0 + HT, �1�

where the unperturbed part of the Hamiltonian is

H0 = HL + HR + HM , �2�

with HL,R being the BCS Hamiltonians for the left and right
leads, respectively,

H� = �
k,�=↑,↓

�k�ck��
† ck�� − ��

k

��ck�↑
† c−k�↓

† + H.c.� , �3�

with �=L ,R, and the complex gap functions defined as ��

= ����ei��. Furthermore, HM describes the central region
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HM = HM0 + Hvib + He-vib, �4�

where HM0 is the Hamiltonian for the electronic degrees of
freedom

HM0 = � �
�=↑,↓

d�
†d� + Un↑n↓, �5�

with d� ,d�
† being the operators for the local level, and n↑ and

n↓ the corresponding spin-dependent occupations. We as-
sume that the single-particle energy level � can be experi-
mentally tuned by the gate, i.e., ����Vg�, and present the
results for the critical Josephson current as functions of �.
We have here defined the origin �zero� of � to be at the Fermi
level of the superconducting electrodes. Hvib is the Hamil-
tonian for the vibrational degrees of freedom

Hvib = �
	
� p2

2m	

+
1

2
m	
	

2x	
2� = �

	


	�a	
†a	 +

1

2
� , �6�

and, finally, He-vib describes the coupling between electronic
and vibrational degrees of freedom. This coupling is solely
through the charge on the central system, i.e.,

He-vib = �n↑ + n↓�X , �7�

where

X = �
	

�	x	. �8�

In this model we neglect any modification of the tunneling
due to the vibrations �this is very often the relevant situation
and the model could easily be generalized to incorporate
such a dependence�, and the tunneling Hamiltonian is there-
fore given by

HT = �
�=L,R

�HT�
+ + HT�

− � , �9�

where HT�
+ = �HT�

− �† and

HT�
− = �

�=↑,↓
HT��

− , HT��
− = �

k

tk�ck��
† d�. �10�

In the next section we will calculate the Josephson cou-
pling using perturbation theory in the tunneling. For this pur-

pose, it is convenient first to use a polaron representation,
which transforms the coupling term He-vib to a displacement
operator in the tunneling term.23,26

The unitary transformation

H̃ = SHS†, S = e−iA�n↓+n↑�, �11�

where

A = �
	

l	p	, l	 = �	/m	
	
2, �12�

removes the coupling term He-vib from the Hamiltonian at the
expense that the tunneling term acquires an oscillator dis-
placement operator, so that Eq. �10� becomes

H̃T��
− = SHT��

− S† = �
k

tk�ck��
† d�eiA. �13�

Furthermore, the transformation renormalizes the on-site en-
ergy and the Coulomb interaction according to

�̃ = � −
1

2�
	

�	l	, Ũ = U − �
	

�	l	. �14�

In the following we will skip the tildes and use just � ,U
again but we mean the renormalized quantities. Using this
transformed Hamiltonian, we calculate the Josephson current
to the lowest order in the tunneling Hamiltonian in the fol-
lowing sections.

III. JOSEPHSON CURRENT

The current operator for the current through contact �

=L ,R is Ṅ� �we use �=e=1 throughout the whole paper�,
where N� is the operator of the number of electrons in lead
alpha. After the unitary polaron transformation introduced
previously, we hence obtain the current, I�, as

I� = i�	H̃,N�
� = i�H̃T�
+ − H̃T�

− � = 2 Im�H̃T�
− � . �15�

Performing the standard thermodynamic perturbation
expansion26,27 in the tunneling we obtain for the Josephson
current in the lowest non-vanishing order, which is the fourth

order, in H̃T

I� = − 2 Im
1

3!
�

0




d�1�
0




d�2�
0




d�3

� �T��H̃T��1�H̃T��2�H̃T��3�H̃T�
− ��0. �16�

The Josephson current must involve two H̃T
+ and two H̃T

−,
which can be chosen in three ways, and hence

I� = − Im �
0




d�1�
0




d�2�
0




d�3

� �T��H̃T�̄
+ ��1�H̃T�̄

+ ��2�H̃T�
− ��3�H̃T�

− ��0, �17�

where we also used that in order to have Cooper pair tunnel-

ing, the H̃T
+ must belong to the junction opposite to where the

Josephson current is “measured” via H̃T�
− , i.e., �̄ means the

FIG. 1. �Color online� Schematic picture of the physical setup
described by the model. The central region �molecule/quantum dot�
is coupled to two superconducting leads and can be independently
gated by a gate. Electrons entering the central region experience
mutual Coulomb interaction and interact with oscillatory modes—
either one distinguished mode such as center-of-mass vibration of
the molecule as a whole or many modes due to intramolecular vi-
brations or substrate phonons acting as a heat bath.
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lead opposite to �. Because of spin symmetry we can choose

the spin of the last H̃T
− as, say, spin up, which then means that

the other H̃T
− carries spin down. In the same way, the spin of

the two H̃T
+ can be chosen in two ways. All in all, we thus

obtain

I� = − 4 Im �
0




d�1�
0




d�2�
0




d�3

� �T��H̃T�̄↓
+ ��1�H̃T�̄↑

+ ��2�H̃T�↓
− ��3�H̃T�↑

− ��0 =

− 4 Im �
k

�
p

tp�̄
* t−p�̄

* t−k�tk��
0




d�1�
0




d�2�
0




d�3

� Fk���3�Fp�̄
* ��1 − �2�B��1,�2,�3�D��1,�2,�3� , �18�

where F are the anomalous Green’s functions of the leads

Fk���� = − �T��c−k�↓
† ���ck�↑

† �0���0 �19�

and where we define the following two functions pertaining
to the central region:

B��1,�2,�3� = �T��d↓
†��1�d↑

†��2�d↓��3�d↑�0���0 �20�

and

D��1,�2,�3� = �T��e−iA��1�e−iA��2�eiA��3�eiA��0. �21�

The first function B describes the propagation of a Cooper
pair through the central region, while the other function D
accounts for the corresponding shifts of the oscillator degrees
of freedom when the charge on the central region is changed.

The anomalous Green’s functions F are easily calculated
in the standard way,26,27 and we have

Fk���� =
��

*

2Ek�

f��Ek�,�� , �22�

where

f��Ek�,�� = e−Ek���� − 2 cosh�Ek���nF�Ek�� �23�

and as usual Ek�=
�k�
2 + ����2. Throughout, we will assume

low temperatures such that ��L,R�
�1, and we can thus ap-
proximate

f��Ek�,�� � e−Ek���� − e−Ek��
−����. �24�

In expression �18� for the current there are two sums over
states in the superconductors, which define the tunneling
density of states �TDOS� as

����� � 2��
k

tk�t−k���� − �k�� = 2��
k

�tk��2��� − �k�� .

�25�

For a small central region, where the coupling is point-like,
we can approximate tk by a constant, which gives a weak
energy dependence of �.

A. Critical current

The Josephson current is a function of the phase-
difference between the two superconductors and using Eqs.
�18�, �22�, and �25�, we have

I� = Ic sin � , �26�

where the phase difference �=��̄−��. Finally, the critical
current Ic is given by

Ic = −
1

�2�
0




d�1�
0




d�2�
0




d�3�
−�

�

d��
−�

�

d��

� �L����R����
��L�R�
4EE�

fL�E,�3�fR�E�,�1 − �2�

� B��1,�2,�3�D��1,�2,�3� . �27�

This expression forms the basis for the further calculations in
this paper. In fact, from now on we will assume that the two
tunneling densities of states are energy independent.

The value of Ic may come out negative and we will see in
the following that it really does so due to the Coulomb in-
teraction. The case with Ic�0 is called a � junction. This
terminology originates from an equivalent description of the
Josephson junction in terms of total energy �or free energy at
nonzero temperature� of the junction as a function of the
phase difference E���. Since I�=2dE��� /d� the total energy
reads E���=−�Ic /2�cos � and reaches minimum at �=0 for
Ic�0 or �=� for Ic�0, respectively �i.e. the ground state of
the junction corresponds to equal/opposite phases in the two
leads�. The � junction behavior has been noted in a number
of papers.3–11 The origin of this sign change is the blocking
of channels for the Cooper pair exchange when U is large.
See Ref. 5 for a detailed account.

Ideally the Josephson current can be measured in a
current-bias setup where there is no voltage drop across the
junction until the critical current is reached. However, in
practice current-bias is difficult to achieve for large resis-
tance junctions such as these single-electron devices and in-
stead a voltage is swept across the junction and the critical
current must be determined as half of the area of the �ideally
�-function-like� peak in the dI /dV curve around V=0, which
then, of course, only yields the absolute value of Ic.

B. Function B

Since the central region has interactions, we cannot use
Wick’s theorem, and we must evaluate the function B using
the many-body states, of which there are four: �0�, �↑�, �↓�,
and �↑↓�. In Eq. �20� only �↑� and �↑↓� contribute to the trace,
i.e., B=B1+B2, where

B1 = P↑�↑ �T��d↓
†��1�d↑

†��2�d↓��3�d↑�0���↑�0, �28a�

B2 = P↑↓�↑↓�T��d↓
†��1�d↑

†��2�d↓��3�d↑�0���↑↓�0, �28b�

with

P↑ = P↓ =
e−
�

1 + 2e−
� + e−
E2
, �29a�

P↑↓ =
e−
E2

1 + 2e−
� + e−
E2
, �29b�

and E2=2�+U. For B1 only three orderings of the operators
give a nonzero result, and we find
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B1 = P↑�e���1−�3+�2����2 − �3����3 − �1�

+ eE2��2−�3�e���1−�2+�3����3 − �2����2 − �1�

+ eE2��1−�3�e���2−�1+�3����3 − �1����1 − �2�� . �30�

Likewise, for B2 we find

B2 = − P↑↓�e���2−�3−�1�eE2�1���1 − �2����2 − �3�

+ e���1−�2−�3�eE2�2���2 − �1����1 − �3�

+ e�E2−����1+�2−�3����1 − �3����3 − �2�� . �31�

C. Function D

We also calculate the function D in Eq. �21� involving the
bosonic degrees of freedom. Since the unperturbed Hamil-
tonian is quadratic in boson operators, this is evaluated as26

D = exp	h��1 − �3� + h��1� + h��2 − �3� + h��2� − h��1 − �2�

− h��3�
 , �32�

where the function h is defined as

h��� = �T�	A���A�0�
�0 − �A2�0. �33�

When inserting the formula �12� for the operator A one ob-
tains

h��� = �
0

�

d

J�
�

2 �nB�
��e
��� − 1� + 	1 + nB�
�
�e−
��� − 1�� ,

�34�

with the spectral function of the bath J�
�

J�
� = �
	

�	
2

2m	
	

��
 − 
	� , �35�

and the Bose function nB�
�

nB�
� =
1

exp�

� − 1
. �36�

In this paper, we concentrate on two cases—either a
single important vibrational mode or a bath of harmonic
modes. For the latter case, we consider mainly the situation
where the dispersion relation corresponds to the so-called
Ohmic case, equivalent to a frequency independent damping
coefficient or, equally, spectral function J�
� linear in fre-
quency.

1. Single oscillator case

The case of a single oscillator with frequency 
0, mass m
and coupling constant � corresponds to Josc�
�=g
0

2��

−
0�, where the dimensionless g=�2 /2m
0

3 as in Ref. 23,
and we have

hosc��� = g	n0�e
0��� − 1� + �1 + n0��e−
0��� − 1�
 , �37�

with n0=nB�
0�.

2. Ohmic environment case

The other generic case that we consider is that of Ohmic
heat bath in which case we use the spectral function

Johm�
� = g
 exp�− 
/
c� �38�

parametrized by the dimensionless interaction constant g and
the upper cutoff frequency 
c. In this important case it is
possible to calculate at T=0 the correlation function h���
from Eq. �34� analytically yielding

hohm��� = − g ln�1 + 
c���� . �39�

IV. JOSEPHSON CURRENT WITHOUT DISSIPATION

As a reference for the discussion on the influence of cou-
pling to a dissipative environment, we discuss the case with-
out coupling to the bosonic environment. This we do in three
steps: first we set U=0, then we look at the infinite U case
and finally we give the expression for the general case.

A. No Coulomb interaction U=0

This result is derived in Appendix A, and the critical cur-
rent is found to be

Ic��� =
�L�R

2�1 − ��/��2�
� tanh�
�/2�

�
−

tanh�
�/2�
�

� . �40�

We note that this expression diverges when �=0 and T=0,
which however is regularized by higher order terms in �’s,
see discussion in Appendix A. Furthermore, we see that the
critical current is always positive, which means that the
negative critical currents, i.e. the � junction behavior, found
below are a result of the correlations. In Fig. 2 this noninter-
acting result is compared with two interacting cases U=�
and U→�.

FIG. 2. �Color online� Josephson current dependence on the
Coulomb interaction strength at zero temperature. Shown are the
critical Josephson current through an Anderson level with no Cou-
lomb interaction U=0 �full line�, with moderate interaction U=�
�dash-dotted line�, and with infinite repulsion U→� �dashes�. The
interacting cases exhibit the phenomenon of the � junction for
−U���0, but the overall magnitude of the current decreases
largely with the increasing interaction strength.
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B. Strong Coulomb interaction U\�

Let U→� such that the doubly occupied state is taken
out. Hence

B1 = P↑e
���1−�3+�2����2 − �3����3 − �1� , �41�

and when inserting this into formula for the critical current
�27�, performing the imaginary time integrations using the
approximation �24� and 
��1 	so that exp�−
Ek���0
, we
find4,6,8

Ic��� =
�L�R

�2 N��� , �42�

where

N��� = − �
��L�

� ��L�dE


E2 − ��L�2
�

��R�

� ��R�dE�


E�2 − ��R�2
C�E,E��

�43�

and

C�E,E�� =
2e−
�

1 + 2e−
��−
e
�

�E + E���E + ���E� + ��

+
1

�E + E���E − ���E� − ��� . �44�

At T=0, this reduces to

C�E,E� = �− 2	�E + E���E + ���E� + ��
−1 for � � 0,

	�E + E���E − ���E� − ��
−1 for � � 0.
�
�45�

The integral in Eq. �43� can be performed analytically at T
=0, and ��L�= ��R�=� yielding

N��� = � 2n��/��/� for � � 0,

− n�− �/��/� for � � 0.
� �46�

The dimensionless function n�x� defined as �x�−1�

n�x� = �
1

� du

u2 − 1

�
1

� dv

v2 − 1

1

�u + v��u + x��v + x�
,

�47�

can be expressed by �see Appendix B�

n�x� =

�2

4
�1 − x� − arccos2 x

x�1 − x2�
, with − 1 � x , �48�

where the analytic continuations of arccos x= i ln�x
+
x2−1� for x�1 is understood. The function n�x� is always
positive, it diverges at x→−1+, and then smoothly decays for
increasing x with the asymptote n�x���2 /4x2 for x→�. The
expression �46� is compared with the noninteracting and fi-
nite U results in Fig. 2. We see that the magnitude of the
critical current is highly suppressed by the very strong Cou-
lomb interaction.

For finite but small temperatures 
��10 so that our ap-
proximations are still valid, we can write for the magnitude

of the Josephson current �for ����� only, otherwise the zero
temperature expression should be used�

Ic��� =
2�L�R

�2�

n��/�� − e−
�n�− �/��
�1 + 2e−
��

. �49�

The finite temperature behavior in the limit U→� is illus-
trated in more detail in Fig. 3 for three values of temperature.
In the lowest temperature curve 
�=10 we also compare the
analytic expression �49� with a direct numerical evaluation
of the triple imaginary-time integral 	Eq. �53� with D�1

routinely used for the dissipative cases. We see an excellent
agreement between the two methods.

In an experiment with a single Josephson junction the
absolute values of the presented curves would be measured.
This would give curves with a dip down to zero at �=0 �for
a finite temperature� and with asymmetric shoulders around
the dip with the ratio between the shoulder heights being 2.
Even though the dip may be smeared in the experiment for
low enough temperatures the asymmetric shoulders should
persist thus revealing the crossover to the � junction regime.

C. Finite Coulomb interaction U

For a finite value of U we have to consider all terms of
B=B1+B2 in an analogous way as previously the first one in
the U→� case. Neglecting again terms e−
Ek,p, we recover
the formula �42� for the current, but with the function
C�E ,E�� in Eq. �43� replaced by

C�E,E�� =
2

Z�E + E��
L�E,E�� , �50�

where Z= �1+2e−
�+e−
�2�+U�� and

FIG. 3. �Color online� Josephson current dependence on the
temperature for U→�. We show the temperature dependence of the
critical Josephson current for ����� for three different temperatures
T=0 �
→�� �full line�, 
�=40 �dash-dotted line�, and 
�=10
�dashed line with asterisks�. In the last case which illustrates
roughly the highest temperature achievable within the approxima-
tions used the analytic and numerical results are compared.
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L�E,E�� = −
1

�E + ���E� + ��
+

e−
�

�E − ���E� − ��

+
2e−
�2�+U��E + E��

�2� + U��� + U − E��� + U − E��

−
2�E + E��

�2� + U��� + E��� + E��
+

2e−
�

�E� − ���E� + � + U�

+
2e−
�

�E − ���E + � + U�
+

e−
�

�E + � + U��E� + � + U�

−
e−
�2�+U�

�� + U − E��� + U − E��
. �51�

The resulting integral does not seem to be analytically cal-
culable in the whole �-range, not even at T=0 and ��L�
= ��R�=�. Yet, in that limit one can achieve significant sim-
plifications at least for some �’s which even allow us to
evaluate the n�x� function defined by Eq. �47� yielding Eq.
�48�. The details of those calculations can be found in Ap-
pendix B. We have, however, calculated the critical current
numerically, and an example is shown in Fig. 2 for U=�.

V. JOSEPHSON CURRENT WITH DISSIPATION

Next, we study how the critical Josephson current
changes, when coupling to vibrational modes is included. In
order to do that, we will perform a numerical integration of
the three imaginary time integrals. For this purpose we first
find 	again assuming ����� constant


H���� � �
����

�

dE
1


E2 − ����2
	e−E��� − e−E�
−����


= K0������� − K0��
 − ��������� , �52�

where K0�x� is the modified Bessel function of the second
kind. The expression for the critical current thus reads

Ic = −
�L�R��L�R�

�2 �
0




d�1�
0




d�2�
0




d�3 HL��1 − �2�

� HR��3�B��1,�2,�3�D��1,�2,�3� . �53�

We evaluated Ic numerically for a number of different
cases with the qualitatively same results showing that the
coupling to oscillator mode�s� suppresses the magnitude of
the Josephson current. There is no apparent difference be-
tween the single mode and Ohmic heat bath case which is in
a clear contrast with nonequilibrium transport studies where
the character of the phonon spectrum plays a crucial role in
the current-voltage characteristics. Below, just for simplicity,
we only present results for the symmetric case ��L�= ��R�
=� at zero temperature T=0 and for infinite Coulomb inter-
action U→�.

A. Low-frequency phonons

If the spectrum of the oscillator mode�s� is well below the
superconducting gap 
0,c�� we can find an approximate
analytic expression for the Ic��� with the help of the function

n��� of the U→� case with no phonons, Eq. �48�. To this
end we study the current formula �53� when we plug into it
the expressions for B��1 ,�2 ,�3� �41� and D��1 ,�2 ,�3� �32�
and consider the above limit. For ��0 we notice that the
step functions of Eq. �41� and the fast decaying functions
H���� in Eq. �53� limit the relevant contributions to the
three-dimensional integral to values of �1 ,�2 ,�3 small com-
pared to min�1/ ��� ,1 /��. For that reason one can perform
the Taylor expansion in Eq. �32� of the h��� functions given
by Eq. �34� which gives

h��� � − ����
0

�

d

J�
�



� − �cl��� , �54�

where we have defined the quantity

�cl = �
0

�

d

J�
�



= �

	

�	
2

2m	
	
2 = �

	

1

2
m	
	

2l	
2, �55�

being the classical displacement energy when the oscillators
are displaced by l	 due to the force generated by a single
excess electron. Putting the expansion into Eqs. �32� and �53�
we get

Ic��� = −
�L�R�2

�2

e−
�

1 + 2e−
��
0




d�2�
0

�2

d�3�
0

�3

d�1

� HL��1 − �2�HR��3�e��−�cl���1−�3+�2�, �56�

valid for ��0. This in fact corresponds to the dissipationless
case with the replacement �→�−�cl. In particular, in the
zero temperature limit we get Ic���=−��L�R /�2��n	��
−�cl� /�
 for ��0. For ��0 we have to combine the vanish-
ing prefactor exp�−
�� with the divergent integral �for 

→�� to get a finite result. This can be done by the substitu-
tions �i�=
−�i, i=1,2 ,3 which make the integrand relevant
only for small values of �i�’s and, analogously to the previous
derivation, one finally finds in the zero temperature limit,
that Ic���= �2�L�R /�2��n	��+�cl� /�
 valid for ��0. In to-
tal, the critical Josephson current in case of coupling to low-
frequency oscillator modes can be expressed as 	remember
the relation �46� between N��� and n�x�


Ic��� =
�L�R

�2�
N�� + �cl sgn �� . �57�

This result is illustrated in detail in Fig. 4.
We point out that even in case of finite temperature there

is no residual temperature dependence due to coupling to the
bath even though the low-frequency modes could be signifi-
cantly populated. This is seen from the expansion �54� where
the thermal occupation factors nB�
� cancelled out. Thus, the
only temperature dependence would be the one stemming
from the occupation factors exactly as in the dissipationless
case, Eq. �49� and Fig. 3.

B. High-frequency single oscillator mode

For the high-frequency single phonon mode 
0�� ,� we
expect suppression of the critical Josephson current due to
the fact that only transport through the ground oscillator state
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is allowed since the �virtual� involvement of the excited
states would be further suppressed by a factor � /n
0�1�n
=1,2 ,3 , . . . �. The transport through the ground state is then
diminished by the overlap factors f00= �0�e−il0p0�0�0, more
precisely the Josephson current should be suppressed by a
factor of order

�f00�4 = �exp�−
1

2
�

0

� d



2 J�
���4

= e−2g. �58�

At T=0 and for 
0�� ,� the function hosc���=g�e−
0���−1�
changes very fast for small �’s of the order ��1/
0 which is
irrelevant for the integral �53�. For larger �’s the function
hosc����−g is constant and thus we get from Eq. �32� that
the total effect of the phonon on the Josephson current is just
a constant factor of e−2g multiplying the dissipationless case.
This effect is shown in Fig. 5 for different values of the
coupling constant g at fixed 
0=20�. The results do not
depend on the value of 
0 provided it is high enough, which
depends on the value of g, as expected �not shown�. One can
see that the approximation gets worse with increased g �for
fixed 
0� which can be explained by the increased contribu-
tion of higher order virtual processes favored by the larger
value of the coupling constant.

C. Ohmic bath with high-frequency cutoff

The case of Ohmic bath with large cutoff energy may be
the physically most relevant one. Unfortunately, there is no
simple semianalytic theory for this case and thus we have to
rely mainly on the numerical results which are summarized
in Fig. 6. One should notice the very strong dependence on

the coupling constant g. Even for intermediate coupling
strength g�1 we get a significant suppression of Ic.

We can give a qualitative explanation of the strong sup-
pression due to the large frequency part of the phonon spec-
trum, 
��. Roughly, we capture the effect of these high-
frequency modes by a suppression factor similar to Eq. �58�.
This factor is estimated as

� f̃00�4 � �exp�−
g

2
�

�


c d




��4

= � �


c
�2g

. �59�

Thus for large 
c and/or g the supercurrent is suppressed
quite severely, in qualitative agreement with the results pre-
sented in Fig. 6.

VI. SUMMARY AND DISCUSSION

We have calculated the Josephson current through a single
correlated level with coupling to external bosonic degrees of
freedom representing, e.g., a system consisting of a molecu-
lar transistor with a number of internal vibrational modes and
coupled to the phonons of the substrate.

First, we have studied the case without coupling to vibra-
tions. This situation has been studied previously in a number
of papers, but we have derived new analytic formulae. The
effect of the Coulomb interaction is to strongly suppress the
Josephson current at the charge degeneracy point, and since
this is where the junction also crosses over to � junction
behavior, the critical current in fact goes to zero at this point.
One could check this behavior using, e.g., nanotube devices
coupled to superconductors as in Refs. 15 and 16 by tuning
the gate voltage across the charge degeneracy point. Also the
temperature dependence predicted here could be experimen-
tally verified.

FIG. 4. �Color online� Josephson current for low-frequency
phonons at T=0, U→�. As long as the spectrum of the phonon
mode�s� is well below the superconducting gap, i.e. 
0,c��, the
critical Josephson current only depends on the integral �cl

=�0
� d
J �
� /
=g
0,c via the shifted dissipationless function N��

+�cl sgn �� �dash-dotted line�. Numerical results are shown for a
single phonon mode with 
0=0.5�, g=2 �dots�, 
0=0.1�, g=10
�asterisks�, 
0=0.05�, g=20 �pluses�, and for the Ohmic bath with

c=�, g=1 �crosses�. All of these cases yield basically the same
result very well captured by the analytic expression.

FIG. 5. �Color online� Josephson current for high-frequency
single oscillator at T=0, U→�, 
0=20�. For large enough 
0

�� ,� the Josephson current is expected to be suppressed just by
the factor exp�−2g� compared to the case without the phonon. This
is shown in the figure where the numerical results for several values
of the coupling constant g=0.1 �asterisks�, g=0.5 �pluses�, g=1
�crosses�, and g=2 �dots� are compared with the analytic expres-
sions given by the corresponding lines.
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In the second part of the paper we have included the cou-
pling to environmental modes and discussed different limits.
Coupling to low-frequency phonons does not have a severe
influence on the Josephson coupling, since it only shifts the
argument of the dissipationless formula from the single par-
ticle energy by the classical displacement energy. In contrast,
a strong coupling to high-energy phonons suppresses the su-
percurrent quite substantially. This is because the oscillators
are displaced twice during the transfer of Cooper pair, and
because the supercurrent requires the final state of the oscil-
lator to be identical to the initial one, the transfer is sup-
pressed by twice the exponential Franck-Condon factor e−2g.
Therefore it might be difficult to observe Josephson tunnel-
ing current in devices with a strong electron-vibron coupling.

Throughout the paper we have used lowest-order pertur-
bation theory in the tunneling coupling. For stronger tunnel-
ing coupling one expects the correlation effect due to the
vibrations to become smaller, because the charge on the level
is no longer well defined. This means that a mean-field treat-
ment becomes adequate, when ���cl. How to describe this
transition theoretically is an interesting problem.

ACKNOWLEDGMENTS

The work of T.N. is a part of the research plan MSM
0021620834 that is financed by the Ministry of Education of
the Czech Republic, while A.R. and K.F. were partly sup-
ported by the EC FP6 funding �Contract No. FP6-2004-IST-
003673, CANEL�.

APPENDIX A: NONINTERACTING CASE U=0

The noninteracting case is exactly solvable for any values
of parameters.28,29 Here, we only give a brief sketch of the
solution and the summary of the results in the limit of small
� relevant for our study. Since the model for U=0 has a

quadratic Hamiltonian, it can be solved by the equation of
motion technique for the Matsubara Green function. We in-
troduce an infinite vector �= �d↑ ,d↓

† ,ckL↑ ,c−kL↓
† ,ckR↑ ,c−kR↓

† �T

generalizing the standard Nambu formalism to the case of
the dot plus two leads. Defining the corresponding thermal
Green function G���=−�T�������†�� satisfying the equation
of motion �d /d��G���=−����1+M ·G��� with the matrix

M =�
− � 0 − tkL

* 0 − tkR
* 0

0 � 0 t−kL 0 t−kR

− tkL 0 − �kL �L 0 0

0 t−kL
* �L

* �kL 0 0

− tkR 0 0 0 − �kR �R

0 t−kR
* 0 0 �R

* �kR

� �A1�

we can express the Josephson current as

IL = − 4 Im �
k

t−kLG42�� → 0+� �A2�

�factor of 2 for spin degeneracy�. Going to the frequency
picture �d /d�→−i
n� and using the partitioning scheme

�A c

d B
�−1

= � �A − cB−1d�−1 − A−1c�B − dA−1c�−1

− B−1d�A − cB−1d�−1 �B − dA−1c�−1 �
�A3�

together with the wide-band approximation ��=const, and
assuming the symmetric case �L=�R=�, �L=�ei�, �R=�
this set of linear equations gives for the Josephson current

IL = Im
1



�

n

ei
n0− �2�2e−i�

�
n
2 + �2�D�
n�

�A4�

with

D�
n� = 
n
2�1 +

�



n
2 + �2�2

+ �2 +
�2�2 cos2��/2�

�
n
2 + �2�

.

�A5�

The zeros of D�
n� determine the Andreev bound states dis-
cussed in Ref. 9. In the limit �→0 which we consider here
the lowest order contribution to IL is proportional to �2 and
can be obtained by setting �=0 in D�
n�. The sum can then
be easily performed yielding

IL = − sin �
�2

2	1 − ��/��2
� tanh�
�/2�
�

−
tanh�
�/2�

�
� .

�A6�

For kBT�� this expression is proportional to �2 /kBT at �
=0. This would diverge in the T=0 limit. However, this

FIG. 6. �Color online� Josephson current for high-frequency-
cutoff Ohmic bath at T=0, U→� and for several values of the
coupling constant g and cutoff frequency 
c. We see a significant
suppression of the critical current already for intermediate coupling
g=1.
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divergence is just an artifact of our perturbation theory and
the exact evaluation of the full expression �A4� would give a
finite result even at T=0, �→0. The exact result is essen-
tially identical to our approximate one unless � ,kBT��
when the exact result gives a saturation of the maximum
Josephson current28,29 Ic�� around �=0 for ���. For
nonsymmetric coupling to the leads, i.e., �L��R but still
��L�= ��R�=�, we get within the discussed lowest order ap-
proximation in �’s the same result just with the replacement
�2→�L�R which is used in the main text, Sec. IV A.

APPENDIX B: FINITE U, EVALUATION OF n„x…

In this appendix we calculate the critical Josephson cur-
rent for finite value of the Coulomb interaction U in the limit
of zero temperature T=0 and symmetric gap ��L�= ��R�=�.
The critical current is given by Eq. �42� with the function
N��� being determined in this case by Eqs. �43�, �50�, and
�51� which further simplify in the considered limit of zero
temperature and symmetric gap so that we can write for
N���:

N��� = �
�

�

dE�
�

�

dE�
2�2


E2 − �2
E�2 − �2� 1

�E + E���E + ���E� + ��
+

2

�2� + U��� + E��� + E��
�

= 2�n��/��
�

+
arccos2��/��

�� + U/2��1 − ��/��2�� for � � 0, �B1a�

N��� = − �
�

�

dE�
�

�

dE�
�2

�E + E��
E2 − �2
E�2 − �2� 1

�E − ���E� − ��
+

1

�E + � + U��E� + � + U�
+

4

�E − ���E + � + U��
= −

n�− �/�� + n��� + U�/�� + 4n2�− �/�,�� + U�/��
�

for − U � � � 0, �B1b�

N��� = �
�

�

dE�
�

�

dE�
2�2


E2 − �2
E�2 − �2� 1

�E + E���� + U − E��� + U − E��
−

2

�2� + U��� + U − E��� + U − E��
�

= 2�n��� + U�/��
�

−
arccos2��� + U�/��

�� + U/2��1 − ��� + U�/��2�� for � � − U . �B1c�

Here, n�x� is defined by Eq. �47� and

n2�x,y� = �
1

� du

u2 − 1

�
1

� dv

v2 − 1

1

�u + v��u + x��u + y�
= �

1

�

du
ln�u + 
u2 − 1�

�u2 − 1��u + x��u + y�
. �B2�

Again, the appropriate analytic continuation of arccos x for x�1 is understood 	see discussion below Eq. �48�
. While neither
of the integral definitions of n�x� 	Eq. �47�
 or n2�x ,y� 	Eq. �B2�
 seems to lead to an explicit formula we still could, however,
use the above equations for indirect evaluation of n�x�. In particular, since the first equation �B1a� is valid for ��0 for any
value of U including both the limits U→0 and U→� we can use the former limit for the evaluation of the latter one. The
noninteracting case U=0 is described by Eq. �40� and, thus, we come to the simple result �48� �in the limit 
→��. The
function n2�x ,y� can be easily calculated by numerical evaluation of the integral in Eq. �B2� for x ,y�−1.
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