
Critical behavior of generic competing systems

Marcelo M. Leite*
Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco,

50670-901 Recife, PE, Brazil
�Received 5 April 2005; revised manuscript received 7 October 2005; published 27 December 2005�

Generic higher character Lifshitz critical behaviors are described using field theory and �L expansion
renormalization-group methods. These critical behaviors describe systems with arbitrary competing interac-
tions. We derive the scaling relations and the critical exponents at the two-loop level for anisotropic and
isotropic points of arbitrary higher character. The framework is illustrated for the N-vector �4 model describing
a d-dimensional system. The anisotropic behaviors are derived in terms of many independent renormalization-
group transformations, each one characterized by independent correlation lengths. The isotropic behaviors can
be understood using only one renormalization-group transformation. Feynman diagrams are solved for the
anisotropic behaviors using a different dimensional regularization associated to a generalized orthogonal ap-
proximation. The isotropic diagrams are treated using this approximation as well as with a different exact
technique to compute the integrals. The entire procedure leads to the analytical solution of generic loop order
integrals with arbitrary external momenta. The property of universality class reduction is also satisfied when
the competing interactions are turned off. We show how the results presented here reduce to the usual m-fold
Lifshitz critical behaviors for both isotropic and anisotropic criticalities.
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I. INTRODUCTION

Field-theoretic renormalization-group techniques are in-
valuable tools for studying usual critical phenomena as well
as the critical behavior associated to the physics of systems
presenting arbitrary short-range competing interactions. The
universality classes of the ordinary critical behavior are char-
acterized by the space dimension of the system d and the
number of components of the �field� order parameter N.1,2

Competing systems, on the other hand, possess different
types of space directions known as competition axes.

The simplest type of competition directions can be most
easily visualized using the terminology of magnetic systems
via a generalized Ising model. One permits exchange ferro-
magnetic couplings between nearest neighbors �J1�0� and
antiferromagnetic interactions between second neighbors
�J2�0� occurring along m2 dimensions. Whenever m2�d
the system presents a �usual� second character anisotropic
Lifshitz critical behavior whose universality classes are char-
acterized by �N, d, m2�, whereas the isotropic behavior char-
acterized by d=m2 close to 8 was formerly described at the
same time.3 The phenomenological model corresponding to a
uniaxial anisotropy �m2=1� in a cubic lattice is known as
axial next-nearest-neighbor Ising �ANNNI� model.4 In the
critical region, this sort of system is characterized by a dis-
ordered, a uniformly ordered, and a modulated ordered phase
which meet in a uniaxial Lifshitz multicritical point, where
the ratio J2 /J1 is fixed at the corresponding Lifshitz tempera-
ture TL. High-precision numerical Monte Carlo simulations
were carried out for the critical exponents of this model5 and
checked using two different two-loop analytical calcu-
lations.6–8 From the renormalization-group perspective there
is an important difference between these Lifshitz critical be-
haviors. The anisotropic behaviors have two independent
correlation lengths, �L2 perpendicular to the competing axes

as well as �L4 parallel to the m2 competing axes. The isotro-
pic behavior has only one correlation length �L4. �For an
alternative field-theoretic approach for m-axial Lifshitz
points, see Refs. 9 and 10.�

If we go on to include ferromagnetic couplings up to the
third neighbors �J3�0� along a single axis, the system will
present a uniaxial third character Lifshitz point whenever
J2 /J1 and J3 /J1 take certain fixed values at the corresponding
Lifshitz temperature.11 When this sort of competition takes
place along m3 spatial directions, the system presents a
m3-fold third character Lifshitz point. On the other hand, if
simultaneous and independent competing interactions take
place between second neighbors along m2 space directions
and third neighbors along m3 space dimensions, the system
presents a generic third character m3-fold Lifshitz critical
behavior. The generic third character universality classes are
defined by �N, d, m2, m3�, thus describing a wider sort of
critical behavior when compared with the third character uni-
versality classes �N, d, m3�.

This idea can be extended in order to define the mL-fold
Lifshitz point of character L, when further alternate cou-
plings are permitted up to the Lth neighbors along mL direc-
tions, provided the ratios JL /J1, JL−1 /J1,…, J2 /J1 take spe-
cial values at the associated Lifshitz temperature.12–14

However, the most general anisotropic situation is to con-
sider several types of competing axes occurring simulta-
neously in the system such that second neighbors interact
along m2 space directions, m3 directions couple third neigh-
bors, etc., up to the interactions of L neighbors along mL
dimensions, with all competing axes perpendicular among
each other. In that case, the corresponding critical behavior is
called a generic Lth character Lifshitz critical behavior.15

In this work we shall undertake an exploration of the
field-theoretical renormalization-group structure of the most
general competing system using �L-expansion techniques for
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anisotropic and isotropic higher character Lifshitz critical be-
haviors. A rather brief description of this structure was set
forth in a previous paper;15 here we shall present the details
and extend the formalism in order to incorporate the exact
two-loop calculation for arbitrary isotropic higher character
criticalities. Renormalization-group �RG� arguments are con-
structed in order to find out the scaling relations for the an-
isotropic as well as the isotropic critical behaviors. The dis-
cussion parallels that for the usual second character Lifshitz
points.8

The arbitrary competing exchange coupling Ising model
�CECI model� is the lattice model associated to this interest-
ing critical behavior. It has a general renormalization-group
structure which contains many independent length scales,
and its construction can be utilized for both anisotropic and
isotropic cases. In the anisotropic cases, the system has only
nearest-neighbor interactions along �d−m2− ¯−mL�,
second-neighbor competing interactions along m2 dimen-
sions, and so on, up to Lth-neighbor competing interactions
along mL spatial directions. The distinct competing
axes originate several types of independent correlation
lengths, namely �1 for directions parallel to the �d−m2− ¯

−mL�-dimensional noncompeting subspace, �2 for directions
parallel to the m2-dimensional competing subspace, etc., and
�L characterizing the mL-dimensional subspace. The simplest
representative of the CECI model is better understood with
the help of Fig. 1, which is the particular case m2=m3=1,
m4= ¯ =mL=0. There are two competing subspaces and
three types of correlation lengths which define three indepen-

dent renormalization-group transformations. It defines a par-
ticular generic third character anisotropic Lifshitz critical be-
havior.

In the phase diagram of the ANNNI model, the param-
eters which are varied are the temperature T and p=J2 /J1
which take a particular value at the uniaxial second character
Lifshitz multicritical point as depicted in Fig. 2. It is a par-
ticular case of the CECI model whenever m2=1, with m3
= ¯ =mL=0. Although the ANNNI model has applications
in several real physical systems �see, for example, Ref. 4�,
the prototype of second character Lifshitz points in magnetic
materials is manganese phosphide �MnP�. Experimental as
well as theoretical investigations have determined that MnP
presents a pure uniaxial Lifshitz point �m2=1, d=3,
N=1�.16,17

When adding further competing interactions to the
ANNNI model, the number of parameters in the phase dia-
gram increases.12 For instance, in the phase diagram of the
model including uniaxial competing interactions up to third
neighbors the parameters to be varied are the temperature T,
p1=J2 /J1, and p2=J3 /J1. One can locate the third character
Lifshitz point by looking at the projection of the phase dia-
gram in the plane �p1, p2�, as was demonstrated using nu-
merical means.12 In the example of the CECI model dis-
played in Fig. 1, let the competing exchange be completely
independent along the different competing axes. In that case,
the phase diagram can be described by T, pz=J2z /J1z, p1y
=J2y /J1y, p2y =J3y /J1y. A useful two-dimensional representa-
tion can be obtained by separating the phase diagrams in two
parts. The diagram �T, pz� characterizing the second charac-

FIG. 1. The simplest example of the CECI model with uniaxial competing interactions between second neighbors as well as uniaxial
couplings between third neighbors. This system has three independent correlation lengths and presents a generic third character anisotropic
Lifshitz critical behavior. Note that turning off the interactions among second neighbors leads to the simpler third character critical behavior.
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ter behavior �with p1y, p2y fixed� and the diagram �p1y, p2y�
�with T, pz fixed� corresponding to the third character behav-
ior can be ploted independently. The superposition of the two
diagrams at the generic third character Lifshitz point is indi-
cated in Fig. 3. As a consequence, there is a uniformly or-
dered phase and two modulated phases called Helical2 and
Helical3 in Fig. 3 which meet at the uniaxial generic third
character anisotropic Lifshitz point. Now there are two first-

order lines separating the ferromagnetic-Helical2 and
Helical2-Helical3 phases. Analogously, when there are arbi-
trary independent types of competing axes, we can consider
several independent phase diagrams and each two-
dimensional projection of them. The superposition of them in
one two-dimensional diagram gives origin to a situation that
resembles that illustrated in Fig. 3. Instead, there are several
modulated phases and one uniformly ordered phase which
meet at the generich Lth character anisotropic Lifshitz point.
Each competing subspace has its own characteristic modu-
lated phase along with its own independent correlation
length. Although these objects go critical simultaneously at
the Lifshitz critical temperature, they define independent
renormalization-group transformations in each different sub-
space.

Therefore we find multiscale scaling laws as a conse-
quence of this renormalization-group flow independence in
parameter space. This implies that we find several indepen-
dent coupling constants, each one depending on a definite
momenta scale characterizing the particular competition axes
under consideration. Nevertheless, all coupling constants
flow to the same fixed point. The universality classes of this
system are characterized by the parameters �N, d,
m2 ,… ,mL�, therefore generalizing the usual Lifshitz behav-
ior. It is important to mention that when we turn off all the
competing interactions between third and more distant neigh-
bors, the universality classes of the generic higher character
Lifshitz point turn out to reduce to that associated to the
second character behavior �N, d, m2�. Notice that these an-
isotropic behaviors generalize previous lattice models with
competing interactions18 as it includes all types of competing
axes. The isotropic critical behaviors d=mn have a distinct
feature in which there is only one type of correlation length
�4n. Their universality classes are characterized by �N, d, n�
where n is the number of neighbors coupled through com-
peting interactions.

In addition, we compute the critical exponents at least at
O��L

2� using dimensional regularization to resolving the
Feynman diagrams and normalization conditions �and� or
minimal subtraction as the renormalization procedures. The
computation is realized in momentum space. For the aniso-
tropic cases, the Feynman diagrams are performed with an
approximation which is the most general one consistent with
the homogeneity of these integrals in the external momenta
scales. The isotropic situations are treated using this approxi-
mation as well, but we also present the exact calculation at
the same loop order and make a comparison with the above-
mentioned approximation.

We present the functional integral representation of the
model in terms of a ��4 setting and define the normalization
conditions for this higher character Lifshitz critical behavior
in Sec. II. We show that many sets of normalization condi-
tions, each one corresponding to a specific type of competi-
tion axes, are convenient to have a satisfactory description of
the problem in its maximal generality.

In Sec. III we present the renormalization-group analysis
for the anisotropic critical behaviors. We construct the sev-
eral renormalization functions appropriate to each competing
subspace and study their flow with the various
renormalization-group transformations. We find the proper

FIG. 2. The phase diagram of a typical uniaxial second character
Lifshitz critical behavior. The dashed lines indicate a first-order
transition between the uniformly ordered and modulated ordered
phase which terminates at the Lifshitz point of second character.
The parameter p is defined by p=J2 /J1.

FIG. 3. The superposition of the two two-dimensional indepen-
dent phase diagrams for the simplest CECI model. In this two-
dimensional picture, the confluence of the two distinct modulated
phases, the ferromagnetic and the paramagnetic phases occurs at the
generic third character Lifshitz point.
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scaling relations to each competition subspace.
Section IV discusses the renormalization-group treatment

for the various isotropic behaviors. We obtain the scaling
relations and show that they reduce to the usual ��4 case
when the interactions beyond the first neighbors are switched
off.

Section V is an exposition of the calculation of the critical
exponents for the anisotropic cases using the scaling rela-
tions obtained in Sec. III. We describe two different ways of
calculating the critical exponents either in normalization con-
ditions or in minimal subtraction. We discuss the limit L
→� and some of its implications. We point out the analogy
of the Lifshitz critical region with an effective field theory
which arises from a recent cosmological model including
modifications of gravity in the long-distance limit.19

Sections VI and VII are an in-depth analysis of the critical
exponents for the isotropic cases. The critical exponents for
the isotropic cases are calculated using the orthogonal ap-
proximation and the scaling relations in Sec. VI. The exact
calculation of the critical exponents and the comparison with
those obtained from the orthogonal approximation are car-
ried out in Sec. VII.

The particular case corresponding to the second character
isotropic Lifshitz critical behavior is discussed explicitly in
Sec. VIII. The resulting critical exponents are shown to gen-
eralize those obtained previously.3 We discuss their relation-
ship with those coming from the orthogonal approximation.

Section IX concludes this paper; a discussion of the ideas
is summarized and some possible applications will be pro-
posed. We calculate the Feynman integrals in the appendixes.
We describe in detail the generalized orthogonal approxima-
tion for the calculation of higher loop integrals of the aniso-
tropic behaviors in Appendix A. It will be shown there that
one can obtain the answer in a simple analytical form for
arbitrary external momenta scales. The property of homoge-
neity of these integrals along arbitrary external momenta
scales is preserved. Then, we use the same approximation to
compute diagrams for the isotropic behaviors in Appendix B.
In addition, we perform the exact calculation for arbitrary
isotropic cases in Appendix C. We also analyze the simple
particular case associated to the usual second character iso-
tropic behavior.

II. FIELD THEORY AND NORMALIZATION CONDITIONS
FOR HIGHER CHARACTER LIFSHITZ POINTS

The field-theoretical representation can be expressed in
terms of a modified ��4 field theory presenting arbitrary
higher derivative terms due to the effect of competition along
the different kinds of competing axes. The types of compet-
ing axes are defined by the number of neighbors that interact
among each other via exchange competing couplings. Let mn
be the number of space directions whose competing interac-
tions extend to the nth neighbor. Thus the mn-dimensional
competition subspace will be represented in the Lagrangian
with even powers �up to the 2nth� of the gradient acting on
the order parameter scalar field. Thus the effect of the com-
petition resides in the higher derivatives of the field.

The corresponding bare Lagrangian density can be written
as15

L =
1

2
���d− �

n=2

L
mn��0�2 + �

n=2

L
�n

2
��mn

n �0�2 + �
n=2

L

	0n
1

2
��mn

�0�2

+ �
n=3

L−1

�
n�=2

n−1
1

2

nn���mn

n� �0�2 +
1

2
t0�0

2 +
1

4!
�0�0

4. �1�

At the Lifshitz point, the fixed ratios among the exchange
couplings explained above translate into this field-theoretic
version though the conditions 	0n=
nn�=0. All even momen-
tum powers up to 2L become relevant in the free
propagator.20 This condition simplifies the treatment of the
system since it allows the decoupling of the several compet-
ing subspaces of Feynman integrals in momentum space. It
indeed makes possible to solve these diagrams to any desired
order in a perturbative approach. Within the loop order cho-
sen, we can set a perturbative regime with maximal general-
ity as far as critical behavior of competing systems are con-
cerned. So we need the small loop parameter, which is
intimately connected to the critical dimension of the theory.

It is instructive to find the critical dimension of this field
theory through the use of the Ginzburg criterion.21–23 From
the perspective of magnetic systems in the above Lagrangian
density, t0= t0L+ �T−TL� measures the temperature difference
from the critical temperature TL. In the mean-field approxi-
mation the inverse susceptibility is proportional to �T−TL�,
but has no longer this behavior when fluctuations get bigger
due to the closenesss of the critical point and the mean-field
argument breaks down. This immediately leads to the critical
dimension dc=4+�n=2

L ��n−1� /n�mn. Above this critical di-
mension the mean-field behavior dominates the system. Con-
sequently, the small parameter for a consistent perturbative
expansion is �L=4+�n=2

L ��n−1� /n�mn−d. The same type of
argument can be constructed for the isotropic behaviors.
When d=mn, the critical dimension is dc=4n.

The renormalized theory can be defined starting from the
bare Lagrangian �1�. The approach we shall follow here is
completely analogous to that exposed in Ref. 8 �see also Ref.
1� and the reader is invited to consult that reference in order
to be familiarized with the notation employed. The renormal-
ization functions are determined in terms of the renormalized
reduced temperature and order parameter �magnetization in
the context of magnetic systems� as t=Z�2

−1t0, M =Z�
−1/2�0 and

depend on Feynman graphs. When the theory is renormal-
ized at the critical temperature �t=0�, a nonvanishing exter-
nal momenta must be used to define the renormalized theory.
Consequently, the renormalization constants at the critical
temperatute TL depend on the external momenta scales in-
volved in the renormalization algorithm.

Let us analyze the anisotropic behaviors. The Feynman
integrals depend on various external momenta scales, namely
that characterizing the �d−m2− ¯−mL�-dimensional non-
competing subspace, a momentum scale associated to the m2
space directions, etc., up to the momentum scale correspond-
ing to the mL competing axes. Thus it is appropriate to define
L sets of normalization conditions in order to compute the
critical exponents associated to correlations either perpen-
dicular to or along the several types of competition axes. We
define �1 to be the external momenta scale asssociated to the
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�d−m2− ¯−mL�-dimensional noncompeting directions. If
we define the noncompeting directions to be along the
m1-dimensional subspace, where m1=d−m2− ¯−mL, we
can unify the language by stating that �n is the typical exter-
nal momenta scale characterizing the mn competing axes �n
=1,…, L�.

We now turn our attention to the definition of the symme-
try points �SPs�. In case we wish to evaluate the critical
exponents along the jth type of competing axes, we set �n
=0 for n� j keeping, however, � j�0. The proper normaliza-
tion conditions to evaluating exponents along the various
competition axes can be defined as follows. If ki�n�� is the
external momenta along the competition axes associated to a
generic one-particle irreducible �1PI� vertex part, the external
momenta along the nth type of competing directions are cho-
sen as ki�n�� kj�n�� = ��n

2 /4��4	ij −1�. This implies that �ki�n��

+kj�n�� �2=�n
2 for i� j. The momentum scale of the two-point

function is defined by k�n��2 =�n
2=1. The set of renormalized

1PI vertex parts is given by

�R�n�
�2� �0,gn� = 0, �2a�

	 ��R�n�
�2� �k�n�� ,gn�

�k�n��2n 	
k�n��2n=�n

2n

= 1, �2b�

��R�n�
�4� �ki�n�� ,gn��SPn

= gn, �2c�

��R�n�
�2,1��k1�n�� ,k2�n�� ,k�,gn��SP̄n

= 1, �2d�

��R�n�
�0,2��k�n�� ,gn��k�n��2n=�n

2n = 0. �2e�

These L systems of normalization conditions seem to pro-
vide L renormalized coupling constants. The origin of this
overcounting is a consequence of the L independent flow in
the renormalization momenta scales �1,…,�L. The analysis
works with L coupling constants, namely gn=un��n

2n��L/2 �and
�n=u0n��n

2n��L/2� characterizing the flow along the momenta
components parallel to each mn-dimensional competing sub-
space. This is really a disguise since the situation becomes
simpler at the fixed point: the many couplings will flow to
the same fixed point, at the two-loop level, giving a clear
indication that this property is kept in higher-loop calcula-
tions. The explicit demonstration of this fact will be tackled
in Sec. V. �Let us mention briefly another type of anisotropic
critical behavior whose theoretical existence is granted from
the CECI model structure. In magnetic systems, the absence
of the ferromagnetic phase leads to a structure where several
modulated phases are mixed among each other. This situa-
tion is transliterated in the condition d=m2+ ¯ +mL. In that
case, the normalization conditions can be defined without
making reference to the noncompeting subspace. In general
the critical dimension will increase and the lowest character
modulated phase will play the role of the former ferromag-
netic ordered phase. We shall not delve any further into this
situation in this paper, but leave the analysis for future
work.�

The normalization conditions for the isotropic case �mn
=d near 4n� can be defined in a close analogy to its second
character isotropic particular case.8 If ki� is the external mo-
menta along the mn competition axes, the external momenta
along the 4n directions are chosen as ki�kj�= ��n

2n /4��4	ij −1�.
This implies that �ki�+kj��

2=�n
2 for i� j. The momentum

scale of the two-point function is fixed through k�2n=�n
2n

=1. Then we have the same normalization conditions, Eqs.
�2�, but now there is solely one type of external momenta
scale. The others are absent in this situation as an effect of
the Lifshitz condition 	0n=
nn�=0.

We can express all the renormalization functions and bare
coupling constants in terms of the dimensionless couplings
in a unified perspective for both anisotropic and isotropic
behaviors. The subscript n=1, 2, 3,…, L labels the different
external momenta scales belonging to the general Lifshitz
critical behavior, as defined above for the anisotropic and
isotropic cases. Expansion of the dimensionless bare cou-
pling constants uon and the normalization constants Z��n�,

Z̄�2�n�=Z��n�Z�2�n� as functions of the dimensionless renor-
malized couplings un up to two-loop order as

uon = un�1 + a1nun + a2nun
2� , �3a�

Z��n� = 1 + b2nun
2 + b3nun

3, �3b�

Z̄�2�n� = 1 + c1nun + c2nun
2, �3c�

along with dimensional regularization will be sufficient to
find out all critical exponents.

III. SCALING THEORY FOR THE ANISOTROPIC CASES

The anisotropic behaviors are characterized by correlation
lengths �1,…, �L. When considered independently they de-
fine independent renormalization-group transformations
along the several competing directions. In momentum space,
they induce independent flows in each external momenta
scale �1,…, �L.

In order to define the renormalized vertex parts we con-
sider a set of cutoffs 
 j �j=1,…, L�, each of them character-
izing a different competing subspace. As functions of the
bare vertices and normalization constants they read

�R�n�
�N,M��pi�n�,Qi�n�,gn,�n�

= Z��n�
N/2 Z�2�n�

M
„��N,L��pi�n�,Qi�n�,�n,
n�

− 	N,0	L,2��n�
�0,2���Q�n�,Q�n�,�n,
n��Q�n�

2 =�n
2… , �4�

where pi�n� �i=1,…, N� are the external momenta associated

to the vertex functions �R�n�
�N,L� with N external legs and

Qi�n� �i=1,…, M� are the external momenta associated to the
M insertions of �2 operators. From the last section, u0n,
Z��n�, and Z�2�n� are represented as power series in un. In
order to write the renormalization-group equations in terms
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of dimensionless bare and renormalized coupling constants,
we shall discuss the central idea which underlies the subse-
quent scaling theory.

Consider the volume element in momentum space for cal-
culating an arbitrary Feynman integral. It is given by

dd−�i=2
L miq�i=2

L dmik�i�. Recall that q� represents a
�d−�i=2

L mi�-dimensional vector perpendicular to the compet-
ing axes and k��i� denotes an mi-dimensional vector along the
ith competing subspace, respectively. The Lifshitz condition
	0n=
nn�=0 suppresses the quadratic part of the momentum
along the m2 competition axes, the quadratic and quartic part
of the momentum along the m3 competing directions, and so
on, such that the mL competing subspace is represented by a
2Lth power of momentum in the inverse free critical �t=0�
propagator, i.e., G0

�2�−1�q ,k�=q2+�n=2
L �n�k�n�

2 �n. In order to be
dimensionally consistent, the canonical dimension in mass
units of the various terms in the propagator should be equal.

Our normalization conditions give us a hint that we can
get rid of the �n parameters provided we make simulta-
neously dimensional redefinitions of the momenta compo-
nents along each type of competition subspace in a complete
analogy to the second character case. Let �q��=M be the mass
dimension of the quadratic momenta. Since all momentum
terms in the propagator should have the same canonical di-
mension, this requires that �k��i��=M1/i. These simultaneous
dimensional redefinitions of the momenta along the compet-
ing axes is only possible due to the Lifshitz condition. The

volume element in momentum space dd−�i=2
L miq�i=2

L dmik�i� has

mass dimension Md−�i=2
L ��i−1�mi/i�. The dimension of the field

can be found from the requirement that the volume integral
of the Lagrangian density �1� is dimensionless in mass units.

In other words, one obtains ���=M�1/2�
d−�i=2
L ��i−1�mi/i��−1. In

momentum space the one-particle irreducible �1PI�
vertex functions have canonical dimension ���N��ki��
=MN+
d−�i=2

L ��i−1�mi/i��−N
d−�i=2
L ��i−1�mi/i��/2.

Let us describe the theory in terms of dimensionless pa-
rameters. As the coupling constants are associated to ��4�, we
can write gn=un��n

2n��L/2, and �n=u0n��n
2n��L/2, where �L=4

+�n=2
L ��n−1� /n�mn−d. Expressed in terms of these dimen-

sionless coupling constants, the renormalization-group equa-
tion can be cast in the form

��n
�

��n
+ �n

�

�un
−

1

2
N���n��un� + L��2�n��un���R�n�

�N,L�

= 	N,0	L,2��n
−2n��L/2Bn�un� . �5�

The functions

�n = ��n
�un

��n
� , �6a�

���n��un� = �n

�lnZ��n�

�un
, �6b�

��2�n��un� = − �n

�lnZ�2�n�

�un
�6c�

are calculated at fixed bare coupling �n. The �n functions can
be rewitten in terms of dimensionless quantities as

�n = − n�L� �lnu0n

�un
�−1

. �7�

Note that the beta function corresponding to the flow in �n
has a factor of n compared to that associated to the flow in
�1.

For the anisotropic case, the multiparameters’ group of
invariance is manifest in the solution of the renormalization-
group equation, which is given by

�R�n�
�N� �ki�n�,un,�n� = exp�−

N

2



1

�n

���n�„un��n�…
dxn

xn
�

��R�n�
�N�

„ki�n�,un��n�,�n�n… . �8�

From the above analysis, the dimensional redefinitions of
the momenta along the distinct competing axes result in an
effective space dimension for the anisotropic case, namely

d−�n=2

L ��n−1� /n�mn�. We discover the following behavior
for the 1PI vertex parts �R�n�

�N� under flows in the external

momenta:

�R�n�
�N� ��nki�n�,un,�n�

= �n
n„N+
d−�n=2

L ��n−1�/n�mn�−N
d−�n=2
L ��n−1�/n�mn�/2…

�exp�−
N

2



1

�n

���n�„un�xn�…
dxn

xn
�

��R�n�
�N� �ki�n�,un��n�,�n� . �9�

The behavior of the vertex functions at the infrared re-
gime is worthwhile, since their fixed point structure will de-
termine the scaling laws and the critical exponents for arbi-
trary mn-dimensional competing subspace. These L
independent fixed points are defined by �n�un

*�=0. At the
fixed points the simple scaling property holds:

�R�n�
�N� ��nki�n�,un

*,�n�

= �n
n„N+
d−�n=2

L ��n−1�/n�mn�−N
d−�n=2
L ��n−1�/n�mn�/2…−�N/2����n��un

*�

��R�n�
�N� �ki�n�,un

*,�n� . �10�

For N=2, we have

�R�n�
�2� ��nk�n�,un

*,�n� = �n
2n−���n��un

*�
�R�n�

�2� �k�n�,un
*,�n� . �11�

The quantity ���n��un
*� can be identified as the anomalous

dimension of the competing subspace under consideration.
This can be readily generalized to include M insertions of

�2 operators such that the RG equations at the fixed point
lead to the solution ��N ,M�� �0,2��
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�R�n�
�N,M���ki�n�,�pi�n�,un

*,�n� = �
n

n„N+
d−�n=2
L ��n−1�/n�mn�−N
d−�n=2

L ��n−1�/n�mn�/2−2M…−N���n�
* /2+M�

�2�n�
*

� �R�n�
�N,M��ki�n�,pi�n�,un

*,�n� . �12�

Writing this at the fixed point as

�R�n�
�N,M���ki�n�,�pi�n�,un

*,�n�

= �n
n„
d−�n=2

L ��n−1�/n�mn�−Nd�…+Md�2
�R�n�

�N,M��ki�n�,pi�n�,un
*,�n� ,

�13�

the anomalous dimensions of the insertions of �2 operators
are d�2 =−2n+��2�n��un

*�.
The scaling relations can be found by going away from

the Lifshitz critical temperature �t�0� staying, however, at
the critical region 	0n=
nn�=0, which is the generalization of
that from the ordinary second character Lifshitz behavior.
Above the Lifshitz critical temperature, the renormalized
vertices for t�0 can be expressed as a power series in t
around the renormalized vertex parts at t=0, as long as N

�0. Then one can show that the RG equations for the vertex
parts when t�0 are given by

��n
�

��n
+ �n

�

�un
−

1

2
N���n��un� + ��2�n��un�t

�

�t
�

��R�n�
�N� �ki�n�,t,un,�n� = 0. �14�

The key property of the solution is that it is a homogeneous
function of the product of ki�n� �to some power� and t only at
the fixed point un

*. As the value of un is fixed at un
*, we shall

omit it from the notation of this section henceforth. Thus, at
the fixed point the solution of the RG equation reads

�R�n�
�N� �ki�n�,t,�n� = �n

N���n�
* /2

F�n�
�N��ki�n�,�nt−1/�

�2�n�
*

� . �15�

Defining �n=−��2�n�
* , and using dimensional analysis, it is

easy to show that

�R�n�
�N� �ki�n�,t,�n� = �n

n„N+
d−�n=2
L ��n−1�/n�mn�−�N/2�
d−�n=2

L ��n−1�/n�mn�…−�N/2��n�n
�N/2��nF�n�

�N�
„�n

−1ki�n�,��n
−1�n���n

−2nt�−1/�n
… . �16�

The choice �n=�n�t /�n
2n��1/��n+2n��, can be substituted back

in Eq. �16�, implying that the vertex function depends only
on the combination ki�n��n apart from a power of t. Since the
correlation lengths �n are proportional to t−�n, it implies that
the critical exponents �n satisfy the identity

�n
−1 = 2n + �n

* = 2n − ��2�n�
* . �17�

For convenience we could have defined the function

�̄�2�n��un� = − �n

� ln�Z�2�n�Z��n��

�un
. �18�

In that case we would have discovered the equivalent rela-
tions

�n
−1 = 2n − �n − �̄�2�n��un

*� . �19�

For N=2 we choose �n=k�n�, the external momenta. Then

�R�n�
�2� �k�n� , t ,�n�=k2n−�n�n

�nf�k�n��n�. The infrared regime cor-

responds to �n→� and k�n�→0 such that f�k�n��n�→const.
The definition fn= �k�n��n�2n−�nf�k�n��n� leads to

�R�n�
�2� �k�n�,t,�n� = �k�n��n�2n−�n�n

�nfn�k�n��n� . �20�

Since the susceptibility is proportional to t−�n as k�n�→0, and

�R�n�
�2� =��n�

−1 , the susceptibility critical exponents are given by

�n = �n�2n − �n� . �21�

We now discuss the scaling law appropriate to relate the
specific heat critical exponent to the others critical indices.
The analysis of the RG equation for �R�n�

�0,2� above TL at the

fixed point yields information about the specific heat expo-
nents. In that case it reads

��n
�

��n
+ ��2�n�

* �2 + t
�

�t
���R�n�

�0,2� = ��n
−2n��L/2Bn�un

*� ,

�22�

where Bn�un
*� is given by

��n
−2n��L/2Bn�un

*� = − Z�2�n�
2 �n

�

��n
��n�

�0,2��Q�n�;− Q�n�,�n�Q�n�
2 =�n

2.

�23�

The general discussion given up to now for the vertex part
�R�n�

�N,M� will be useful to uncover the homogeneous part of the

solution. In fact, at the fixed point the generalization of the
solution for �R�n�

�N,M� is written as

�R�n�
�N,M��pi�n�,Qi�n�,t,�n�

= �
n

�1/2�N���n�
* −M�

�2�n�
*

Fn
�N,M��pi�n�,Qi�n�,�nt−1/�

�2�n�
*

� .

�24�
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At the fixed point, the temperature-dependent homoge-
neous part for �R�n�,h

�0,2� has the following property:

�R�n�,h
�0,2� �Q�n�,− Q�n�,t,�n�

= �
n

−2�
�2�n�
*

Fn
�0,2��Q�n�,− Q�n�,�nt−1/�

�2�n�
*

� . �25�

This is going to be identified with the specific heat at zero
external momentum insertion Q�n�=0. Using the dimensional
analysis results, one can show that

�R�n�,h
�0,2� �Q�n�,− Q�n�,t,�n�

= �
n

n„
d−�n=2
L ��n−1�/n�mn�−4…+2�

�2�n�
*

� �R�n�,h
�0,2� ��n

−1Q�n�,

− �n
−1Q�n�,�n

−2nt,�n
−1�n� , �26�

and substituting this into the solution at the fixed point, it
yields

�R�n�,h
�0,2� �Q�n�,− Q�n�,t,�n�

= �
n

n„
d−�n=2
L ��n−1�/n�mn�−4…+2�

�2�n�
*

�
n

−2�
�2�n�
*

� Fn
�0,2�

„�n
−1Q�n�,

− �n
−1Q�n�,�n

−1�n��n
−2nt�−1/�

�2�n�
*

… . �27�

Once more, choose �n=�n�t /�n
2n�1/ ��n+2n�. Replace this in

the last equation, take the limit Q�n�→0, and identify the
power of t with the specific-heat exponent �n. The result is

�n = 2 − n�d − �
n=2

L
�n − 1�

n
mn��n. �28�

The inhomogeneous part can now be discussed. Take Q�n�
=0 and choose a particular solution of the form:

Cp�un� = ��n
2n�−�L/2C̃p�un� . �29�

When this is replaced into the RG equation for �R�n�
�0,2� at the

fixed point, we learn that

Cp�un
*� = ��n

2n�−�L/2 �n

�nn�d − �
n=2

L
�n − 1�

n
mn� − 2

Bn�un
*� .

�30�

Summing up both terms gives the following general solution
at the fixed point:

�R�n�
�0,2� = ��n

−2n��L/2�Cn� t

�n
2n�−�n

+
�n

�nn�d − �
n=2

L
�n − 1�

n
mn� − 2

Bn�un
*�� . �31�

The situation for T�TL is as follows. For simplicity con-
sider the case of magnetic systems. The renormalized equa-
tion of state furnishes a relation between the renormalized

magnetic field and the renormalized vertex parts for t�0 via
a power series in the magnetization M, i.e.,

H�n��t,M,un,�n� = �
N=1

�
1

N!
MN�R�n�

�1+N��ki�n� = 0;t,un,�n� ,

�32�

where the zero momentum limit must be taken after perform-
ing the summation. The magnetic field satisfies the following
RG equation:

��n
�

��n
+ �n

�

�un
−

1

2
N���n��N + M

�

�M
� + ��2�n�t

�

�t
�

�H�n��t,M,un,�n� = 0. �33�

The equation of state has the following form at the fixed
point:

H�n��t,M,�n� = �n
�n/2h1n��nM2/�n,�nt−1/��2�n�� . �34�

Dimensional analysis arguments can be used to determine
how a flow in the external momenta affects the renormalized
magnetic field. The flow produces the following expression:

H�n��t,M,�n� = �n
n„
d−�n=2

L ��n−1�/n�mn�/2+1…H�n�

�� t

�n
2n ,

M

�n
n„
d−�n=2

L ��n−1�/n�mn�/2−1…
,
�n

�n
� .

�35�

The standard choice corresponds to �n being a power of M,

�n = �n� M

�
n

�n/2�„
d− �
n=2

L
��n−1�/n�mn�−2…�

2/†n„
d−�n=2
L ��n−1�/n�mn�−2…+�n‡

.

�36�

Replacing this into Eq. �35� and from the scaling form of the
equation of state H�n��t ,M�=M	nf�t /M1/�n�, we obtain the
remaining scaling laws,

�n =
1

2
�n�n�d − �

i=2

L
�i − 1�

i
mi� − 2n + �n� , �37a�

	n =

n�d − �
i=2

L
�i−1�

i mi� + 2n − �n

n�d − �
i=2

L
�i−1�

i mi� − 2n + �n

, �37b�

which imply the Widom �n=�n�	n−1� and Rushbrooke �n

+2�n+�n=2 relations for arbitrary competing or noncom-
peting subspaces, since n=1,… ,L. We note that there is one
set of scaling relations for each competing subspace. This
suggests that all the critical exponents take different values
in distinct subspaces. We are going to see that this is not
necessarily true, since the fixed-point structure restricts the
values of most critical exponents to be the same in different
competing subspaces. It is a direct consequence that there is
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only one fixed point independent of the space directions un-
der consideration.

The perturbative calculation of the critical exponents and
other universal quantities follows from a diagrammatic ex-
pansion whose basic objects are Feynman diagrams. We shall
use the loop expansion for the anisotropic integrals with the
perturbation parameter �L=4+�n=2

L ��n−1� /n�mn−d. The so-
lution of the Feynman diagrams in terms of �L results in the
�L expansion for the universal critical ammounts of the an-
isotropic criticalities. The anisotropic integrals are described
using the generalized orthogonal approximation in Appendix
A. This approximation yields a solution which is the most
general one compatible with the homogeneity of the Feyn-
man integrals for arbitrary external momenta scales. With
this technique all the critical exponents in the anisotropic
cases can be obtained as will be shown in Sec. V.

IV. SCALING THEORY FOR THE ISOTROPIC BEHAVIORS

To begin with let us promote a slight change of notation
with respect to the conventions presented in our previous
paper.15 There, the subscript associated to each type of mn
competing axes was chosen as 4n. Here, we choose the sub-
script n to express the same thing. This will cause no confu-
sion to the reader since the anisotropic and isotropic cases
are considered separately in this work. Then an arbitrary am-
mount A4n, should be changed to An. In particular, the per-
turbative parameter discussed in Sec. II is now represented as
�n. Obviously, whenever d=mn, the volume element in mo-
mentum space is given by dmnk. Setting �n=1 we perform a
dimensional redefinition of the momenta such that �k�
=M1/n. Accordingly, the volume element has dimension
�dmnk�=Mmn/n. The dimension of the field in mass units
is ���=Mmn/2n−1. The 1PI vertex parts have dimensions
���N��kn��=MN+mn/n−N�mn/2n�. Then, make the continuation
mn=4n−�n. The coupling constant has dimension �4n
=M�4n−mn�/n=M�n/n. In terms of dimensionless quantities, one
has the renormalized gn=un��n

2n��n/2n and bare �n

=u0n��n
2n��n/2n coupling constants, respectively. Again, the

functions

�n = ��n
�un

��n
� , �38a�

���n��un� = �n

� ln Z��n�

�un
, �38b�

��2�n��un� = − �n

� ln Z�2�n�

�un
�38c�

are computed at fixed bare coupling constant �n. The beta
functions in terms of dimensionless quantities are given by
�n=−�n�� ln u0n /�un�−1. Notice that the beta function for
the isotropic case does not possess the overall factor of n
present in the anisotropic beta function �n obtained
from renormalization-group transformations over the
mn-dimensional competing subspace. This is a very close
analogy to the second character behaviors and a general
property of Lifshitz critical behaviors.

The dimensional redefinition of the momenta along the mn
competing axes leads to an effective space dimension for the
isotropic case, i.e., �mn /n�. Under a flow in the external mo-
menta we find the following behavior for the 1PI vertex parts
�R�n�

�N� :

�R�n�
�N� ��nki,un,�n�

= �n
n�N+�mn/n�−N�mn/2n��exp�− N/2


1

�n

���n�„un�xn�…dxn/xn�
��R�n�

�N�
„ki,un��n�,�n… . �39�

Note that since there is only one type of space directions in
the isotropic behaviors, we do not need to use a label in the
external momenta specifying the type of competing axes
considered as we did in the anisotropic cases. At the fixed
point, the simple scaling property for the vertex parts �R�n�

�N�

follows:

�R�n�
�N� ��nki,un

*,�n� = �n
n�N+�mn/n�−N�mn/2n��−�N/2����n��un

*�

��R�n�
�N� �ki,un

*,�n� . �40�

For N=2, we have

�R�n�
�2� ��nk,un

*,�n� = �n
2n−���n��un

*�
�R�n�

�2� �k,un
*,�n� . �41�

In the noninteracting theory d�
0 = �mn /n� /2−1 is the naive

dimension of the field. At the isotropic fixed point, the pres-
ence of interactions modify it such that d�= �m /n� /2−1
+�n /2n. The generalization to include L insertions of �2

operators can be written at the fixed point as ��N ,L�
� �0,2��

�R�n�
�N,L���nki,�npi,un

*,�n�

= �
n

n�N+mn/n−N�mn/n�/2−2L�−N���n�
* /2+L�

�2�n�
*

��R�n�
�N,L��ki,pi,un

*,�n� . �42�

Writing at the fixed point

�R�n�
�N,L���nki,�npi,un

*,�n� = �n
mn−Nd�+Ld�2

�R�n�
�N,L��ki,pi,un

*,�n� ,

�43�

the anomalous dimension of the insertions of �2 operators is
given by d�2 =−2n+��2�n��un

*�.
Above the Lifshitz critical temperature we find the fol-

lowing RG equation:

��n
�

��n
+ �n

�

�un
−

1

2
N���n��un� + ��2�n��un�t

�

�t
�

��R�n�
�N� �ki,t,un,�n� = 0. �44�

The solution at the fixed point is given by

�R�n�
�N� �ki�n�,t,un

*,�n� = �n
N���n�

* /2
F�n�

�N��ki,�nt−1/�
�2�n�
*

� . �45�

If we define �n=−��2�n�
* , we can use dimensional analysis to

obtain
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�R�n�
�N� �ki,t,�n� = �n

n�N+mn/n−�N/2��mn/n��−�N/2��n�n
�N/2��n

�F�n�
�N�
„�n

−1ki,��n
−1�n���n

−2nt�1/�n
… . �46�

We can choose �n=�n�t /�n
2n�1/��n+2n�, and replacing it in

the last two equations, the vertex parts depend only on the
combination ki�n apart from a power of t. As �n is propor-
tional to t−�n we can identify the critical exponent �n as

�n
−1 = 2n + �n

* = 2n − ��2�n�
* . �47�

For the sake of convenience we define the function

�̄�2�n��un� = − �n

� ln�Z�2�n�Z��n��

�un
. �48�

In terms of this function the last equation turns into the fol-
lowing relation:

�n
−1 = 2n − �n − �̄�2�n��un

*� . �49�

For N=2 we choose �n=k, the external momenta. When �n
→� and k→0, simultaneously, then f�k�n�→const. The sus-
ceptibility is proportional to t−�n as ki→0. As �R

�2�=�−1, the
susceptibility critical exponent follows

�n = �n�2n − �n� . �50�

From the RG equation for �R�n�
�0,2� above TL at the fixed

point, the scaling relation for the specific-heat exponent can
be found. The RG equation is

��n
�

��n
+ ��2�n�

* �2 + t
�

�t
���R�n�

�0,2� = ��n
−2��n/2Bn�un

*� ,

�51�

where

��n
−2n��n/2nBn�un

*� = − Z�2�n�
2 �n

�

��n
���n�

�0,2��Q;− Q,�n��Q2=�n
2� .

�52�

The �R�n�
�N,L� can be generalized to

�R�n�
�N,L��pi,Qi,t,�n� = �

n

�1/2�N���n�
* −L�

�2�n�
*

Fn
�N,L��pi,Qi,�nt−1/�

�2�n�
*

� .

�53�

The homogeneous part of the solution for �R�n�,h
�0,2� is tempera-

ture dependent and scales at the fixed point as

�R�n�,h
�0,2� �Q,− Q,t,�n� = �

n

−2�
�2�n�
*

Fn
�0,2��Q,− Q,�nt−1/�

�2�n�
*

� .

�54�

This vertex function is going to be identified with the spe-
cific heat at zero external momentum insertion Q=0. Use of
dimensional analysis yields the result

�R�n�,h
�0,2� �Q,− Q,t,�n� = �

n

n�mn/n−4�+2�
�2�n�
*

�R�n�,h
�0,2� ��n

−1Q,

− �n
−1Q,�n

−2nt,�n
−1�n� . �55�

Substituting this equation in the solution at the fixed point
leads to

�R�n�,h
�0,2� �Q,− Q,t,�n� = �

n

n�mn/n−4�+2�
�2�n�
*

�
n

−2�
�2�n�
*

Fn
�0,2���n

−1Q,

− �n
−1Q,�n

−1�n��n
−2nt�−1/�

�2�n�
*

� . �56�

The choice �n=�n�t /�n
2n�1/ ��n+2n� can be made. Substitu-

tion of this choice into the last equation in the limit Q→0
and identifying the power of t with the specific-heat expo-
nent �n, we obtain

�n = 2 − mn�n. �57�

The inhomogeneous part can be found by taking Q=0 and
choosing a particular solution in the standard way. Therefore
the general solution at the fixed point is given by

�R�n�
�0,2� = ��n

−2n��n/2n�Cn� t

�n
2n�−�n

+
�n

�nmn − 2
Bn�un

*�� .

�58�

Next, let us concentrate ourselves in the scaling relations
when the system is below the Lifshitz critical temperature
T�TL. The relation among the renormalized magnetic field,
the renormalized vertex parts for t�0 and the magnetization
M is given by

H�n��t,M,un,�n� = �
N=1

�
1

N!
MN�R�n�

�1+N��ki = 0;t,un,�n� .

�59�

The RG equation satisfied by the magnetic field is

��n
�

��n
+ �n

�

�un
−

1

2
N���n��un��N + M

�

�M
�

+ ��2�n�t
�

�t
�H�n��t,M,un,�n� = 0. �60�

The solution of the equation of state at the fixed point has the
following property:

H�n��t,M,�n� = �n
�n/2hn��nM2/�n,�nt−1/��2�n�� . �61�

The scale change in the magnetic field followed by a flow in
the external momenta can be written in the form

H�n��t,M,�n� = �n
n�mn/2n+1�Hn� t

�n
2n ,

M

�n
n�mn/2n−1� ,

�n

�n
� . �62�

The flow parameter �n is chosen as a power of M such that

�n = �n� M

�n
�mn/2−n�� 2

mn−2n+�n , �63�

and from the scaling form of the equation of state
H�n��t ,M�=M	nf �n���t /M�1/�n���, we obtain the following
scaling relations:

	n =
mn + 2n − �n

mn − 2n + �n
, �64a�
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�n =
1

2
�n�mn − 2n + �n� , �64b�

which imply the Widom �n=�n�	n−1� and Rushbrooke �n

+2�n+�n=2 relations.
Except for some minor modifications, the renor-

malization-group treatment of each isotropic behavior is
equivalent to treat separately each competing subspace ap-
pearing in the most general anisotropic behavior. It is easy to
see that all scaling laws reduce to those from the usual criti-
cal behavior described by a �4 field theory for n=1. Then,
the usual critical behavior is actually a first character isotro-
pic Lifshitz critical behavior. For n=2, they easily reproduce
those associated to the second character Lifshitz point.8

Therefore a different nomenclature emerges from the study
of these higher character Lifshitz critical behaviors: the num-
ber of neighbors coupled through competing interactions is a
fundamental parameter, generalizing the concept of univer-
sality class. Thus the universality classes of isotropic behav-
iors �d=mn� are characterized by �N, d, n�. These statements
will be put on a firmer ground when we calculate the critical
exponents, as we shall see in the next sections.

The isotropic behaviors are calculated using the general-
ized orthogonal approximation as well as exactly, without the
resource of any approximation. The approximation is useful
to complete the unified analytical description of the higher
character Lifshitz critical behavior in its full generality, at
least at the loop order considered here. On the other hand,
the analytic exact �perturbative� solution is a conceptual step
forward towards a better comprehension of this sort of sys-
tem. At this point, the reader should consult the Appendix B
in order to access the computation of the Feynman integrals
using the generalized orthogonal approximation and Appen-
dix C to see the exact computation required to finding the
critical exponents.

V. CRITICAL EXPONENTS FOR THE ANISOTROPIC
BEHAVIORS

In this section we compute the critical exponents using
the generalized orthogonal approximation with the results
derived in Appendix A. First, we attack the problem using
normalization conditions. Second, the results are checked us-
ing a variant of the minimal subtraction scheme developed in
Ref. 8 for the anisotropic second character m2-fold Lifshitz
point.

A. Normalization conditions and critical exponents

The bare coupling constants and renormalization func-
tions were defined in Sec. II. They are given by

uon = un�1 + a1nun + a2nun
2� , �65a�

Z��n� = 1 + b2nun
2 + b3nun

3, �65b�

Z̄�2�n� = 1 + c1nun + c2nun
2, �65c�

where the constants ain, bin, cin depend on Feynman dia-
grams computed at suitable symmetry points. The critical

exponents associated to correlations perpendicular or parallel
to the arbitrary competing mn-dimensional subspace can be
calculated through the specification of the corresponding
symmetry point.

In terms of the constants defined above, the beta functions
and renormalization constants can be cast in the form

�n = − n�Lun�1 − a1nun + 2�a1n
2 − a2n�un

2� , �66a�

���n� = − n�Lun�2b2nun + �3b3n − 2b2na1n�un
2� , �66b�

�̄�2�n� = n�Lun�c1n + �2c2n − c1n
2 − a1nc1n�un� . �66c�

The above coefficients can be figured out as functions of
the integrals calculated at the symmetry points. We find

a1n =
N + 8

6�L
�1 + hmL

�L� , �67a�

a2n = �N + 8

6�L
�2

+ � �N + 8�2

18
hmL

−
�3N + 14�

24
� 1

�L
,

�67b�

b2n = −
�N + 2�
144�L

�1 + �2hmL
+

1

4
��L� , �67c�

b3n = −
�N + 2��N + 8�

1296�L
2 +

�N + 2��N + 8�
108�L

�−
1

4
hmL

+
1

48
� ,

�67d�

c1n =
�N + 2�

6�L
�1 + hmL

�L� , �67e�

c2n =
�N + 2��N + 5�

36�L
2 +

�N + 2�
3�L

� �N + 5�
3

hmL
−

1

4
� .

�67f�

These expressions are sufficient to find out the fixed points at
O��L

2�, which are defined by �n�un
*�=0. As was seen in Ap-

pendix A, every integral computed at arbitrary symmetry
points SP1 ,… ,SPL gives the same result, irrespective of the
considered subspace. The overall factor of n=1,… ,L in the
�n functions drops out at the fixed points, such that the
renormalization-group transformations realized over �1,…,
and �L will flow to the same fixed point given by �u1

*= ¯

=uL
* �u*�

u* =
6

8 + N
�L�1 + �L�− hmL

+
�9N + 42�
�8 + N�2 �� . �68�

It is instructive to separate explicitly the noncompeting and
competing subspaces. The functions ���1� and �̄�2�1� read

���1� =
�N + 2�

72
�1 + �2hmL

+
1

4
��L�u1

2 −
�N + 2��N + 8�

864
u1

3,

�69�
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�̄�2�1� =
�N + 2�

6
u1�1 + hmL

�L −
1

2
u1� . �70�

When the value of the fixed point is substituted into these
equations, using the relation among these functions and the
critical exponents �1���L2� and �1���L2�, we find

�1 =
1

2
�L

2 N + 2

�N + 8�2�1 + �L�6�3N + 14�
�N + 8�2 −

1

4
�� , �71�

�1 =
1

2
+

�N + 2�
4�N + 8�

�L +
1

8

�N + 2��N2 + 23N + 60�
�N + 8�3 �L

2 .

�72�

The coefficient of each power of �L is the same as that com-
ing from the second character Lifshitz behavior m3= ¯

=mL=0. Consequently, the reduction to the Ising-like univer-
sality class m2=0 case is warranted. The several beta func-
tions corresponding to distinct competing axes satisfy the
property �n=n�1. This implies that ���n�=n���1� and �̄�2�n�
=n�̄�2�1�. Then, we have

�n =
n

2
��L

2 �N + 2�
�N + 8�2�1 + �L�6�3N + 14�

�N + 8�2 −
1

4
��� , �73�

�n =
1

n
�1

2
+

�N + 2�
4�N + 8�

�L +
1

8

�N + 2��N2 + 23N + 60�
�N + 8�3 �L

2� .

�74�

At O��L
3�, the relation �n=n�1 is satisfied, whereas at O��L

2�,
the relation �n= �1/n��1 holds. Strong anisotropic scale
invariance24 is exact to the perturbative order considered
here, and within the generalized orthogonal approximation it
is expected to hold at arbitrary higher loop order. Differently
from the critical indices �n and �n which depend explicitly
on the mn-dimensional subspace under consideration, the
other exponents take the same value in each subspace even
though they are obtained through independent scaling rela-
tions along the distinct competing axes. They are given by

�L = 1 +
�N + 2�

2�N + 8�
�L +

�N + 2��N2 + 22N + 52�
4�N + 8�3 �L

2 , �75�

�L =
�4 − N�

2�N + 8�
�L −

�N + 2��N2 + 30N + 56�
4�N + 8�3 �L

2 , �76�

�L =
1

2
−

3

2�N + 8�
�L +

�N + 2��2N + 1�
2�N + 8�3 �L

2 , �77�

	L = 3 + �L +
�N2 + 14N + 60�

2�N + 8�2 �L
2 . �78�

The exponents correctly reduce to those from the second
character behavior,8,15 with a further reduction to the Ising-
like case when m2=0. In fact the universality classes reduc-
tion of generic higher character anisotropic Lifshitz points to
that from Ising-like critical points is manifest in all critical
exponents. Hence this universality class reduction is a ge-

neric property of arbitrary competing systems.
To check the correctness of these exponents, it is conve-

nient to calculate them in another renormalization procedure.
Let us check these results using minimal subtraction of di-
mensional poles, as we are going to show next.

B. Minimal subtraction and critical exponents

In the minimal subtraction renormalization scheme, the
common situation is to have just one momenta scale �,25

which is called � in the present paper. Nevertheless, the di-
mensional redefinitions performed over the external mo-
menta characterizing arbitrary types of competing axes per-
mit a picture of the anisotropic cases with L independent
momenta scales.

The calculation of the critical exponents along an arbi-
trary kind of competition subspace can be done, provided all
external momenta not belonging to that subspace are set to
zero. Then, we define � j to be the typical scale parameter of
the jth subspace, calculate the renormalization functions for
arbitrary external momenta along the mjth space directions
and require minimal subtraction of dimensional poles. This
procedure is inspired in the method formerly discussed in the
second character anisotropic Lifshitz behaviors.8 Thus al-
though the external momentum associated to the competing
subspace under consideration is kept arbitrary in all stages of
the computation, the same is not true for all other external
momenta corresponding to distinct competing subspaces.
This restriction on the values of all the external momenta is
the price to be paid in order to describe independently the
scale transformations of each inequivalent subspace. This is
the main difference of this minimal subtraction scheme with
several independent momentum scales from the conventional
method with just one momentum scale.

Here we will content ourselves in showing that the dia-
grammatic procedure to calculate the fixed point using mini-
mal subtraction results in the same functions ���n� and �̄�2�n�
at the fixed point as those coming from normalization con-
ditions. This is equivalent to prove the renormalization
scheme independence of all critical indices.

In minimal subtraction, the dimensionless bare coupling
constants and the renormalization functions are defined by

u0n = un�1 + �
i=1

�

ain��L�un
i� , �79a�

Z��n� = 1 + �
i=1

�

bin��L�un
i , �79b�

Z̄�2�n� = 1 + �
i=1

�

cin��L�un
i . �79c�

The renormalized vertex parts

�R�n�
�2� �k�n�,un,�n� = Z��n���n�

�2��kn,u0n,�n� , �80a�

�R�n�
�4� �ki�n�,un,�n� = Z��n�

2 ��n�
�4��ki�n�,u0n,�n� , �80b�
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�R�n�
�2,1��k1�n�,k2�n�,p�n�;un,�n�

= Z̄�2�n���n�
�2,1��k1�n�,k2�n�,p�n�,u0n,�n� �80c�

are finite by construction when �L→0, order by order in un.
One should bear in mind that the external momenta in the
bare vertices are mutiplied by �n

−1. Since ki�1�= pi are the
external momenta perpendicular to the competing axes,
whereas ki�n�=ki�n�� are the external momenta parallel to the
mn-dimensional type of competing subspace, the coefficients
ain��L�, bin��L�, and cin��L� are obtained by requiring that the
poles in �L be minimally subtracted. The bare vertices are
written in the form

��n�
�2��k�n�,u0n,�n� = k�n�

2n �1 − B2nu0n
2 + B3nu0n

3 � , �81a�

��n�
�4��ki�n�,u0n,��n�� = �n

n�u0n�1 − A1nu0n + �A2n
�1� + A2n

�2��u0n
2 � ,

�81b�

��n�
�2,1��k1�n�,k2�n�,p�n�;u0n,�n� = 1 − C1nu0n + �C2n

�1� + C2n
�2��u0n

2 .

�81c�

Remember that B2n is proportional to the integral I3 and B3n
is proportional to I5 which are calculated with all external
momenta not belonging to the mn-dimensional subspace set
to zero.

The coefficients are expressed explicitly by the following
integrals:

A1n =
�N + 8�

18
�I2� k1�n� + k2�n�

�n
� + I2� k1�n� + k3�n�

�n
�

+ I2� k2�n� + k3�n�

�n
�� , �82a�

A2n
�1� =

�N2 + 6N + 20�
108

�I2
2� k1�n� + k2�n�

�n
� + I2

2� k1�n� + k3�n�

�n
�

+ I2
2� k2�n� + k3�n�

�n
�� , �82b�

A2n
�2� =

�5N + 22�
54

�I4� ki�n�

�n
� + 5 permutations� , �82c�

B2n =
�N + 2�

18
I3� k�n�

�n
� , �82d�

B3n =
�N + 2��N + 8�

108
I5� kn

�n
� , �82e�

C1n =
N + 2

18
�I2� k1�n� + k2�n�

�n
� + I2� k1�n� + k3�n�

�n
�

+ I2� k2�n� + k3�n�

�n
�� , �82f�

C2n
�1� =

�N + 2�2

108
�I2

2� k1�n� + k2�n�

�n
� + I2

2� k1�n� + k3�n�

�n
�

+ I2
2� k2�n� + k3�n�

�n
�� , �82g�

C2n
�2� =

N + 2

36
�I4� ki�n�

�n
� + 5 permutations� . �82h�

We have at hand all we need to determine the normaliza-
tion constants at least at two-loop order. Requiring minimal
subtraction for the renormalized vertex parts above listed, it
can be verified that all the logarithmic integrals depending
upon each arbitrary �nonvanishing� external momenta sub-
space appearing in I2, I3, I4, and I5 cancel out. This leads to
the following expressions for the normalization functions
and coupling constants:

u0n = un�1 +
�N + 8�

6�L
un + � �N + 8�2

36�L
2 −

�3N + 14�
24�L

�un
2� ,

�83a�

Z��n� = 1 −
N + 2

144�L
un

2 + �−
�N + 2��N + 8�

1296�L
2

+
�N + 2��N + 8�

5184�L
�un

3, �83b�

Z̄�2�n� = 1 +
N + 2

6�L
un + � �N + 2��N + 5�

36�L
2 −

�N + 2�
24�L

�un
2.

�83c�

Using the renormalization constants we obtain

���n� = n� �N + 2�
72

un
2 −

�N + 2��N + 8�
1728

un
3� , �84�

�̄�2�n� = n
�N + 2�

6
un�1 −

1

2
un� . �85�

The fixed points are defined by �n�un
*�=0. Then, we learn

that the fixed points generated by renormalization-group
transformations over �1,…, and �L are the same, namely

un
* =

6

8 + N
�L�1 + �L� �9N + 42�

�8 + N�2 �� . �86�

When this result is replaced in the renormalization con-
stants at the fixed point it yields ���n�

* =�n, where �n are
given by Eqs. �71� and �73�. In addition, we have

�̄*
�2�n� = n

�N + 2�
�N + 8�

�L�1 +
6�N + 3�
�N + 8�2 �L� . �87�

The reader can verify that the exponents �n encountered by
using the last equation are the same as those obtained via
normalization conditions Eqs. �72� and �74�. This proves the
consistency of either renormalization scheme for the aniso-
tropic Lifshitz critical behaviors.
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C. Discussion

The generic Lth character Lifshitz critical behavior natu-
rally extends the comprehension of the usual second charac-
ter Lifshitz criticality. The latter is characterized by one non-
competing subspace and only one competing subspace,
whereas the former is characterized by several types of com-
peting subspaces. The expressions for the critical exponents
can be analyzed to extract further information concerning
those systems. For instance, when m3�0 and m2=m4= ¯

=mL=0, the third character behavior is recovered and cor-
rectly reduces to the Ising-like behavior for m3=0. The main
characteristic of generic third character behavior is that there
are m2, m3�0 competing axes with m4= ¯ =mL=0, and so
on. From a phenomenological perspective in magnetic sys-
tems, may be it is worthy to assemble all magnetic materials
presenting Lishitz critical behavior and analyze their critical
exponents. Choosing those alloys in the same conjectured
universality class, the greater the difference in their critical
exponents the more likely they are in an alternative univer-
sality class contained in the CECI model analyzed here.

It is interesting to note that exact strong anisotropic scale
invariance24 is valid in the CECI model as a result of the
generalized orthogonal approximation. Since the model de-
scribes the physics of short-ranged competing systems, the
limit L→� in the Lth character Lifshitz point should not be
taken, since it would describe long-range competing sys-
tems. Nevertheless, since no restriction on L was made in the
beginning of the discussion, the CECI model can be viewed
as describing a particular type of long-range competing in-
teractions. If we go on and take this limit in the expression of
the critical exponents we find that �L tends to infinity,
whereas �L→0 as a consequence of the strong anisotropic
scale invariance. This implies that close to the Lifshitz criti-
cal temperature the correlation length �L does not diverge in
that limit, instead of having a usual power-law divergence.
This fact is a nonperturbative result valid to all orders in
perturbation theory within the context of the �L expansion.

Another feature emerges from this limit by looking at the
critical dimension dc=4+m�. �Recall that in the Lth aniso-
tropic character critical behavior the system has mL compet-
ing axes and d−mL noncompeting space directions, i.e., m2
= ¯ =mL−1=0.� This limit yields a mechanism which is a
natural way to study extra dimensions without destroying the
renormalizability of the corresponding field theory, while re-
taining the nontrivial aspect of the fixed point. In spite of the
divergence of the anomalous dimension and the vanishing of
the correlation length exponent along the mL competing di-
rections in this limit, all other exponents are well behaved
and have the same value of those corresponding to space
directions without competition, as can be seen explicitly by
the expressions for the exponents. This is so since the aniso-
tropic scaling laws only contain the safe combination L�L
which is always finite in the limit L→�. Once more, note
that m�→0 reduces to the previous �4 universality classes.
Recall that the isotropic case is characterized by d=mL=4L.
Some care must be taken in the interpretation of this case in
the limit L→�, for the approach from the anisotropic �0
�mL�4L� to the isotropic case takes infinite steps, which is
not as simple as in the case when L is finite. This point
deserves its own analysis for future work.

On the other hand, the last few years have witnessed some
ideas in quantum field theories that resemble very much is-
sues contained in the analysis of Lifshitz critical phenomena.
The closest analogy with the Lifshitz field-theoretic tools
presented here is the very recent idea of ghost condensation
producing a consistent modification of gravity in the infrared
�long-distance limit�.19,26,27 In this framework, gravity is
modified to have attractive as well as repulsive components.
The latter mimics a kind of dark energy,28 whose ghost con-
densate is a physical fluid arising from a theory where a real
scalar field changes with a constant velocity. The ghost con-
densate appears as the physical scalar excitation around the
background generated by the scalar field whose vacuum ex-
pectation value is defined by a constant value of its time
derivative. Consequently, the effective action for the field
representing the ghost condensate has kinetic terms with
quadratic time derivatives and quartic space derivatives of
the field, therefore breaking Lorentz invariance.19 The insta-
bility in momentum space is manifest in the absence of ki-
netic terms quadratic in the space derivatives of the ghost
condensate. This characteristic is a result of the competing
nature between the attractive and repulsive components of
the gravitational force. This is a precise analogy with the
Lifshitz critical region in the case of the usual second char-
acter behavior included in the discussion given in the present
paper. The utilization of an analogous reasoning leads us to
conclude that the CECI model can be used to extract further
insights from these effective quantum field theories where
Lorentz invariance is broken. It permits generalizations for
the ghost condensate when higher powers in space deriva-
tives of this field are present in its corresponding effective
action. For example, at large distances the case of quadratic
time derivatives and sixth space derivatives in the kinetic
term would correspond to a gravitational interaction with
attractive-repulsive-attractive competing components and so
on. Further analysis of the model might be helpful to address
the perturbative calculations regarding the ghost condensate
in that scalar field background.

Numerical methods to probe the results obtained here are
in their infancy for the CECI model. Earlier Monte Carlo
simulations for a uniaxial third character behavior were
performed11 and the existence of the corresponding Lifshitz
point at nonzero temperature was established. Unfortunately,
no critical exponent was determined for the third character
Lifshitz point. Since then, perhaps due to the fact that these
higher character criticalities were not well understood theo-
retically, these methods are still waiting for more investiga-
tions. Recently, a model with antiferromagnetic couplings
between nearest neighbors as well as antiferromagnetic ex-
change interactions between third neighbors was studied us-
ing Monte Carlo simulations and some quantum properties
were investigated.29 No ferromagnetic couplings appear
among arbitrary neighbors. Even though there is a quantum
Lifshitz point there, it pertains to a universality class which
might be different from that representing third character criti-
cal points discussed in the present paper. Further numerical
studies motivated by the CECI model are necessary to un-
derstand completely the classical and quantum properties of
its critical regions.
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VI. ISOTROPIC CRITICAL EXPONENTS IN THE
ORTHOGONAL APPROXIMATION

We now address the calculation of critical exponents us-
ing the generalized orthogonal approximation from the re-
sults obtained in Appendix B. As we have seen in the calcu-
lation of Feynman integrals, this problem can also be tackled
without performing any approximation during all steps of the
calculation. This technique shall be postponed until next sec-
tion. In one way or another, the approach is equivalent to
treat each competing subspace separately. Though very simi-
lar, the framework of this section turns out to be more eco-
nomical than that reported in the anisotropic cases.

A. Critical exponents in normalization conditions

The basic definitions of the bare coupling constants and
renormalization functions were encountered before and are
given by

u0n = un�1 + a1nun + a2nun
2� , �88a�

Z��n� = 1 + b2nun
2 + b3nun

3, �88b�

Z̄�2�n� = 1 + c1nun + c2nun
2, �88c�

where the constants ain, bin, cin depend on Feynman integrals
at the symmetry point called SPn. Let �n denote the compet-
ing mn-dimensional subspace in the isotropic cases.

The beta function and renormalization constants can be
expressed in the form

�n = − �nun�1 − a1nun + 2�a1n
2 − a2n�un

2� , �89a�

���n� = − �nun�2b2nun + �3b3n − 2b2na1n�un
2� , �89b�

�̄�2�n� = �nun�c1n + �2c2n − c1n
2 − a1nc1n�un� . �89c�

The coefficients above obtained as functions of the integrals
calculated at the symmetry point read

a1n =
N + 8

6�n
�1 +

1

2n
�n� , �90a�

a2n = �N + 8

6�n
�2

+ �2N2 + 23N + 86

72n�n
� , �90b�

b2n = −
�N + 2�
144n�n

�1 +
5

4n
�n� , �90c�

b3n = −
�N + 2��N + 8�

1296n�n
2 − 5

�N + 2��N + 8�
5184n2�n

, �90d�

c1n =
�N + 2�

6�n
�1 +

1

2n
�n� , �90e�

c2n =
�N + 2��N + 5�

36�n
2 +

�N + 2��2N + 7�
72n�n

. �90f�

The equation �n�un
*�=0 defines the fixed point. Thus we find

un
* =

6

8 + N
�n�1 + �n

1

n
�−

1

2
+

�9N + 42�
�8 + N�2 �� . �91�

We stress that this fixed point is different from that arising in
the anisotropic behavior and cannot be obtained from it
within the �L expansion described above. The functions ���n�
and �̄�2�n� are found to be

���n� =
�N + 2�

72n
�1 +

5

4n
�n�un

2 −
�N + 2��N + 8�

864n2 un
3, �92�

�̄�2�n� =
�N + 2�

6
un�1 +

1

2n
�n −

1

2n
un� . �93�

When the fixed point is replaced inside these equations, us-
ing the relation among these functions and the critical expo-
nents �n and �n, we find

�n =
1

2n
�n

2 N + 2

�N + 8�2�1 + �n
1

n
�6�3N + 14�

�N + 8�2 −
1

4
�� , �94�

�n =
1

2n
+

�N + 2�
4n2�N + 8�

�n +
1

8n3

�N + 2��N2 + 23N + 60�
�N + 8�3 �n

2.

�95�

The coefficient of the �n
2 term in the exponent �n is positive,

consistent with its counterpart in the anisotropic cases as
well as in the Ising-like case. In the generalized orthogonal
approximation the competing momenta are not sufficient to
induce its change of sign.

Now using the scaling relations derived for the isotropic
case we obtain immediately

�n = 1 +
�N + 2�

2n�N + 8�
�n +

�N + 2��N2 + 22N + 52�
4n2�N + 8�3 �n

2, �96�

�n =
�4 − N�

2n�N + 8�
�n −

�N + 2��N2 + 30N + 56�
4n2�N + 8�3 �n

2, �97�

�n =
1

2
−

3

2n�N + 8�
�n +

�N + 2��2N + 1�
2n2�N + 8�3 �n

2, �98�

	n = 3 +
1

n
�n +

�N2 + 14N + 60�
2n2�N + 8�2 �n

2. �99�

The explicit dependence on the number of neighbors coupled
through competing interactions is manifest in the above ex-
ponents. Hence the universality classes for an arbitrary iso-
tropic �d=mn� competing system are determined by �N ,d ,n�.
The interesting fact is that the results for the ordinary critical
behavior are correctly recovered in the limit n→1.

The orthogonal approximation is a good approximation
even for isotropic higher character Lifshitz critical behaviors
for at least three main reasons. It preserves the homogenity
of the Feynman integrals in the external momenta scales.
Second, it indicates which parameters are important to de-
scribe the universality classes of isotropic systems. And last,
but not least, it manifests one of the most important proper-
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ties of competing systems, namely the reduction to the Ising-
like universality classes in the limit when all interactions
beyond first neighbors are turned off.

It is important to emphasize a technical detail concerning
the approximation just employed. The leading singularities
from the one- and two-loop diagrams contributing to the
four-point 1PI vertex part do not get modified from the usual
�4. On the other hand, the leading singularities of the two-
and three-loop for the two-point 1PI vertex function do get a
factor of 1 /n with respect to those from the usual critical
behavior. These integrals also do not change signs under the
generalized orthogonal approximations. The calculation per-
formed without approximations shows that the leading sin-
gularities of diagrams contributing to the 1PI two-point func-
tion change in a more complicated way, also changing sign
depending on the value of n. We shall compare the differ-
ences in the values of the exponents utilizing the orthogonal
approximation and the exact treatment later on. In particular,
we shall perform a numerical analysis for the isotropic sec-
ond character behavior to understanding the deviations in
both approaches. In order to check these results, let us ana-
lyze the situation using the minimal subtraction scheme.

B. Critical exponents in minimal subtraction

Minimal subtraction of dimensional poles in the renor-
malized vertex �R�n�

�4� can be used to show that all momentum-

dependent logarithimic integrals are eliminated in the renor-
malization process leading the bare dimensionless coupling
constant to be written as

u0n = un�1 +
�N + 8�

6�n
un + � �N + 8�2

36�n
2 −

�3N + 14�
24n�n

�un
2� .

�100�

The fixed point can be found out:

un
* =

6

�N + 8�
�n +

18�3N + 14�
n�N + 8�3 �n

2. �101�

In addition, the normalization constants are given by

Z��n� = 1 −
�N + 2�
144n�n

un
2 + �−

�N + 2��N + 8�
1296n�n

2

+
�N + 2��N + 8�

5184n2�n
�un

3, �102�

Z̄�2�n� = 1 +
�N + 2�

6�n
un + � �N + 2��N + 5�

36�n
2 −

�N + 2�
24n�n

�un
2.

�103�

Consequently, the functions ���n� and �̄�2�n� can be ob-
tained directly,

���n� =
�N + 2�

72n
un

2 −
�N + 2��N + 8�

1728n2 un
3, �104a�

��2�n� =
�N + 2�

6
�un −

1

2n
un

2� . �104b�

Substitution of these expressions in the function ���n�
* at

the fixed point, one obtains the value of �n as obtained in Eq.
�94�. The function �̄�2�n�

* at the fixed point reads

�̄�2�n�
* =

�N + 2�
�N + 8�

�n�1 +
6�N + 3�
n�N + 8�2�n� , �105�

that is, the same as the one obtained in the fixed point using
normalization conditions. Therefore it yields the same criti-
cal exponent �n from Eq. �95� as can be easily cheched. This
constitutes the equivalence between the two renormalization
schemes.

VII. ISOTROPIC CRITICAL EXPONENTS IN THE EXACT
CALCULATION

We now turn our attention to the calculation of the isotro-
pic critical exponents exactly, i.e., not using the orthogonal
approximation. The algorithm we need to employ to obtain
the critical indices is pretty much the same as that used in the
orthogonal approximation, since the renormalization pro-
gram and the scaling laws are approximation independent.
The difference is that one should replace the Feynman inte-
grals by their exact values already calculated in Appendix C.
As we are going to discuss the case n=2 in the next section
using normalization conditions and minimal subtraction, we
shall take normalization conditions in this section. Neverthe-
less, with the resources furnished in the text, the reader
should be able to check the exponents using minimal sub-
traction as well.

Using the definitions given for the power series of the
bare dimensionless coupling constant and renormalization
functions in terms of the dimensionless renormalized cou-
pling constant, we find the following values for the coeffi-
cients of each power of un:

a1n =
N + 8

6�n
�1 + D�n��n� , �106a�

a2n = �N + 8

6�n
�2

+
1

�n
� �N2 + 21N + 86�D�n�

18
−

5N + 22

18

−
�N + 2��− 1�n��2n�2

36��n + 1���3n�
−

5N + 22

18

�� �
p=1

2n−2
1

2n − p
− 2�

p=1

n−1
1

n − p
�� , �106b�

b2n = �− 1�n �N + 2���2n�2

72��n + 1���3n��n
�1 + �D�n� +

3

4
−

3

2 �
p=2

2n−1
1

p

+
1

2 �
p=1

n−1
1

n − p
+

3

2 �
p=3

3n−1
1

p
��n� , �106c�
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b3n = �− 1�n �N + 2��N + 8���2n�2

108��n + 1���3n� � 1

6�n
2 +

1

�n
�D�n�

3
+

1

24

−
1

12 �
p=2

2n−1
1

p
−

1

12�
p=1

n−1
1

n − p
+

1

12 �
p=3

3n−1
1

p
�� , �106d�

c1n =
�N + 2�

6�n
�1 + D�n��n� , �106e�

c2n =
�N + 2��N + 5�

36�n
2 +

�N + 2�
6�n

� �N + 8�
3

D�n�

−
1

2
�1 + D�n� + �

p=1

2n−2
1

2n − p
− 2�

p=1

n−1
1

n − p
�� .

�106f�

Here D�n�=1/2��2n�−��n�+1/2��1�. The fixed point at
two-loop level is defined as the zero of the � function and it
is given by the following expression:

un
* =

6�n

�N + 8��1 + �n� 1

�N + 8�2

�− 1�n��2n�2�2N + 4�
��n + 1���3n�

+ �20N + 88��1 − D�n�� − D�n� +
�20N + 88�

�N + 8�2

�� �
p=1

2n−2
1

2n − p
− 2�

p=1

n−1
1

2n − p
��� . �107�

The renormalization functions ���n��un� and �̄�2�n��un� can be
expressed in the following simple manner in terms of un:

���n��un� = �− 1�n+1 �N + 2���2n�2

36��n + 1���3n��1 + �D�n� +
3

4

−
3

2 �
p=2

2n−1
1

p
+

1

2 �
p=1

n−1
1

n − p
+

3

2 �
p=3

3n−1
1

p
��n�un

2

+ �− 1�n+1 �N + 2��N + 8���2n�2

216��n + 1���3n�

��−
1

2
+ �

p=2

2n−1
1

p
− �

p=1

n−1
1

n − p
− �

p=3

3n−1
1

p
�un

3;

�108�

�̄�2�n��un� =
�N + 2�

6
un�1 + D�n��n − D�n�un� . �109�

Substitution of the fixed point in the first equation gives di-
rectly the anomalous dimensions �n. Using the scaling law
relating the second expression with the exponents �n and �n,
one obtains the exponent �n. Thus we get

�n = �− 1�n+1 �N + 2���2n�2

�N + 8�2��n + 1���3n�
�n

2

+ �− 1�n+1 �N + 2���2n�2F�N,n�
�N + 8�2��n + 1���3n�

�n
3; �110�

where

F�N,n� = ���− 1�n��2n�2�4N + 8�
��n + 1���3n�

+ �40N + 176�D�n�� 1

�N + 8�2 −
3

4
− �

p=1

2n−1
1

p
+

1

2 �
p=1

n−1
1

p

+
1

2 �
p=1

3n−1
1

p� . �111�

Analogously,

�n =
1

2n
+

�N + 2�
4n2�N + 8�

�n +
�N + 2�

4n2�N + 8�3

��n
2��− 1�n�N − 4�

��2n�2

��n + 1���3n�
+

�N + 2��N + 8�
2n

+ �14N + 40�D�n�� . �112�

Now, we use the scaling relations to obtain the remaining
critical exponents. We find

�n = 1 +
�N + 2�

2n�N + 8�
�n +

�N + 2�
4n2�N + 8�3

��n
2��− 1�n2n�2N + 4���2n�2

��n + 1���3n�
+ �N + 2��N + 8�

+ 2n�14N + 40�D�n�� , �113�

�n =
�4 − N�

2n�N + 8�
�n −

�N + 2�
4n2�N + 8�3�n

2��− 1�n4n�N − 4���2n�2

��n + 1���3n�

+ �N − 4��N + 8� + 4n�14N + 40�D�n�� , �114�

�n =
1

2
−

3

2n�N + 8�
�n +

�N + 2�
4n2�N + 8�3

��n
2��− 1�n+1 12n��2n�2

��n + 1���3n�
− 3�N + 8�

+ n�14N + 40�D�n�� , �115�

	n = 3 +
�n

n
+

�n
2

2n2�N + 8�2

���N + 8�2 + �− 1�n4n�N + 2���2n�2

��n + 1���3n� � . �116�
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Two important features emerge from this exact picture of
the critical exponents shown above. It is instructive to dis-
cuss the exponent �n. First, the sign of the lowest �O��n

2��
contribution to the exponent �n is determined by the value of
n. Remember that this fact merely reflects the change of sign
of the two-point diagrams depending on the value of n. Sec-
ond, instead of a global factor proportional to n the exact
solution has a dependence on n coming from a product of �
functions having n on their arguments as well as a finite sum
with terms which depend on n. This property is valid for all
critical exponents and appears explicitly at two- and higher-
loop corrections. This is quite a remarkable feature of arbi-
trary isotropic competing systems, going beyond the simple
polynomial dependence on n found using the orthogonal ap-
proximation.

The universality class reduction to that from the Ising-like
one in the limit n→1 is obvious. Moreover, the case n=2
correctly reproduces the solution of an earlier two-loop cal-
culation. Actually, the results given above extend the calcu-
lation of �n for arbitrary n to include O��n

3� corrections. In
addition, all critical exponents presented here at least up to
two-loop order generalize all previous results for arbitrary
higher character isotropic Lifshitz points. Therefore at the
loop order considered the results above represent the com-
plete solution to the critical exponents of the CECI model for
arbitrary types of isotropic competing interactions.

A numerical analysis for comparison between the results
obtained either using the orthogonal approximation or in the
exact calculation are worthwhile. The case n=2 will be ana-
lyzed later. Here we display the numerical results for the
cases n=3, 4, 5, 6.

It would be appropriate to calculate the exponents in ei-
ther approach in a particular case in order to see if the dif-
ference is meaningful. The usual � expansion is good enough
for the numerical estimation of critical exponents associated
to three-dimensional critical systems even though the expan-
sion parameter is not small. We can then ask ouselves if the
same analogy is valid in order to extract concrete results
from a fixed value of the space dimension and number of
components of the order-parameter field for arbitrary isotro-
pic higher character Lifshitz points. We shall look at space
dimensions which yields �n=1 in analogy to the method used
to extract numerical results from the ordinary � expansion for
three-dimensional systems.

For an 11-dimensional lattice, take N=1 and n=3 for the
isotropic third character behavior. The orthogonal approxi-
mation yields �3=0.006, �3=0.177, �3=0.046, �3=0.446,
�3=1.064, and 	3=3.385. The exact calculation produces the
exponents �3=0.002, �3=0.174, �3=0.085, �3=0.435, �3
=1.046, and 	3=3.390. The maximal deviation �4.1%� oc-
curs for the exponent �3 followed by the deviation in the �3
exponent �1.8%� and an error in the exponent �3 around 1%.
The other exponents have deviations smaller than 0.5%.

Consider the case N=1, d=15, n=4. The results from the
orthogonal approximation are �4=0.005, �4=0.131, �4
=0.036, �4=0.459, �4=1.046, and 	4=3.279. The exact cal-
culation yields �4=−0.001, �4=0.129, �4=0.058, �4=0.449,
�4=1.029, and 	4=3.282. The maximal deviations takes
place in �4�2.2% �, �4�1.7% �, and �4�1% �, while the other
exponents have errors smaller than 0.6%.

Let us examine the case N=1, d=19, and n=5. The iso-
tropic exponents in the orthogonal approximation are �5
=0.004, �5=0.104, �5=0.030, �5=0.467, �5=1.036, and 	5
=3.219. The exact exponents are �5=0.001, �5=0.102, �5
=0.064, �5=0.475, �5=1.020, and 	5=3.220. The maximal
deviations are in �5�3.4% � and �5�1.6% �, whereas the re-
maining exponents have errors smaller than 0.8%. �The
maximal deviations also occur for �n and �n for n=6, 7, 8
and decrease for increasing n. For n=8, the maximal error
for �8 is about 2.7%, whereas the maximal deviation for �8
is 1.3%.�

This analysis leads us to conclude that the orthogonal ap-
proximation is very precise to predict numerical values in
specific situations, since the deviations are negligible when
compared with the exact calculation. Moreover, the above
data indicate that the deviations are under control no matter
how the number of neighbors increases.

The extra insight from the field-theoretic viewpoint is that
the more neighbors are introduced and coupled through iso-
tropic competing interactions the more the space dimensions
seem to split. Then, one line with competing interactions up
to second neighbors behaves for all practical purposes as
having two dimensions. Pushing the argument further, a line
with n neighbors interacting through competing interactions
seem to have n dimensions. This is a striking general prop-
erty of the field theory under consideration: in the massless
limit presented here, when the free critical propagator is pro-
portional to a 2nth power of momenta each space direction
“splits” in n dimensions. This is a kind of degeneracy in the
dimension, which can only be unveiled when more partici-
pants �neighbors� are allowed to take place in the isotropic
competing system. This is a different aspect of systems
whose Lagrangians have kinetic terms described by higher
derivatives of the field. Further implications of this phenom-
enon remain to be investigated.

Now, let us show that these findings easily reproduce and
extend the original calculation done by Hornreich, Luban,
and Shtrikman3 for the n=2 case.

VIII. EXACT ISOTROPIC EXPONENTS FOR THE
SECOND CHARACTER CASE

In the last section we found the critical exponents for the
isotropic case when competing interactions among arbitrary
neighbors are allowed. We now discuss its reduction for the
usual second character Lifshitz critical behavior. Since we
want to compare our results with others which already ap-
peared in the literature we shall derive the critical indices
using normalization conditions and minimal subtraction of
poles.

A. Critical exponents in normalization conditions

The fixed point can be calculated by replacing n=2 in Eq.
�107� in order to obtain

u2
* =

6�2

�N + 8��1 −
1

3
�2� �41N + 202�

�N + 8�2 −
1

4
�� . �117�

The renormalization functions ���2��u2� and �̄�2�2��u2� can be
expressed in the following simple manner in terms of u2:
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���2��u2� = −
�N + 2�

240
�1 +

131

120
�2�u2

2 +
29�N + 2��N + 8�

28800
u2

3;

�118�

�̄�2�2��u2� =
�N + 2�

6
u2�1 −

1

12
�2 +

1

12
u2� . �119�

Substitution of the fixed point in the first equation gives di-
rectly the anomalous dimensions �2. Thus we get

�2 = −
3�N + 2�

20�N + 8�2�2
2 +

�N + 2�
10�N + 8�2� �41N + 202�

10�N + 8�2 +
23

80
��2

3.

�120�

From the scaling law relating �2 with �2 we obtain

�2 =
1

4
+

�N + 2�
16�N + 8�

�2 +
�N + 2��15N2 + 89N + 4�

960�N + 8�3 �2
2.

�121�

Using the scaling relations to obtain the remaining critical
exponents, we find

�2 = 1 +
�N + 2�

4�N + 8�
�2 +

�N + 2��15N2 + 98N + 76�
240�N + 8�3 �2

2;

�122�

�2 =
�4 − N�

4�N + 8�
�2 +

�N + 2��− 15N2 + 62N + 952�
240�N + 8�3 �2

2;

�123�

�2 =
1

2
−

3

4�N + 8�
�2 −

�N + 2��80N + 514�
240�N + 8�3 �2

2; �124�

	2 = 3 +
1

2
�2 +

�5N2 + 86N + 332�
40�N + 8�2 �2

2. �125�

Since the earlier calculations in the literature were performed
using minimal subtraction, we shall discuss it next.

B. Critical exponents in minimal subtraction

Now, let us obtain some renormalization functions at the
fixed point using minimal subtraction. Since these objects are
universal, finding them is equivalent to finding the fixed
point. Requiring minimal subtraction of the renormalized
vertex �R�2�

�4� , the cancellations among logarithmic integrals

for arbitrary external momenta indeed take place as ex-
pected. It leads to the expression of the bare dimensionless
coupling constant u02 written in terms of the renormalized
dimensionless coupling constant u2, namely

u02 = u2�1 +
�N + 8�

6�2
u2 + � �N + 8�2

36�2
2 +

�41N + 202�
2160�2

�u2
2� .

�126�

From the definitions of the normalization constants, we can
write the following expressions:

Z��2� = 1 +
�N + 2�
480�2

u2
2 +

�N + 2��N + 8�
4320

� 1

�2
2 −

23

518400�2
�u2

3,

�127�

Z̄�2�2� = 1 +
�N + 2�

6�2
u2 + � �N + 2��N + 5�

36�2
2 +

N + 2

144�2
�u2

2.

�128�

Consequently, the functions ���2��u2� and �̄�2�2��u2� read

���2��u2� = −
�N + 2�

240
u2

2 +
23�N + 2��N + 8�

172800
u2

3; �129�

�̄�2�2��u2� =
�N + 2�

6
u2�1 +

1

12
u2� . �130�

The fixed point can be calculated and shown to be

u2
* =

6

�N + 8�
�2 −

�41N + 202�
5�N + 8�3 �2

2. �131�

Replacement of this expression for the function ���2��u2
*�

gives precisely the exponent �2 of the last section up to
O��2

3�. The corresponding expression for �̄�2�2��u2
*� is given

by

�̄�2�2�
* =

�N + 2�
�N + 8�

�2�1 −
�N + 2��13N + 41�

15�N + 8�2 �2� . �132�

The last expression is actually the same as that coming from
normalization conditions, therefore leading to the same ex-
ponent �2 whereas the remaining exponents are obtained us-
ing the scaling laws. Thus the equivalence between the two
renormalization schemes is complete.

C. Discussion

First of all, our results for the isotropic n=2 case gener-
alizes those in the seminal work by Hornreich, Luban, and
Shtrikman.3 To see this, we make the identifications ����2,
�l4��2, and �l4��2. Equations �10a� and �10b� in Ref. 3 are
identical to our results for �2 and �2 Eqs. �120� and �121�.
The step forward within our method is the exponent �2
which is obtained up to O��2

3�. Furthermore, using the scaling
relations reported in our previous paper,15 we found all criti-
cal exponents �Eqs. �122�–�125�� exactly, at least up to two-
loop order which constitutes another interesting result for the
usual isotropic case.

Next, let us confront the results coming from the general-
ized orthogonal approximation with those from the exact so-
lution at the same loop order. Both the exact and the approxi-
mated one-loop exponents are the same. This can be seen
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from the n=2 particular case or from the generic n isotropic
criticality by the direct examination of the explicit results
shown in the present paper. Two-loop deviations start at n
=2 and for higher n.

Consider the case n=2. Take a magnetic system which
has N=1 in a seven-dimensional lattice and analyze the ex-
ponents in each case. We shall restrict ourselves to three
significant algorithms in our discussion. First use the or-
thogonal approximation. At two-loop order, the correlation
length exponent yields the result �2=0.276, and the anoma-
lous dimension is given by �2=0.009. The susceptibility,
specific heat, magnetization, and magnetic field exponents
are given by �2=1.103, �2=0.061, �2=0.418, 	2=3.616.
Now use the exact two-loop calculation. We obtain the fol-
lowing numerical values for the critical indices: �2=0.271,
�2=−0.006, �2=1.087, �2=0.100, �2=0.406, 	2=3.631.

Therefore for all the exponents the difference using either
approach starts in the second significative algorithm. Specifi-
cally, the maximal error made by using the orthogonal ap-
proximation takes place for the specific-heat exponent with a
deviation of 3.9%, whereas the minimal error occurs in the
correlation length exponent whose difference is approxi-
mately 0.5%. This is a strong evidence that the orthogonal
approximation is very good to give reliable information for
the isotropic case in this specific situation. This feature was
already encountered for uniaxial anisotropic cases, where the
approximation showed its usefulness for three-dimensional
uniaxial systems. We hope that these results may stimulate
the search for these exponents using Monte Carlo numerical
simulations in the particular case of second character isotro-
pic Lifshitz critical points.

The remarkable agreement between the numerical results
for the above-mentioned critical indices either using the or-
thogonal approximation or the exact two-loop calculations
corroborates previous conjectures that the orthogonal ap-
proximation is not only good to describe uniaxial systems
pertaining to the anisotropic second character Lifshitz critical
behaviors but also arbitrary isotropic higher character Lif-
shitz points.

In fact, the numerical analysis can be carried out for
higher-dimensional lattices for higher values of n. Extending
this argument, the case L=4n, N=1, and d=L−1 yields the
same value for the expansion parameter and should not de-
viate very much when both calculations are compared. Per-
haps the study of the most general arbitrary isotropic points
via numerical tools might be worthwhile as well, since now
we have satisfactory numerical results coming from a purely
analytical field-theoretical investigation.

IX. CONCLUSIONS AND PERSPECTIVES

In this paper we have discussed the field-theoretic de-
scription of the most general competing system, which has a
simple lattice model representation named CECI model. It
consists of a modified Ising model presenting the most gen-
eral type of competing exchange couplings among arbitrary

neighbors and includes other models previously reported. We
have derived explicitly the critical exponents in the aniso-
tropic as well as in the isotropic situations at least up to
two-loop level. The CECI model and its field-theory repre-
sentation generalize the description of the second character
Lifshitz universality classes in a nontrivial way. In particular,
strong anisotropic scale invariance is exact up to the loop
order considered here. The universality class reduction is a
general property of both anisotropic and isotropic critical
behaviors. It implies that when the interactions beyond first
neighbors are turned off, the Ising-like universality classes
are recovered. This feature is manifest in all exponents.

The anisotropic exponents were calculated by using the
generalized orthogonal approximation. The calculation of
loop integrals is consistent, since it is rooted in the physical
property of homogeneity. It is required for a satisfactory
renormalization-group treatment with several independent
relevant length scales represented by each correlation length
associated to the several competing axes. The fixed point is
the same irrespective of the competing axes under consider-
ation. In close analogy to the second character case, this
result is expected to hold in arbitrary perturbative orders. The
second character Lifshitz exponents are easily recovered as a
particular case of the generic anisotropic situation described
in the paper. Although it is desirable to have an approach that
does not require the use of approximations for the aniso-
tropic behaviors, in the present moment it is not obvious. It is
a consequence of the appearance of many competing sub-
spaces simultaneously which makes the exact calculation �if
not impossible� very difficult. We hope the techniques devel-
oped in the present work shed light on a quest for a solution
without the necessity of approximations for the anisotropic
cases.

The isotropic behaviors were calculated using two differ-
ent trends to evaluate the Feynman diagrams. The first of
them makes use of the orthogonal approximation. It can be
noticed that the isotropic behavior cannot be obtained from
any type of anisotropic behavior within the framework of the
�L expansions developed in the present work even though the
same kind of approximations are employed in both cases.
This generalizes the previous situation taking place for sec-
ond character Lifshitz points. Next, we attacked the diagrams
without making any approximation. The result is that devia-
tions in the calculation of the critical exponents start at the
two-loop level in comparison to the outcome provenient of
the orthogonal approximation. We obtain as a particular case
of the generic isotropic behavior the second character isotro-
pic behavior, which extends the results derived by Hornreich,
Luban, and Shtrikman.3 In this way, we obtain �2 up to
three-loop order and �2 at two loops as well as the remaining
exponents via the scaling relations derived previously in Ref.
15, a result which was lacking since the discovery of the
second character isotropic Lifshitz point.

The most immediate application of the formalism just pre-
sented is the calculation of all universal amplitude ratios of
certain quantities close to generic higher character Lifshitz
points. It is amazing that a detailed scale theory for these
quantities is lacking in the literature, even for the simple
second character Lifshitz points. In fact, some results were
presented for the susceptibility30 and specific heat31 ampli-
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tude ratios at one-loop order. The latter amplitude ratio
proved to be reliable to explain the experimental result asso-
ciated to the magnetic material MnP.32 Nevertheless, a thor-
ough renormalization-group analysis is necessary in order to
have a better comprehension of the several scale transforma-
tions in each competing subspace and the role played by
them in the treatment of generic amplitude ratios. In prin-
ciple we can extend the formalism presented here for the
calculations of amplitude ratios including the most general
competing system.

The treatment of finite-size effects for the most general
Lifshitz critical behavior can be developed as a direct exten-
sion of the approach to the Ising-like critical behavior.33,34

The applications might include systems which are finite �or
semi-infinite� along one �or several� of their dimensions, but
of infinite extent in the remaining directions. It would be
interesting to see how different competing axes alter the ap-
proach to the bulk criticalities, for example in parallel plate
geometries. The utilization of different boundary conditions
in a layered geometry would be particularly simple and in-
structive to see how the generalization works for arbitrary
competing systems. It could be used to investigate how am-
plitude ratios change with different boundary conditions with
respect to the situation occurring in bulk systems.35

Typical examples are systems which are finite in all direc-
tions, such as a �hyper�cube of size L, and systems which are
of infinite size in d�=d−1 dimensions but are either of finite
thickness L along the remaining direction �d-dimensional
layered geometry� or of a semi-infinite extension. The pres-
ence of geometrical restrictions on the domain of systems
also requires the introduction of boundary conditions �peri-
odic, antiperiodic, Dirichlet, and Neumann� satisfied by the
order parameter on the surfaces. In particular, the validity
limits of the �L expansion for these systems and the approach
to bulk criticality in a layered geometry can be studied.35

One interesting aspect of the generalized orthogonal ap-
proximation is that it can actually address the problem of
calculating Feynman integrals originating in field theories in
the massless limit with odd �greater than 2� powers of mo-
mentum in the propagator as well. This subject goes beyond
the realm of critical phenomena in competing systems. It
might be useful for treating perturbatively a recent proposal
of an effective quantum field theory with cubic kinetic
terms.36 In addition, the general framework can be used to
treat perturbatively other effective quantum field theories
with higher derivative kinetic terms which break Lorentz in-
variance in the infrared regime as the effect of combined
gravitational attraction and repulsion.19 This type of theory
resembles very much the second character Lifshitz critical
behavior discussed above. One can expect that introducing
more and more competing gravitational interactions in the
infrared �long distance� limit higher powers will appear in
the kinetic terms of the corresponding effective field theory.
The perturbative analysis of this system would be quite
analogous to the generic higher character discussed in the
present work.

To summarize, we have described the generic higher char-
acter Lifshitz critical behaviors. Different field-theoretical
tools were exposed resulting in interesting analytical expres-
sions for all the critical indices in the isotropic as well as in

the anisotropic cases at least at O��L
2�. Other aspects like

crossover phenomena and tricritical behavior for this model
remain to be studied. Interesting anisotropic behaviors in the
absence of a uniform ordered phase for the CECI model are
under current investigation.
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APPENDIX A: FEYNMAN INTEGRALS FOR
ANISOTROPIC BEHAVIORS

In general the critical exponents and other universal am-
mounts are independent of the renormalization-group
scheme employed. The explicit calculations in this section
are presented in such a way that the results can be checked
using more than one renormalization procedure. We shall
now describe the generalized orthogonal approximation
�GOA� for the integrals appearing in the anisotropic cases.

In order to accomplish the task of calculating the critical
indices at least up to the two-loop level, we need a minimal
set of Feynman diagrams to work with. The one-, two-, and
three-loop integrals we shall need to determine are given by
the following expressions:

I2 =
 dd−�n=2
L mnq�n=2

L dmnk�n�

���
n=2

L

�k�n� + K�n�� �2�n

+ �q + P�2���
n=2

L

�k�n�
2 �n + q2�

,

�A1�

I3 =
 dd−�n=2
L mnq1dd−�n=2

L mnq2�n=2
L dmnk1�n��n=2

L dmnk2�n�

�q1
2 + �

n=2

L

�k1�n�
2 �n��q2

2 + �
n=2

L

�k2�n�
2 �n�

�
1

��q1 + q2 + P�2 + ��
n=2

L

�k1�n� + k2�n� + K�n�� �2�n� ,

�A2�
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I4 =
 dd−�n=2
L mnq1dd−�n=2

L mnq2�n=2
L dmnk1�n��n=2

L dmnk2�n�

�q1
2 + �

n=2

L

�k1�n�
2 �n���P − q1�2 + �

n=2

L

��K�n�� − k1�n��2�n�
�

1

�q2
2 + �

n=2

L

�k2�n�
2 �n���q1 − q2 + p3�2 + �

n=2

L

��k1�n� − k2�n� + k3�n�� �2�n� , �A3�

I5 =
 dd−�n=2
L mnq1dd−�n=2

L mnq2dd−�n=2
L mnq3�n=2

L dmnk1�n�

�q1
2 + �

n=2

L

�k1�n�
2 �n��q2

2 + �
n=2

L

�k2�n�
2 �n��q3

2 + �
n=2

L

�k3�n�
2 �n�

�n=2
L dmnk2�n��n=2

L dmnk3�n�

��q1 + q2 − p�2 + �
n=2

L

��k1�n� + k2�n� − k�n�� �2�n�
�

1

��q1 + q3 − p�2 + �
n=2

L

��k1�n� + k3�n� − k�n�� �2�n� . �A4�

We stress that in the above expressions P, p3, and p are
external momenta perpendicular to the various competing
axes, whereas K�n�� , k3�n�� , and k�n�� are external momenta char-
acterizing the nth competing axes, respectively. For arbitrary
values of the external momenta, these integrals can be calcu-
lated by making use of approximations very similar to those
first developed to describe second character Lifshitz points.8

As a matter of fact, the generalized dissipative approxima-
tion was formerly used to compute the critical exponents out
of the anomalous dimension and correlation length expo-
nents corresponding to space directions perpendicular to the
competing axes for this model. Indeed, the generalized or-
thogonal approximation was figured out using a similar anal-
ogy. Nevertheless, since the dissipative approximation can-
not approach the isotropic cases, we shall not describe it in
this paper. Instead, we shall make use of the generalized
orthogonal approximation, for it can approach both aniso-
tropic and isotropic behaviors.

Certain useful identities will be derived in order to solve
the integrals above. Let us proceed to find them out. Our
starting point is the integral derived in Ref. 8, namely



−�

�

dx1 ¯ dxm exp�− a�x1
2 + ¯ + xm

2 �n�

=
1

2n
�� m

2n
�a−m/2nSm. �A5�

After choosing r2=x1
2+ ¯ +xm

2 , one can take y=rn to write
the last equation in the form



0

�

dyym/n−1 exp�− ay2� =
1

2
a−m/2n�� m

2n
� . �A6�

The integral



−�

�

exp�− ax2k − b�x + x0�2k�dx �A7�

cannot be solved exactly for all k. In fact, for generic k�2 it
has no elementary primitive. Nevertheless, one can select
only the homogeneous function of a by using the following
approximation. First, make the change of variables y=xk.
Second perform the approximation �x+x0�k�xk+x0

k. Thus
this integral becomes



−�

�

exp�− ax2k − b�x + x0�2k�dx

= exp�− by0
2�

2

k



0

�

exp�− �a + b�y2 − 2byy0�y1/k−1dy .

�A8�

Next, perform another change of variables, namely, y�=y
+by0 / �a+b�. We then obtain



−�

�

exp�− ax2k − b�x + x0�2k�dx

= exp�−
ab

a + b
y0

2�2

k

��

0

�

exp�− �a + b�y�2��y� −
by0

a + b
�1/k−1

dy�

− 

0

by0/�a+b�

exp�− �a + b�y�2��y� −
by0

a + b
�1/k−1

dy�� .

�A9�

Since the integrals are convergent, we can make use of the
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approximation �y�−b /2a�1/k−1=y�1/k−1+¯. The ellipsis
stands for the remaining terms that will be subtracted from
the last integral, producing a type of error function. The
original integral is then approximated by its leading contri-
bution, i.e.,



−�

�

exp�− ax2k − b�x + x0�2k�dx

� exp�−
ab

a + b
x0

2k�1

k
�� 1

2k
��a + b�−1/2k. �A10�

It can be easily shown that the generalization for the m
sphere yields



−�

�

exp
− a�x1
2 + ¯ + xm

2 �k

− b��x1 + x01�2 + ¯ + �xm + x0m�2��kdx1 ¯ dxm

� exp�−
ab

a + b
x0

2k� 1

2k
Sm�� m

2k
��a + b�−m/2k. �A11�

We found it appropriate to name this approximation the gen-
eralized orthogonal approximation, for it is a natural gener-
alization of that discussed in the usual second character
case.8

Let us now start our calculation of loop integrals given by
Eqs. �A1�–�A4�. We can calculate the one-loop integral using
two Schwinger parameters. Using the formula derived above,
the integration over quadratic momenta can be shown to be
given by

I2 =
1

2
S�d− �

n=2

L
mn��� �d − �

n=2

L

mn�

2
�


0

� 

0

�

d�1d�2

�exp�−
�1�2P2

�1 + �2
���1 + �2�−�d− �

n=2

L
mn�/2
 ��n=2

L dmnk�n��

�exp�− �1�
n=2

L

�k�n�
2 �n − �2�

n=2

L

��k�n� + K�n�� �2�n� . �A12�

We can now expand the argument of the last exponentials.
Notice that now we have a product of independent integrals
corresponding to the momentum components along arbitrary
competing subspaces. Those integrals cannot be performed
analytically. If we use the homogeneity property of the re-
maining integrals in the arbitrary competing external mo-
menta scales, we can simplify the calculation by utilizing the
generalized orthogonal approximation. In fact, taking �k�n�

+K�n�� �n�k�n�
n +K�n��n and using Eq. �A11�, we obtain


 dmnk�n�exp�− �1k�n�
2n − �2�k�n� + K�n�� �2n�

=
1

2n
Smn

� ��1 + �2�−mn/2nexp�−
�1�2K�n��2n

�1 + �2
���mn

2n
� .

�A13�

Therefore we can write the integral as

I2 =
1

2
S�d− �

n=2

L
mn��� �d − �

n=2

L

mn�

2
�

���n=2
L

Smn
��mn

2n �
2n

�

0

� 

0

�

d�1d�2

�exp�−

�1�2
P2 + �
n=2

L

��K�n�� �2��n

�1 + �2

�
���1 + �2�−
d− �

n=2

L
��n−1�mn/n��/2. �A14�

Take x=�1
P2+�n=2
L ��K�n�� �2�n� and y=�2
P2

+�n=2
L ��K�n�� �2�n�. Then, define v=x / �x+y�. Consequently, the

parametric integrals can be performed with this change of
variables. Using the identity

��a + bx� = ��a��1 + bx��a� + O�x2�� �A15�

and expressing everything in terms of the �L parameter leads
to the following expression for I2:

I2 =
1

2
�S�d− �

n=2

L
mn���2 − �

n=2

L
mn

2n
���n=2

L
Smn

��mn

2n �
2n

��
��1 −

�L

2
��2 − �

n=2

L
mn

2n
���� �L

2
�

�

0

1

dv�v�1 − v��P2 + �
n=2

L

��K�n�� �2�n��−�L/2

.

�A16�

This is a homogeneous function �with the same homogeneity
degree� in �P ,K�n�� �. The factor

�S�d− �
n=2

L
mn���2 − �

n=2

L
mn

2n
���n=2

L
Smn

��mn

2n �
2n

��
is going to be absorbed in a redefinition of the coupling
constant after performing each loop integral and shall be
omitted henceforth. We can follow two routes from the last
equation. The first one is to perform the v integral in terms of
products of the Euler � functions. It will be useful in the
calculation of higher-loop integrals since we need the sub-
diagrams of this type in order to compute the complete inte-
gral. Then, we obtain

I2�P,K�n�� � = �P2 + �
n=2

L

��K�n�� �2�n�−�L/2
1

�L
�1 + hmL

�L� .

�A17�

This is appropriate to calculate the critical exponents only
using normalization conditions, but we would like the solu-
tion in a form suitable for minimal subtraction as well. The
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second possibility convenient for both types of renormaliza-
tion schemes is to expand the last integral as



0

1

dv�v�1 − v��P2 + �
n=2

L

��K�n�� �2�n��−�L/2

= 1

−
�L

2
L�P,K�n�� � , �A18�

where

L�P,K�n�� � = 

0

1

dv ln�v�1 − v��P2 + �
n=2

L

��K�n�� �2�n�� .

�A19�

Hence this integral reads

I2�P,K�n�� � =
1

�L
�1 + �hmL

− 1��L −
�L

2
L�P,K�n�� �� , �A20�

where hmL
=1+ 
��1�−��2−�n=2

L �mn /2n��� /2. Notice that
whenever m3= ¯ =mL=0, hm2

= �i2�m, and the usual aniso-
tropic Lifshitz critical behavior is trivially obtained from this
more general competing situation. This form is convenient
for the renormalization using minimal subtraction. Instead,
for normalization conditions we have

I2SP1
= ¯ = I2SPL

=
1

�L
�1 + hmL

�L� , �A21�

since L�SP1= ¯ =SPL�=−2, with SP1��P2=1 ,K�n�� =0� ,…,
SPL� (P=0, �K�L�� �2=1).

The simplifying condition �k�n�+K�n�� �n=k�n�
n +K�n��n for the

one-loop integral can be generalized to the higher-loop
graphs. It is translated in the statement that the loop momenta
characterizing a certain competition subspace in a given
bubble (subdiagram) do not mix to all loop momenta not
belonging to that bubble. The simplest practical application
of this principle can be viewed in the calculation of the “sun-
set” two-loop integral I3 contributing to the two-point func-
tion

I3 =
 dd− �
n=2

L
mnq1dd− �

n=2

L
mnq2�n=2

L dmnk1�n��n=2
L dmnk2�n�

�q1
2 + �

n=2

L

�k1�n�
2 �n��q2

2 + �
n=2

L

�k2�n�
2 �n�

�
1

��q1 + q2 + P�2 + ��
n=2

L

�k1�n� + k2�n� + K�n�� �2�n� .

�A22�

Defining K�n�� =k1�n�+K�n�� and using the condition

k2�n�K�n�� =0, one can solve the integral over q2, k2�n� first,

picking out only the homogeneous part of each individual
integral. The remaining parametric integrals contains the di-
vergence �pole in �L� and can be solved as before. Using Eq.
�A17�, we obtain

I3�P,K�� =
1

�L
�1 + hmL

� �
 dd− �
n=2

L
mnq1�n=2

L dmnk1�n�

�q1
2 + �

n=2

L

�k1�n�
2 �n���q1 + P�2 + �

n=2

L

��k1�n� + K�n�� �2�n��L/2
. �A23�

Using Feynman parameters, integrating the loop momenta
along with the remaining parametric integrals, and expand-
ing the resulting � functions in �L we find

I3�P,K�� = �P2 + �
n=2

L

Kn�
2n� − 1

8�L

��1 + 2hmL
�L −

3

4
�L − 2�LL3�P,K�n�� �� ,

�A24�

where

L3�P,K�� = 

0

1

dx�1 − x�ln��P2 + �
n=2

L

Kn�
2n�x�1 − x�� .

�A25�

At the symmetry points SPn, it can be rewritten as

I3SP1
= ¯ = I3SPL

=
− 1

8�L
�1 + 2hmL

�L +
5

4
�L� . �A26�

From the above equation we can derive the expressions
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I3SP1
� ��

�I3SP1

�P2 � = ¯ = I3SPL
� ��

�I3SP2

�K�L��2L� =
− 1

8�L
�1 + 2hmL

�L +
1

4
�L� . �A27�

To complete our description of the 1PI two-point vertex parts, consider the integral

I5 =
 dd− �
n=2

L
mnq1dd− �

n=2

L
mnq2dd− �

n=2

L
mnq3�n=2

L dmnk1�n�

�q1
2 + �

n=2

L

�k1�n�
2 �n��q2

2 + �
n=2

L

�k2�n�
2 �n��q3

2 + �
n=2

L

�k3�n�
2 �n�

�n=2
L dmnk2�n��n=2

L dmnk3�n�

��q1 + q2 − p�2 + �
n=2

L

��k1�n� + k2�n� − k�n�� �2�n�
�

1

��q1 + q3 − p�2 + �
n=2

L

��k1�n� + k3�n� − k�n�� �2�n� , �A28�

which is the three-loop diagram contributing to the two-point vertex function. Incidentally, there is a symmetry in the dummy
loop momenta q2→q3 and k2�n�→k3�n�. Concerning the integrations either over q2, k2�n� or q3, k3�n�, we use the condition
�k2�n�+ �k1−K���n=k2�n�

n + �k1�n�−K�n�� �n when the integration is performed over k2 as well as �k3�n�+ �k1�n�−K�n�� ��n=k3�n�
n + �k1

−K�n�� �n when the integral over k3 is realized. The two internal bubbles, which are represented by the integrals over �q2 ,k2�n��
and �q3 ,k3�n��, respectively, are actually the same, resulting in I2(�q1− P� , �k1�n�−K�n�� �). Next take P→−P, K�n�� →−K�n�� . Using
a Feynman parameter and proceeding in close analogy to the calculation of I3, we find

I5�P,K�n�� � = �P2 + �
n=2

L

Kn�
2n� − 1

6�L
2 �1 + 3hmL

�L − �L − 3�LL3�P,K�n�� �� . �A29�

At the symmetry points SP1 ,… ,SPL one obtains

I5SP1
� ��

�I5SP1

�P2 � = ¯ = I5SPL
� ��

�I5SP2

�K�L��2L� =
− 1

6�L
2�1 + 3hmL

�L +
1

2
�L� . �A30�

Finally we compute one of the two-loop diagrams contributing to the four-point function, namely

I4 =
 dd− �
n=2

L
mnq1dd− �

n=2

L
mnq2�n=2

L dmnk1�n��n=2
L dmnk2�n�

�q1
2 + �

n=2

L

�k1�n�
2 �n���P − q1�2 + �

n=2

L

��K�n�� − k1�n��2�n�
�

1

�q2
2 + �

n=2

L

�k2�n�
2 �n���q1 − q2 + p3�2 + �

n=2

L

��k1�n� − k2�n� + k3�n�� �2�n� . �A31�

Recall that P= p1+ p2, pi �i=1, … , 3� are external momenta perpendicular to the competing axes. On the other hand, K�n��

=k1�n�� +k2�n�� , and ki�n�� �i=1, … , 3� are the external momenta along arbitrary competition directions. We can integrate first over
the bubble �q2 ,k2�n��. It is convenient to choose Schwinger parameters in the calculation. Then, we use two Feynman param-
eters and solve for the loop momenta to obtain the following parametric form:

I4 =
1

2
fm��L�

���L���2 − �
n=2

L
mn

2n −
�L

2 �S�d− �
n=2

L
mn�

�� �L

2 � ��n=2
L

��mn

2n�Smn

2n
�


0

1

dy y�1 − y�1/2�L−1

0

1

dz�yz�1 − yz��P2 + �
n=2

L

K�n��2n�
+ y�1 − y��p3

2 + �
n=2

L

k3�n��2n� − 2yz�1 − y��p3P + �
n=2

L

�− 1�nk3�n��n K�n��n��−�L

. �A32�
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The integral over y is singular at y=1 when �L=0. Replace
the value y=1 inside the integral over z,1,8 integrate over y,
and expand the Gamma functions in �L. This implies that

I4 =
1

2�L
2�1 + 2 hmL

�L −
3

2
�L − �LL�P,K��� . �A33�

This form is particularly suitable for the renormalization pro-
cedure using minimal subtraction. For the purpose of nor-
malization conditions, the value of this integral at the sym-
metry points discussed before is given by

I4SP1
= ¯ = I4SPL

=
1

2�L
2�1 + 2 hmL

�L +
1

2
�L� . �A34�

The method proposed here is equivalent to a different regu-
larization procedure to calculate Feynman integrals whose
propagators have any combination of even powers of mo-
menta. We can define the measure of the mn-dimensional
sphere in terms of a half integer measure. In fact, taking k
= p2n, one has dmnk�dmn/2np= �1/2n�pmn/2n−1dpd�mn

. Hence
the approximation required to solve the integrals results that
the new “measure”dmn/2np is invariant under translations p�
= p+a. This is a simple generalization of the same property
valid for the usual m2-fold Lifshitz behaviors.

APPENDIX B: ISOTROPIC DIAGRAMS IN THE
GENERALIZED ORTHOGONAL APPROXIMATION

The computation of the Feynman integrals using the gen-
eralized orthogonal approximation is simpler in the isotropic
cases, since there is only one subspace to be integrated over.
At the Lifshitz point 	0n=
nn�=0 and solely the 2Lth power
of momentum appears in the propagator for the case of Lth
character isotropic critical point. The isotropic analogous of
the one-loop integral contributing to the four-point vertex
part is

I2 =
 dmnk

��k + K��2�n�k2�n . �B1�

We can use two Schwinger parameters and the orthogonality
condition �k+K��n�kn+K�n, resulting in the expression

I2�K��

=
 dmnk

0

� 

0

�

d�1d�2e−��1+�2��k2�n
e−2�2K�nkn

e−�2�K�2�n
.

�B2�

Turning to polar spherical coordinates, take r2=k1
2+ ¯ +kmn

2 .
Making the transformation kn= p the volume element be-
comes dmnk= �1/n�pmn/n−1dpd�mn

�dmn/np. The former inte-
gral with a nth power of momenta changes to a quadratic
integral over p. After discarding the infinite terms which
change the measure dmn/nk under the translation y�=y
+b /2a, only the leading contribution is picked out and we
have


 dmnke−a�k2�n−bkn
=
 dmn/npe−ap2−bp

� a−mn/2neb2/4a 1

2n
��mn

2n
�Smn

. �B3�

When this result is replaced into the expression of I2�K��, we
get

I2�K�� =
Smn

�n
�1 −

�n

2n
�1 + L�K�2��� . �B4�

Henceforth we absorb the factor of Smn
in this integral

through a redefinition of the coupling constant and shall do
so after performing each loop integral for arbitrary vertex
parts. Note that this absorption factor is different from that
arising in the anisotropic case in the limit d→mn=4n−�n.
Since the geometric angular factor coming from the aniso-
tropic cases becomes singular in the above isotropic limit the
attempt of extrapolating from one case to another is not
valid, at least within the framework of the �L expansion pre-
sented in this work. This is a further technical evidence that
the isotropic and anisotropic cases have to be tackled differ-
ently. Thus

I2�K�� =
1

�n
�1 −

�n

2n
�1 + L�K�2��� . �B5�

The suitable symmetry point �K�2�n=1 useful for the purpose
of normalization conditions leads to the following simple
outcome:

I2�K�� =
1

�n
�1 +

�n

2n
� . �B6�

The next step is the evaluation of the integral

I3 =
 dmnk1dmnk2

��k1 + k2 + K��2�n�k1
2�n�k2

2�n , �B7�

Integrate first over k2. Take K�=k1+K� and use the condition
�k2+K��n�k2

n+K�n to obtain

I3 =
1

�n
�1 +

�n

2n
� 
 dmnk1


��k1 + K��2�n��n/2n�k1
2�n . �B8�

Utilizing a Feynman parameter, we can integrate over k1.
After the expansion mn=4n−�n is done inside the argument
of the resulting � functions and using the expression


 dmn/nq

�q2 + 2kq + m2��

�
1

2n

��mn

2n ���� −
mn

2n ��m2 − k2�mn/2n−�Smn

����
, �B9�

the integral I3 can be found to be

I3 = −
�K�2�n

8n�n
�1 + �n� 1

4n
−

2

n
L3�K�2��� . �B10�

At the symmetry point, this reduces to
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I3 = −
1

8n�n
�1 +

9

4n
�n� , �B11�

implying that

	 �I3

��K�2�n	
SP

= I3� = −
1

8n�4n
�1 +

5

4n
�4n� . �B12�

The three-loop integral I5 is given by

I5 =
 dmnk1dmnk2dmnk3

��k1 + k2 + K��2�n��k1 + k3 + K��2�n�k1
2�n�k2

2�n�k3
2�n ,

�B13�

where we took for convenience the redefinition K�→−K�.
The integrals over k2 and k3 are the same. Thus following
analogous steps and employing the same reasoning as in the
calculation of I3 we get to

I5 = −
�K�2�n

6n�n
2 �1 + �n� 1

2n
−

3

n
L3�K�2��� . �B14�

At the symmetry point, the following expression follows
trivially:

	 �I5

��K�2�n	
SP

= I5� = −
1

6n�n
2�1 +

2

n
�n� . �B15�

The two-loop integral I4 in the isotropic behavior is

I4 =
 dmnk1dmnk2

�k1
2�n��K� − k1�2�n�k2

n���k1 − k2 + k3��
2�n , �B16�

where K�=k1�+k2�. The integration can be done along the
same lines of the computation performed for its anisotropic
counterpart. It is straightforward to show that

I4�K�2� =
1

2�n
2�1 −

�n

2n
�1 + 2L�K�2��� . �B17�

At the symmetry point the integral can be rewritten in the
form

I4�K�2 = 1� =
1

2�n
2�1 +

3�n

2n
� . �B18�

As was shown above, these results are a natural generaliza-
tion of those originally developed for the second character
Lifshitz points. It can be checked that all integrals reduce to
the usual �4 values for n=1 and reproduce the results from
Ref. 8 in the case n=2.

APPENDIX C: ISOTROPIC INTEGRALS IN THE EXACT
CALCULATION

An interesting feature of the isotropic case is that it can be
calculated exactly. We now proceed to yield the exact solu-
tion to the Feynman diagrams without performing approxi-
mations:

I2 =
 dmnk

��k + K��2�n�k2�n . �C1�

Using a Feynman parameter and making the continuation d
=mn=4n−�n we get

I2�K�� =
��2n −

�n

2 ��� �n

2 �Smn

2��n���n� ���n���n�
��2n�

−
�n

2
Ln�K��� ,

�C2�

where Ln�K�� is given by

Ln�K�� = 

0

1

dxxn−1�1 − x�n−1ln�x�1 − x�K�2� . �C3�

This integral is the analogous of the integral L�K�� appearing
in the orthogonal approximation. Here it depends explicitly
on n, and that is the reason we have included a subscript in it
to emphasize this dependence. The integration over x to-
gether with the �n expansion of the Gamma functions results
in

I2�K�� =
Smn

�n
�1 −

�L

2
���2n� − ��1� +

��2n�
��n���n�

Ln�K���� .

�C4�

As before, we absorb the factor Smn
in a redefinition of the

coupling constant. We need to do this for each loop integral.
Thus

I2�K�� =
1

�n
�1 −

�n

2
���2n� − ��1� +

��2n�
��n���n�

Ln�K���� .

�C5�

This is a useful result for doing minimal subtraction. De-
fining the quantity D�n�=1/2��2n�−��n�+1/2��1�, at the
symmetry point K�2=1 the integral turns out to be

I2SP =
1

�n
�1 + D�n��n� . �C6�

Now, let us calculate the integral I3. As before, take K�
=k1+K� and solve for the internal bubble k2 using Feynman
parameters solving the momentum independent integrals
over the Feynman parameters and expanding the Gamma
functions in �n; we end up with

I3 = K�2n�− 1�n �2�2n�
4��3n���n + 1�

1

�n
�1 + �n�Bn −

L3n�K��
An

�� ,

�C7�

where

An =
��2n���n�

��3n�
, �C8�
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Bn = D�n� −
1

2 �
p=1

2n−1
1

p
+ �

p=1

n
1

p
+

�
p=0

2n−1
�2n−1�!�−1�p+1

2p!�2n−1−p�!�n+p�2

An
,

�C9�

L3n�K�� = 

0

1

dxx2n−1�1 − x�n−1ln�x�1 − x�K�2� . �C10�

Again, this integral depends explicitly on n and should be
compared with its counterpart arising in the orthogonal ap-
proximation. We then learn that for massless propagators
with arbitrary power of momenta, the external momentum
dependent part of the Feynman integrals generalizes the stan-
dard �4 in the manner prescribed above.

At the symmetry point, the integral I3 simplifies to the
following expression:

I3SP = �− 1�n ��2n�2

4��n + 1���3n��n
�1 + �D�n� +

3

4
+

1

n
��n�

��1 +
3�n

2
� �

p=3

3n−1
1

p
− �

p=2

2n−1
1

p
� +

�n

2 �
p=1

n−1
1

n − p� .

�C11�

Notice that while the first term inside the parentheses con-
tributes for arbitrary values of n, the last factor of O��n� in
the brackets are corrections which contribute solely for n
�2. �A similar feature will also take place in the calculation
of I4 and I5.� Therefore taking the derivative with respect to
K�2n at the symmetry point produces the result

I3SP� = �− 1�n ��2n�2

4��n + 1���3n��n
�1 + �D�n� +

3

4
��n�

��1 +
3�n

2
� �

p=3

3n−1
1

p
− �

p=2

2n−1
1

p
� +

�n

2 �
p=1

n−1
1

n − p� .

�C12�

We now calculate the three-loop integral I5. Proceeding
analogously, we can show that it has the solution

I5 = K�2n�− 1�n �2�2n�
3��3n���n + 1�

1

�n
2�1 + �n�Cn −

3L3n�K��
2An

�� ,

�C13�

where

Cn = 2D�n� −
1

2 �
p=1

2n−1
1

p
+

3

2 �
p=1

n
1

p
+

�
p=0

2n−1
�2n−1�!�−1�p+1

p!�2n−1−p�!�n+p�2

An
.

�C14�

At the symmetry point this result gets simplified. Taking
the derivative with respect to the external momenta we get

I5SP� = �− 1�n ��2n�2

3��n + 1���3n��n
2 �1 + „2D�n� + 1…�n�

��1 + 2�n� �
p=3

3n−1
1

p
− �

p=2

2n−1
1

p
� + �n�

p=1

n−1
1

n − p� .

�C15�

Notice that the O��n� terms inside the brackets gives a non-
vanishing contribution only for n�2.

To conclude, let us calculate the integral I4. The integral
over the bubble k2 can be solved directly by taking the ef-
fective external momenta as K�=−k1−k3�. It has I2�K�� as a
subdiagram. Using the information obtained in calculating I2
and working out the details we find the intermediate result:

I4 = fn��n�
��2n −

�n

2 ����n�

2��n�2�� �n

2 � 

0

1

dyy2n−1�1 − y��n/2−1

�

0

1

dz�z�1 − z��n−1�yz�1 − yz�K�2 + y�1 − y�k3�
2

− 2yz�1 − y�K�k3��
−�n. �C16�

The situation resembles that in the calculation of I4 using the
orthogonal approximation. Again, set y=1 in the integral
over z and carry out the integral over y independently. Per-
forming the integral over y, we find

I4 = fn��n�
��2n −

�n

2 ����n���2n�

2��n�2��2n +
�n

2 �

�

0

1

dz�z�1 − z��n−1�z�1 − z�K�2�−�n. �C17�

Then for the purposes of minimal subtraction, it can be ex-
pressed as

I4 =
1

2�n
2�1 + �D�n� − 1 −

��2n�Ln

��n�2 ��n − �n �
p=1

2n−2
1

2n − p
� .

�C18�

We emphasize that the last O��n� term in this expression only
contributes for n�2. At the symmetry point, we find

I4SP =
1

2�n
2�1 + �D�n� + 1��n

+ �n� �
p=1

2n−2
1

2n − p
− 2�

p=1

n−1
1

n − p
�� . �C19�

Once again, the last two terms of O��n� containing the sums
in the above expression correspond to corrections in the case
n�2. Since the corrections are absent when starting from
scratch for the n=1 case, by neglecting them in the above
expressions it can be easily checked that all of these integrals
reduce to the values of the ordinary ��4 in the limit n→1.
We learn that a general feature of the exact calculation is that
higher loop integrals generally receive further contributions
to the subleading singularities for n�2.
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In order to make contact with the more concrete case of
the usual second character Lifshitz point obtained by Horn-
reich, Luban, and Shtrikman,3 we discuss the particular n
=2 case next.

a. n=2 case

Let us now analyze the Feynman integrals involved in the
calculation of the critical indices of the ordinary second char-
acter Lifshitz critical behavior. This is merely a particular
case of the most general isotropic CECI model discussed in
the previous subsection. Nevertheless, the discussion of this
particular case is useful when comparing with the original
previous result obtained by Hornreich, Luban, and Shtrikman
about three decades ago. Needless to say, both results agree
for the exponents �L4 and �L4, which in the notation of Sec.
IV correspond to �2 and �2. Moreover, our treatment permits
us to obtain two interesting results for this behavior: the
results for �2 are extended including corrections up to O��2

3�
whereas the remaining exponents are obtained through the
complete set of scaling relations derived in Ref. 7 up to
O��2

2�.
Since the calculation was already indicated in the last sub-

section, we simply quote the results. For calculating the ex-
ponents using minimal subtraction the most appropriate form
of the integrals are given by

I2�K�� =
1

�L
�1 −

11�L

12
− 3�LL2�K��� , �C20�

I3 = K�4 3

80�L
�1 − �L� 17

120
+ 20L32�K���� , �C21�

I5 = K�4 1

20�L
2�1 − �L� 7

60
+ 30L32�K���� , �C22�

I4 =
1

2�L
2�1 − �23

12
+ 6L12�K�2���L� . �C23�

For the use of normalization conditions, however, it is
convenient expressing these integrals at their symmetry
point. Instead of calculating I3 and I5 at the symmetry point,
we need their derivatives with respect to K�4 at the symmetry
point. Thus we find

I2SP =
1

�L
�1 −

�L

12
� . �C24�

I3SP� =
3

80�L
�1 +

131

120
�L� , �C25�

I5SP� =
1

20�L
2�1 +

26

15
�L� , �C26�

I4 =
1

2�L
2�1 −

1

4
�L� . �C27�
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