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The electronic structure and magnetism in NaNiO2 are studied from density-functional calculations and by
solving model Hamiltonians, suggested from the density-functional results, to understand the magnetic ex-
change. The density-functional calculations within the LSDA approximation yield a layered antiferromagnetic
solution with ferro-orbital ordering of the Ni�d� orbitals arising from the Jahn-Teller distortion around the Ni3+

ion in agreement with the orbital ordering inferred from neutron diffraction. The weak ferromagnetic interac-
tion within the layer �JF�1 meV� is caused by the 90° Ni-O-Ni exchange following the Goodenough-
Kanamori-Anderson rules, while the weaker antiferromagnetic interaction between the layers �JAF�
−0.1 meV� is mediated via a long Ni-O-Na-O-Ni superexchange path. In order to shed light on the differences
between NaNiO2 and LiNiO2, which show very different magnetic behaviors in spite of the similarity of their
crystal structures, we examine the effect of the coupling of the alkali atom �Na� motion to the electronic
degrees of freedom on the interlayer exchange JAF. A model Hamiltonian is proposed and solved by exact
diagonalization and by using the variational Lang-Firsov method. We find that reducing the mass by going
from Na to Li does reduce the strength of the magnetic exchange, but only by a small amount, so that the
difference in mass alone cannot describe the differences in magnetic behavior between the two compounds. It
is suggested that other electronic effects such as differences in orbital ordering could be responsible for the
difference in magnetism between NaNiO2 and LiNiO2.
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I. INTRODUCTION

It is a puzzle as to why the two compounds NaNiO2 and
LiNiO2, in spite of having very similar crystal structures,
show very different magnetic properties. The former is a
type-A antiferromagnet �ferromagnetic layers coupled anti-
ferromagnetically; Fig. 1�, while the latter shows no long-
range magnetic order. Experiments1 on NaNiO2 have re-
vealed that the antiferromagnetic exchange interaction JAF
between the layers is considerably weaker than the ferromag-
netic exchange JF within the layer, JF�1 meV and
JAF�−0.1 meV. It is conceivable that the superexchange
path between the layers being Ni-O-Na-O-Ni, replacing Na
by Li weakens the interplanar superexchange sufficiently so
as to destroy the magnetism altogether, since the two-
dimensional �2D� magnetism becomes untenable by virtue of
the Mermin-Wagner theorem.2

The reduction of the interplanar coupling could come ei-
ther through differences in the electronic parameters such as
the hopping parameters and charge-transfer energy or simply
through the mass difference of the intervening alkali atom,
which is quite large between Na and Li. In view of the fact
that isotope substitution has been known to alter the mag-
netic interactions, changing the magnetic transition tempera-
ture Tc in a variety of compounds such as Fe3O4 �Ref. 3� and
the manganites,4–6 it is important to examine the effect of the
alkali mass.

In this paper, we focus on the compound NaNiO2. Start-
ing with the density-functional band structure, we study the
mechanism of the magnetic interaction as well as the effect
of the sodium mass on it. We study this by proposing a
model for the superexchange and solving it by a variational

Lang-Firsov approach as well as by exact diagonalization
and the fourth-order perturbation theory. From our model, we
explain the mechanism of the exchange interactions for
NaNiO2, ferromagnetic within the layer and antiferromag-
netic between the layers. However, we find that although
there is some effect of the alkali mass on the magnetic inter-
actions, it is not enough to describe the suppression of mag-
netism in LiNiO2. It is suggested that differences in the elec-
tronic structure such as orbital ordering or simply the
magnitudes of the Hamiltonian parameters could further re-
duce JAF, enough to suppress the 2D magnetism in LiNiO2.

II. ELECTRONIC STRUCTURE OF NaNiO2

We begin by discussing the ab initio electronic structure
calculations based on the density functional theory �DFT�. At
high temperature, NaNiO2 has the simple hexagonal crystal

structure �space group R3̄m, no. 166� shown in Fig. 1, and
undergoes a structural transition to a lower-symmetry mono-
clinic structure with the paramagnetic space group C2/m
�no. 12� at about 500 K.1 This latter structure is layered and
may be viewed as an arrangement of slightly elongated NiO6
octahedra separated by Na sheets. The NiO6 octahedra in this
material are edge sharing such that the Ni ions form a trian-
gular lattice. There are two types of oxygen atoms due to the
strong Jahn-Teller �JT� distortion of the NiO6 octahedra, giv-
ing rise to two different Ni-O bond lengths: four short bonds
of approximately 1.91 Å, and two long ones of 2.14 Å. The
lattice parameters are taken from Ref. 1. The magnetic struc-
ture of this material is antiferromagnetic �AF� of type A with
a Neel temperature of TN�20K.7
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The ab initio electronic structure calculations were per-
formed for the low-temperature structure using the local
spin-density approximation �LSDA� to density functional
theory �DFT�. The DFT calculation is discussed in more de-
tails in Ref. 8, so in this paper we shall only state the main
results. The self-consistent tight-binding linear muffin-tin or-
bitals �TB LMTO� method was used.9,10 In addition we made
use of the LSDA+U correction11 to better account for the
correlation effects. The on-site Coulomb energy of U=5 eV
for the Ni�d� orbitals was used. In the magnetic calculation,
the symmetry is not reduced further and the magnetic unit
cell is also monoclinic with space group C2/m with two
formula units per unit cell. The calculations were scalar rela-
tivistic and the von Barth-Hedin12 exchange-correlation po-
tential was used.

Within the LMTO atomic sphere approximation �LMTO-
ASA�, the AF-A structure was found to be the ground state,
lower in energy than both the ferromagnetic and paramag-
netic configurations. It was found that the Ni ion is in a low
spin state with the nominal occupations t2g

6 eg
1 and a magnetic

moment ��0.5 �B /Ni ion. The magnetic moment is signifi-
cantly reduced from the expected Hund’s rule value of
�=1 �B /Ni due to the strong hybridization of the Ni�d� and
O�p� orbitals.

The band structure is shown in Fig. 2. The bands are
consistent with a low-spin state, with the t2g states being
completely occupied while the eg states are only 1/2-filled
�t2g

6 eg
1�. The t2g and eg bands are split by a strong crystal field,

while the eg
↑ and eg

↓ are split by the exchange coupling with a
strength �ex�0.5 eV. The Ni�d� occupation being t2g

6 eg
1, the

atom is JT active and the degeneracy of the eg levels is then
lifted, with a JT splitting �JT�0.6 eV. The one-electron den-
sities of states are shown in Fig. 3.

We have also computed the electronic charge density for
an energy range which includes only the valence eg band. In
a frame of reference where the z axis points along the long
Ni-O bond, we found this band to be of 3z2−r2 character.
The charge-density contours are plotted in Fig. 4, which
clearly shows the “ferro-orbital ordering,” where all the
3z2−r2 orbitals on all Ni atoms in the structure are oriented
along the same direction, towards the elongated Ni-O bond
which lies on the Ni-O-Na-O-Ni superexchange path as in-

FIG. 1. �Color online� Crystal structure of NaNiO2 at high tem-
perature �Ref. 7�. The low-temperature structure is obtained by dis-
torting the NiO6 octahedra along the long Ni-O-Na-O-Ni bond
shown in the figure. The magnetic ordering is antiferromagnetic
type A and the two types of Ni-Ni exchange interactions JF and JAF

are shown. The shaded plane is the plane of the charge density plot
in Fig. 4. The shaded square in the upper portion of the figure shows
the Ni-O-Ni-O plaquette for the 90° exchange as discussed in the
text.

FIG. 2. Density-functional electron bands for the antiferromag-
netic NaNiO2 obtained from the LSDA+U calculations. The low-
temperature crystal structure with two formula units in the unit cell
was used in the calculation. The eg bands are split near the Fermi
level due to the Jahn-Teller and exchange interactions. The LSDA
calculation without the Coulomb U correction produces a similar
band structure, except that the lowest eg band �eg

1↑ � is not com-
pletely detached from the rest of the eg bands, resulting in a metallic
band structure.

FIG. 3. One-electron densities of states for antiferromagnetic
NaNiO2.
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dicated in the figure. Electronic structure calculations for the
high-temperature structure, which has undistorted NiO6 oc-
tahedra, were also performed and no orbital ordering was
found for this structure.

III. MAGNETISM IN NaNiO2

A. Intralayer exchange

The ferromagnetic exchange interaction within the plane
is mediated via the oxygen atom forming the 90° Ni-O-Ni
bond, which is weakly ferromagnetic according to the cel-
ebrated Goodenough-Kanamori-Anderson rules. The rule
states that the 90° exchange between filled orbitals is ferro-
magnetic and relatively weak.15,16

To illustrate this for the present compound, we adopt a
simple model shown in Fig. 5, retaining only the z2 orbital as
the active orbital for electron transfer on the two transition
metals, consistent with the orbital ordering shown in Fig. 4.
The Ni t2g orbitals are fully occupied. There are actually two
90° Ni-O-Ni paths forming a square plaquette as shown in
Fig. 4, so that, considering the two paths to be independent,
the exchange will be twice the magnitude calculated for a
single Ni-O-Ni path.

We assume that if two eg electrons are present on the
transition metal atom, they both will occupy the z2↑↓ orbit-
als, which is favored by the Jahn-Teller energy gain. The
alternative configuration of z2↑, x2−y2↑ is considered to have
a higher energy, because although favored by the Hund’s
rule, there is no JT energy gain for this state, which is im-
portant since two electronic states are occupied. With this
reasoning we omit the x2−y2 orbital altogether in our model.

The magnetic interactions are best described in terms of
the holes. With the oxygen shell full and the Ni z2 orbitals
occupied by one electron each, we have just two holes

present in the system. The Hamiltonian then reads

H = �
�

t�d1�
† cz� + h.c.� + t��d2�

† cx� + h.c.� + � �
p=x,z

�
�

cp�
† cp�

+ �
p=x,z

Upnp↑np↓ − JH�nx↑nz↑ + nx↓nz↓� . �1�

Here, the creation operator for a hole of spin � on the
oxygen in the p=x or z orbital is denoted by cp�

† , while the
same for the two Ni sites are denoted by d1�

† and d2�
† , respec-

tively. The Coulomb energy and the Hund’s exchange cou-
pling on the oxygen site are denoted by Up and JH, while �
is the charge transfer energy of the hole from the nickel to
the oxygen site. The holes hop between Ni�1� and O�pz� and
between Ni�2� and O�px� orbitals, with the two hopping ma-
trix elements being t and t�, respectively. According
to Harrison’s tight-binding parametrization,18 we have
t��−t /2=−Vpd� /2.

It is quite simple now to obtain the energies of the AF and
ferromagnetic �FM� states of the two holes and take the dif-
ference to yield the exchange energy

J = E↑↓ − E↑↑. �2�

Consider the FM case with the parallel alignment of the
two eg electrons. The two spin-down holes are distributed
among the four spin-up states of oxygen and nickel. Of the
total six configurations �4C2�, there are only four that are
relevant for the ground state, viz., ��↑ 00 ↑�, �0 ↑ 0 ↑�,
�↑ 0 ↑ 0�, �0 ↑↑ 0��. The remaining �↑↑ 00� and �00 ↑↑�� con-
figurations don’t mix, because there is no possibility of hole
transfer between the two Ni atoms. The arrows here refer to
the spin of the hole, where the first and the fourth labels in
each configuration represent Ni1 and Ni2, while the second
and the third labels represent pz and px orbitals on the oxy-
gen. Similarly, we only have the four relevant configurations
��↑ 00 ↓�, �0 ↑ 0 ↓�, �↑ 0 ↓ 0�, �0 ↑↓ 0�� for the AF case.

Both the FM and AF Hamiltonians are then written as

FIG. 4. �Color online� Charge-density contours for the occupied
Ni�eg� bands obtained from the local spin-density approximation
and plotted on the shaded plane shown in Fig. 1. The plane contains
both the Ni-O-Na-O-Ni and the 90° Ni-O-Ni superexchange paths.
The dashed-line rectangle indicates the Jahn-Teller distorted NiO6

octahedron. All Ni�d� orbitals in the crystal are oriented along the
same direction indicating the so-called ferrodistorsive orbital order-
ing, inferred from the neutron scattering experiments �Refs. 13 and
14�.

FIG. 5. Model for the 90° Ni-O-Ni exchange interaction within
the layer. Open arrows represent the holes. Double-arrowed, dashed
lines indicate virtual processes with the hopping of the eg

1 electrons
from the neighboring transition-metal atoms to the oxygen atom
giving rise to the ferromagnetic interaction.
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H =	
0 t t� 0

t � 0 t�

t� 0 � t

0 t� t ��

 , �3�

where ��=2�+Up−JH for the FM case and ��=2�+Up for
the AF case. It is obvious from the structure of the Hamil-
tonian why the FM state will have the lower energy. The
only difference between the two Hamiltonians is the on-site
energy ��, which is lower in the FM case and hence a larger
gain of the hybridization energy by configuration mixing.

Quantitatively, the ground-state energies for the FM and
AF configurations are computed using the standard fourth-
order nondegenerate perturbation theory17 and taking the off-
diagonal part of the Hamiltonian as the perturbation. Apply-
ing this to the Hamiltonians Eq. �3�, we obtain the intralayer
exchange �denoted commonly by JF for this compound� to be

JF = 2 �
Vpd�

4

�2 � 1

Up + 2� − JH
−

1

Up + 2�
� , �4�

where the factor of 2 comes from the fact that there are two
90° Ni-O-Ni paths on the square plaquette. The result is con-
sistent with the expression given by Mostovoy and
Khomskii19 and is weakly ferromagnetic in agreement with
one of the Goodenough-Kanamori-Anderson rules, which
states that: “A 90°-exchange between half-filled orbitals is
ferromagnetic and weak.”16

The basic physical mechanism of the ferromagnetic cou-
pling is simple. For the FM alignment of the Ni spins, the
two-hole state on oxygen has the same spins, whose energy
is lower by JH �Hund’s energy on the oxygen site� as com-
pared to the energy of the two-hole state with opposite spins.
The latter is relevant for virtual hopping in the case of the AF
alignment of the Ni spins. Virtual hopping therefore pro-
duces a larger gain of energy for the FM case than for the AF
case. It is this difference that leads to the FM interaction as
seen explicitly from the perturbation-theory result of Eq. �4�.
Within our model, the magnetic exchange would be zero if
there was no Hund’s energy on the oxygen site.

It is clear from Eq. �4� that the interaction is always fer-
romagnetic, irrespective of the Hamiltonian parameters.
However, as usual, the strength of the interaction is obvi-
ously quite sensitive to the magnitude of the parameters.
Taking typical parameters: Vpd�=1 eV, �=4 eV, Up=5 eV,
and JH=1 eV, we find the value for JF�10 K, which is of
the same order of magnitude as the measured value of 13 K.1

B. Interlayer exchange

We now turn to the interlayer exchange coupling, which is
experimentally antiferromagnetic and in view of it, is de-
noted by the symbol JAF. The superexchange path is the Ni-
O-Na-O-Ni path as shown in Fig. 1 and also in Fig. 4. Simi-
lar paths that connect the Ni atoms on the adjacent layers but
with a 90° bend at the Na atom �see Fig. 4� will have less
contribution to exchange, because of the type of orbital or-
dering of the half-filled Ni�eg� orbitals. Unoccupied Ni�eg�
orbitals have higher energy and will contribute much less to

the exchange because of the larger energy denominator and
are omitted in the model Hamiltonian like in the previous
section.

We examine the magnetic exchange based on a simple
three site model schematically shown in Fig. 6, where the
electrons hop between the two Ni�eg� orbitals located on the
adjacent layers via the intermediate Na�s�. In reality the
Ni-Na hopping takes place via the intermediate O�p� orbit-
als, but for the sake of simplicity we have considered only
the effective Ni-Na hopping t.

It is more convenient for the interlayer case to write the
Hamiltonian for the electrons rather than for the holes. There
are two electrons in the system and, again, our goal is to
calculate the AF-FM energy difference to determine the mag-
netic exchange. The Hamiltonian reads

Hel = �
i,j��

tij�ci�
† cj� + h.c.� + �

i

�ini + Uini↑ni↓, �5�

where ci�
† denotes the creation operators for the electrons, t is

the effective Ni-Na hopping, �i is the on-site energy at site i,
where i=1,2 ,3 are, respectively, Ni�1�, Na, and Ni�2�
atoms, and Ui is the on-site Coulomb interaction on the Ni
�U1=U3=Ud� and Na sites �U2=Us�. Note that for simplicity,
we do not include in the model Hamiltonian the Jahn-Teller
split eg

2 orbital �x2−y2� because of its higher energy. In the
present section, the hopping between Ni and Na is fixed
tij = t; however, it will be dependent on the atom positions
when we include the electron-phonon coupling in a latter
section.

The Hamiltonian for the FM state below is given in the
basis set: ��110�, �101�, �011��, in that order, while the basis
set used for the AF state is: ��100;001�, �100;010�, �100;100�,
�010;001�, �010;010�, �010;100�, �001;001�, �001;010�,
�001;100��, where the first three numbers in each configura-
tion correspond to the occupations of the spin ↑; orbitals on
the Ni�1�, Na, and Ni�2� atoms, respectively, while the re-
maining three numbers correspond to the occupation of the
corresponding spin ↓ orbitals.

FIG. 6. A three-site model for the magnetic exchange between
the layers. The virtual hopping between nickel and sodium occurs
via the intermediate oxygen atom, which is replaced in the model
by an effective direct hopping between the nickel and the oxygen
sites.
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With these basis sets, the Hamiltonians read

H↑↑ = 	� t 0

t 0 t

0 t �



and

H↑↓ =	
0 t 0 t 0 0 0 0 0

t � t 0 t 0 0 0 0

0 t Ud 0 0 t 0 0 0

t 0 0 � t 0 t 0 0

0 t 0 t Us + 2� t 0 t 0

0 0 t 0 t � 0 0 t

0 0 0 t 0 0 Ud t 0

0 0 0 0 t 0 t � t

0 0 0 0 0 t 0 t 0


 . �6�

The Ni-Na charge-transfer energy cost � is given by

� = �s − �d +
1

2
�JT, �7�

where �s and �d are the Na and Ni on-site energies, respec-
tively, and �JT is the Jahn-Teller splitting between the two eg
orbitals as seen in Fig. 3, so that half of it is the JT energy
gain for the electron.

First of all, we can conclude from the structure of the two
Hamiltonians that the ground-state energy for the parallel
configuration is higher than that of the antiparallel configu-
ration, for the simple reason that H↑;↑; forms a diagonal sub-
block of H↑;↓, so that the variational principle dictates the
latter to have the lower ground-state energy, leading thus to
an antiferromagnetic exchange.

For a quantitative result, we need to obtain the ground-
state energies correct to the fourth order in the perturbation
theory. For the FM case, the exact ground-state energy is
given by

E↑↑ = �� − ��2 + 8t2�/2. �8�

For the AF case, the exact expression for the ground-state
energy is rather complicated and also the fourth-order �de-
generate� perturbation theory is quite involved, unless the
degeneracy is removed in a low order in the perturbation,20

which is not the case here. Often in the literature, nondegen-
erate perturbation theory is applied erroneously in such
cases, leading to a wrong prediction of the prefactor of the
fourth-order term.

In the present case, fortunately, the symmetry present in
H↑;↓ allows us to compute the ground-state energy E↑;↓ in the
following manner. Taking the form of the ground-state eigen-
function as �1,� ,� ,� ,	 ,� ,� ,� ,1� from symmetry and op-
erating H↑;↓ �Eq. �6�� on it, we find that the eigenvalue 

satisfies the following transcendental equation:


−1 = �2Ud + Us + 2� − 3
��Ud − 
�−1�Us + 2� − 
�−1

− �� − 
�/�2t2� , �9�

which we solve by an iterative method by starting with the

initial guess 
�0�=0, which is the unperturbed energy, and
iterating the expression �9� until convergence is achieved to
the fourth order in the perturbation t. The result is

E↑↓ = −
2t2

�
+

4t4

�3 −
4t4

�2 � 1

Ud
+

2

Us + 2�
� + O�t6� . �10�

Taking the energy difference between the FM and the AF
configurations from Eqs. �8� and �10�, we get the interlayer
exchange to be21

JAF = −
4t4

�2 � 1

Ud
+

2

Us + 2�
� . �11�

It is clear that the interaction is always antiferromagnetic,
irrespective of the magnitudes of the Hamiltonian param-
eters. If we take as typical parameters: t=0.1 eV, �=1 eV,
and Ud=Us=5 eV, we find JAF�−2.3 K from Eq. �11�,
which is about the same order of magnitude as the experi-
mental value of −1K1 �see Fig. 7�.

If the orbital ordering is different from the one shown in
Fig. 6, which might occur in LiNiO2, the hopping integral
between Ni�1� and Na will be different from that between
Ni�2� and Na. Taking them as t and t�, respectively, the
above expression for JAF becomes modified to

JAF = −
4t2t�2

�2 � 1

Ud
+

2

Us + 2�
� . �12�

For the orbital orientation shown in Fig. 8, Harrison’s scaling
gives us t=Vsd� and t�=−t /2, so that JAF is reduced by a
factor of 4.

IV. EFFECT OF ELECTRON-PHONON COUPLING
ON MAGNETISM

A. The electron-phonon Hamiltonian

Since one of the differences between NaNiO2 and LiNiO2
is the atomic mass of the intervening alkali atom �Na or Li�
through which the interlayer superexchange is mediated, we
examine the effect of this mass on the magnetic exchange. To

FIG. 7. Comparison of the results of the perturbation theory Eq.
�11� with the exact results, obtained by the diagonalization of Eq.
�6�, for the intralayer exchange JAF. Parameters are Ud=Us=5 eV
and �=1 eV.
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this end, we introduce a model electron-phonon Hamiltonian
starting from a simple physical picture of the interlayer elec-
tron hopping and the resulting NiO6 distortions as indicated
in Fig. 9. The total Hamiltonian is now

H = Hel + He-ph, �13�

where the electronic part of the Hamiltonian Hel is given by
Eq. �5� and the electron-phonon coupling part He-ph is devel-
oped below.

For the He-ph part, consider the following argument. First
of all, we have the two eg

1 electrons hopping between the
three sites in our model. Now, as shown by our DFT calcu-
lations, the Ni�d� orbitals have a nominal valence of t2g

6 eg
1

such that the Ni ion is in a low-spin configuration with a
half-filled eg orbital. When the eg electron hops from the Ni
site, the JT distortion of the NiO6 octahedron is relaxed—Ni
is t2g

6 now with no degeneracy to produce the JT distortion—
causing a displacement of the intermediate Na ion. For ex-
ample, if the Ni�2��eg� and Na�s� sites are both occupied by
an electron each, the NiO6 octahedron on the Ni�1� site will
be undistorted, causing a net displacement of the Na ion to
the left as shown in Fig. 9. The different electronic occupa-
tions of the Ni-Na-Ni complex will give rise to different
distortions as shown in Table I. For instance, if n1=0,
n2=1, and n3=1, we have an equilibrium displacement of −�
for the Na ion. As seen from the table, the equilibrium posi-

tion of the Na atom for all possible electron configurations is
given by the simple expression

x0 = �� , �14�

with

� = �1 + n2��n1 − n3�/2 �15�

and n1, n2, and n3 being, respectively, the electron occupa-
tions of the Ni�1�, Na, and the Ni�2� sites.

This leads to a coupling of the ionic motion to the elec-
tronic degrees of freedom, which we describe by the dis-
placed harmonic oscillator

He-ph
�1� =

p2

2m
+

K

2
�x − x0�2, �16�

where the mass of the Na atom is denoted by m, K=m2 is
the lattice spring constant, and  is the frequency of the
phonon mode.

There is a second part to the coupling as a result of the
dependence of the electronic hopping on the distance be-
tween the atoms, which was the main ingredient of the Su-
Schrieffer-Heeger model22 of the soliton. The hopping be-
tween Ni�1� and Na is a function of the distance between the
two atoms and can be approximated by keeping the linear
term, so that

t12 = t��xNi1
− xNa�� � t − t�x , �17�

where t is the hopping with Na fixed at the center �x=0�
between Ni�1� and Ni�2� and x is the deviation of the Na
atom from this position. Similarly, hopping between Ni�2�
and Na is

t23 = t��xNi2
− xNa�� � t + t�x . �18�

The constant term in hopping reproduces the electronic part
Hel �Eq. �5��, while the linear term adds the electron-phonon
coupling part

He-ph
�2� = − t�x�

�

�c1�
† c2� − c2�

† c3�� + h.c. �19�

The total Hamiltonian now reads

H = Hel + He-ph
�1� + He-ph

�2� , �20�

where Hel is given by Eq. �5� and the electron-phonon cou-
pling parts in the second-quantized form, read

He-ph
�1� = �b†b + 1/2�� − 
��b + b†� + ���−1
2�2

TABLE I. Dependence of the equilibrium position x0 of the
sodium atom on the electronic occupations of the Ni�1�, Na, and the
Ni�2� sites, denoted by n1, n2, and n3, respectively. The orbitals
involved are eg for the nickels and the s orbital for sodium.

n1 n2 n3 � x0

1 0 1 0 0

0 1 1 −1 −�

1 1 0 1 +�

FIG. 8. Model for intersite superexchange with orbital ordering
different from the ordering for NaNiO2.

FIG. 9. Fluctuating Jahn-Teller distortion of the NiO6 octahedra
and the consequent displacement of the Na ion. The dashed square
around Ni �1� indicates the undistorted NiO6 octahedron when the
eg orbital on that site is empty, while the solid squares indicate the
Jahn-Teller distorted octahedra when the Ni atoms are occupied by
one eg electron each. The fluctuating distortions of the NiO6 octa-
hedra in turn induce the motion of the intermediate sodium atom,
which is modeled by the electron-phonon Hamiltonian He-ph as dis-
cussed in the text.
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He-ph
�2� = − ��b† + b���

�

�c1�
† c2� − c2�

† c3�� + h.c.� , �21�

where b†�b� is the phonon creation �annihilation� operator
and 
 and � define the electron-phonon coupling strengths,

= ����1/2 with �=K�2 /2 and �= t��� / �2K��1/2. The main
parameters that determine He-ph are the energy ratio t /�
and the dimensionless coupling strengths 
 /� and � /�,
as may be seen by scaling the Hamiltonians Eqs. �5� and �21�
by �.

To make a rough order of magnitude estimate of the cou-
pling strengths, we take the force constant K�10 eV/Å2,
which yields ��13 meV and taking the displacement
��0.1 Å from the measured oxygen displacement for the
NiO6 octahedron, we find 
�45 meV, so that the dimen-
sionless coupling parameter 
 /��3. Similarly, with
t�0.1 eV and using Harrison scaling18 for t�, so that
t��0.2 eV/Å, which yields ��10 meV or 
 /��1.

Note that in our model, we have not kept the vibrations of
the oxygen octahedra, which of course must be considered if
one is interested in the effect of the oxygen mass. The
electron-lattice coupling affects magnetism because it modi-
fies the bare electron hopping parameters, which is the sub-
ject of study in the next section.

B. Solution of the Hamiltonian

The lattice effects may be studied either via the Lang-
Firsov approach or by exact diagonalization. The former ap-
proach, although approximate, yields a physically appealing
result by casting the lattice effects in terms of the renormal-
ization of the electron hopping parameters. We treat Hel

+He-ph
�1� by the variational Lang-Firsov �VLF� approach for

the sake of illustration, while the full Hamiltonian is solved
by exact diagonalization.

Within the VLF approach,23–25 which is a variational
method based on the canonical Lang-Firsov
transformation,26 we introduce the unitary transformation of
the Hamiltonian H�

H̃ = e−SH�eS,

S = �



�
��b† − b� , �22�

where � is a variational parameter and S is anti-Hermitian,
so that the transformation described by U=e−S is unitary and
H�=Hel+He-ph

�1� . Note that the transformation can diagonalize
the electron-phonon part of the Hamiltonian exactly with the
choice of �=−1 �see Eqs. �25� and �26��, but the electronic
part becomes modified, with the phonon operators entering
the electronic Hamiltonian Eq. �25�. The variational param-
eter � is a measure of the phonon “dressing” of the electron,
the so-called Lang-Firsov small polaron.

Although the transformation is designed to work well in
the strong coupling limit, we find that it works quite well in
our case, where the coupling 
 /� is not that high. A better
but more involved Lang-Firsov transformation23,24 consists
of three consecutive variational transformations defined by S,

S�=��b†−b�, and S�=	�b†b†−bb�, where �, �, and 	 are
variational parameters, each designed to work well in the
high, low, and intermediate coupling regimes respectively.

Using the general expression for a transformed operator in
terms of the corresponding commutators

Ã = e−SAeS = A + �A,S� +
1

2!
��A,S�,S� + ¯ , �23�

the transformed creation operators can be shown to be

b̃† = b† − ��
/��� ,

c̃i
† = e−Bici

†, �24�

where

Bi =
�


2�
�b† − b���2i�n1 − n3� + �1 + n2���1i − �3i�� .

The transformed Hamiltonians read

H̃el = t �
ij��

ci�
† e��
�/�2���ij�b

†−b�cj� + h.c. + �
i

��ini + Uini↑ni↓�

�25�

and

H̃e-ph = ��b†b +
1

2
� − �1 + ��
��b + b†� + �1 + ��2 
2

�
�2,

�26�

where �ij =−� ji, �12= �3/2�−n1, and �23= �3/2�−n3. The
Hamiltonian is then averaged over the bare phonon vacuum
��ph

0 �, which yields

H̄ � �ph
0 �H̃��ph

0 � = t �
ij��

ci�
† exp�−

�2
2

8�22�ij
2�cj� + h.c.

+ �
i

��ini + Uini↑ni↓� +
�

2
+ �1 + ��2 
2

�
�2. �27�

Note that as compared to the original electronic Hamiltonian
Hel, the hopping parameter becomes renormalized to a lower
value, which is readily seen to reduce the magnetic exchange

from the fourth-order perturbation theory. Also, H̄ will
clearly yield a variational upper bound to the ground-state
energy, since the Hilbert space is now restricted to the zero-
phonon subspace only.

In the exact diagonalization, the ground-state wave func-
tion is simply expanded in the joint electron-phonon
occupation-number basis set: �G�=�iai�i�, and the resulting
Hamiltonian matrix is diagonalized using the Lanczos
method. The Hamiltonian is truncated by keeping only a fi-
nite number of phonons, making sure that convergence of the
ground-state energy has been achieved as a function of the
number of phonons. Typically, 10 to 50 phonons are needed
to achieve convergence.

Figure 10 shows the calculated energies using three dif-
ferent methods. The results indicate that the Lang-Firsov
Hamiltonian is quite accurate as far as the ground-state en-
ergy is concerned. Within the VLF approximation, the
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ground-state energies for the FM and AF configurations are
obtained by diagonalizing the Hamiltonian Eq. �27� and then
by minimizing the energy as a function of the variational
parameters �. In general this method would give a different
minimum value of � for the FM and the AF configurations,
but in practice we find that the minimum in � for the FM and
AF configuration are very close �AF��FM �0.01, so that we
take them to be the same in writing down the perturbative
result in Eq. �28� below.

Such a small value of � is indicative of the fact that the
electron-phonon coupling does not affect the electronic sys-
tem strongly. Indeed, as seen from the renormalized opera-
tors, Eq. �24�, if � is zero, then we have just the bare elec-
trons and phonons.

The Lang-Firsov Hamiltonian �27� may be written in a
matrix form similar to Eq. �6� with modified off-diagonal
hopping elements. Fourth-order perturbation theory carried
out following the procedure of Sec. III B yields in the
present case the following result for the interlayer exchange:

JAF �
− 4t4e−5�2�/�2��

�� + ��2 � �2e−2�2�/�

Us + 2�
+

1

Ud + �
� , �28�

where �=
2 /� as defined before. In the limit of no
electron-phonon coupling, 
 /�→0, this expression clearly
reduces to Eq. �11�. As indicated from the expression, the
exchange remains always antiferromagnetic, however, the
electron-phonon coupling diminishes the magnitude of JAF.
The result of the perturbation expression Eq. �28� together
with the exact diagonalization and the Lang-Firsov results
have been shown in Fig. 11.

The second part of the coupling He-ph
�2� is somewhat cum-

bersome to treat by the Lang-Firsov approach, since it con-
tains off-diagonal hopping terms. However, this coupling,

parametrized by the strength �, also reduces the magnetic
exchange, as seen from Fig. 12, obtained from exact diago-
nalization.

We now turn to the question of the dependence of the
exchange interaction on the mass of the alkali atom. We have
computed this by diagonalizing the full Hamiltonian, keep-
ing all couplings. As mass is varied, the phonon frequency
� as well as the coupling strengths 
 and � change, which
are calculated using the parameters given in the caption of
Fig. 13. The figure shows the result for two different values
for the Ni to Na charge-transfer energy �. Although the mea-
sured JAF�−1 K is already quite small for NaNiO2, we find
a reduction of JAF by only a small amount in going from
23Na to 7Li. We thus conclude that the difference in mass
alone can not describe the differences in the magnetic behav-
ior between the two compounds NaNiO2 and LiNiO2.

A further reduction in JAF could come from changes in the
electronic structure in going from NaNiO2 to LiNiO2. For
example, neutron scattering experiments14 have shown that
unlike NaNiO2, no long-range orbital ordering exists in
LiNiO2. An orbital ordering different from NaNiO2 would
diminish JAF as indicated in the last part of Sec. III B.

FIG. 10. Energy of the FM and AF states using three different
methods: �a� Exact diagonalization of the full, untransformed
Hamiltonian Eq. �13�; �b� Exact diagonalization of the Lang-Firsov

Hamiltonian H̄ �Eq. �27�; and �c�� The fourth-order perturbation

theory on the Lang-Firsov Hamiltonian H̄. Note that the VLF en-
ergy is always above the exact energy, forming a variational lower
bound to the ground-state energy. Parameters used here are
�=100 meV, t=0.1 eV, Ud=5 eV, Us=5 eV, and �=1 eV. The
quadratic dependence of energy on 
 is understood in terms of the
last term of the Lang-Firsov Hamiltonian Eq. �27�.

FIG. 11. Plot of the exchange interaction JAF as a function of the
electron-phonon coupling strength 
, with �=0. JAF remains al-
ways antiferromagnetic, but its magnitude is decreased with in-
creased strength 
 of the electron-phonon coupling. Parameters
used are the same as the previous figure except for �.

FIG. 12. Plot of the exchange interaction JAF as a function of the
electron-phonon coupling strength �, with 
=0, obtained from di-
agonalization of the full Hamiltonian Eq. �20�. Parameters are
�=10 meV, t=0.1 eV, Ud=5 eV, Us=5 eV, and �=1 eV.
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V. CONCLUSION

We have studied the electronic structure and the exchange
interaction in the nickelate compound NaNiO2. The density-
functional results showed a ferrodistorsive orbital ordering
with all Ni�eg� orbitals in the crystal pointed along the Ni-
O-Na direction, i.e., along the same crystallographic direc-
tion.

Both the intra- and the interlayer exchange interactions
are weak because of different reasons. The intralayer ex-

change is mediated via the 90° Ni-O-Ni superexchange and
is weakly ferromagnetic, consistent with the Goodenough-
Kanamori-Anderson rules, while the interlayer exchange is
even weaker and antiferromagnetic due to the long Ni-O-Na-
O-Ni superexchange path.

Finally, we studied the effect of the electron-phonon cou-
pling on the magnetic exchange by solving a simple model
Hamiltonian from exact diagonalization, variational Lang-
Firsov, and perturbation theoretic approaches. While we
found that the interlayer exchange is indeed diminished by
coupling to the lattice, this effect alone is not large enough to
alter the magnetic behavior in going from NaNiO2 to
LiNiO2. What is happening is that the interlayer superex-
change, which is especially small in this class of compounds
owing to the long Ni-O-Na-O-Ni superexchange path, be-
comes enhanced in NaNiO2 due to orbital ordering �Ni or-
bitals pointed along Ni-O facilitating electron hopping,
which in turn enhances the magnetic exchange�. The JAF
�measured value �1K�, although still relatively weak, is
nevertheless strong enough to support magnetism between
the layers and hence in the entire three-dimensional �3D�
structure. Within this scenario, what is suggested is that the
weak magnetism in NaNiO2 is the result of the specific type
of orbital ordering in the compound, which allows for a
strong enough exchange between the planes.
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