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The theory for dipole-exchange spin waves in cylindrical ferromagnetic nanowires, as developed in a
previous paper, is extended to include spectral intensities, arbitrary orientation of external magnetic field, and
effects of single-ion anisotropy. This allows applications to be made to the nickel nanowires studied experi-
mentally. The dependences of the spin-wave frequencies on the nanowire radius, wave vector, and magnetic
field are investigated, and the spatial distribution of the eigenmodes are evaluated to analyze their localization.
The spectral intensities are calculated within a Green’s function formalism, giving a good insight into data from
Brillouin light scattering. The spin-wave frequencies obtained in the case of zero field are compared to the
experimental results for nickel, and to results deduced from macroscopic theory under conditions of small
surface pinning. Also when the magnetic field is perpendicular to the wire axis, making the magnetization
nonuniform, our results provide a good description of the experimental behavior.
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I. INTRODUCTION

Submicrometer-scale magnetic systems have been fabri-
cated and studied extensively in various geometries, such as
arrays of wires, dots, rings, etc. This has been done from the
point of view of both novel fundamental physics and prom-
ising applications in advanced magnetic devices. Under-
standing the static and dynamical properties of these systems
has been the main objective of recent experimental and the-
oretical works �see, e.g., Refs 1–8�. Among the systems stud-
ied extensively, arrays of nickel nanowires have attracted
attention due to the elegant method for fabricating these sys-
tems by electrodeposition into templates compared to other
lithography-based methods.2,5,6 Interest in these systems has
focused on static properties, magnetization dynamics, and
giant magnetoresistance, to name but a few. Recently, it was
found that magnetic nanowires can be bound to cells and
some biomolecules, and are therefore applicable in biology
and biotechnology.9

In this paper we focus our attention on the magnetic ex-
citations, namely, spin waves �SWs�, in nickel nanowires of
approximately circular cross section. Understanding the spin
dynamics, via the SW excitations, in any magnetic system is
important because they govern the low-temperature behavior.
Also, from SW measurements, one may deduce fundamental
properties, such as the exchange stiffness, the distribution of
the internal field, the magnetic anisotropy, strength of dipolar
interactions, etc. The SW behavior can also provide an indi-
cator for a phase transition �or spin reorientation� within the
system.

Specially we employ a microscopic theory for SWs in
ferromagnetic nanowires, concentrating on the regime where
both exchange and dipolar interactions may provide compa-
rable contributions to the dynamical processes. An objective
is to make realistic applications to Brillouin light scattering
from metallic nanowires as reported recently for nickel
arrays10 with wire diameters in the range 25 to 55 nm, i.e.,
larger than the so-called exchange length of order 2–3 nm in
Ni. The theory is developed by extending our recent theory11

to include the spectral intensities of the SW �as well as the
frequencies�, surface anisotropy, and arbitrary orientation of
the external magnetic field. The Green’s function method
that we employ here in making these extension is analogous
to that developed in recent work on ultrathin films of
ferromagnets12 and antiferromagnets.13 Comparisons are also
made with previous macroscopic �continuum� theories, ap-
plicable only for longitudinal external magnetic field, using
magnetostatic14 and dipole-exchange15 methods.

The paper is arranged as follows. Section II describes the
theoretical model applied to cylindrical ferromagnetic nano-
wires. The Hamiltonian includes the exchange, dipolar, an-
isotropy, and Zeeman terms, where the external magnetic
field is applied at an arbitrary angle to the nanowire axis.
Results for linear SW dispersion relation are then derived in
Sec. III, where numerical examples are provided to illustrate
the theory for the dependence of the discrete SW frequencies
on nanowire radius, wave vector, and applied magnetic field.
Numerical results are included for the spatial distribution of
the modes as well as the spectral intensities. Section IV is
devoted to further discussion and overall conclusions.

II. LINEAR SPIN-WAVE ANALYSIS

We consider a microscopic model for single ferromag-
netic nanowires, as described in our previous paper.11 Briefly,
each cross section of the wire is represented by a hexagon
with the spins arranged on a triangular lattice �with spacing
a�. The total number of spins N in each cross-section layer is
3r�r+1�+1 for r=0, 1, 2,…, where the wire “radius” is ra.
The layers are then stacked vertically along the y axis �see
Fig. 1 of Ref. 11� to form a wire. The system is described by
the spin Hamiltonian

H = −
1

2 �
in,jm

Jin,jmSin · S jm +
1

2
g2�B

2 �
in,jm

�
�,�

Din,jm
�,� Sin

� Sjm
�

− g�B�
in

Hn · Sin. �1�

Here i, j are indices for the layers, while n, m label the
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position of the spins in a particular layer. The exchange in-
teraction between the spin operators at sites �i ,n� and �j ,m�
is Jin,jm. The second term in Eq. �1� describes the long-range
dipole-dipole interactions with the � and � labels denoting
Cartesian components x, y, or z, and

Din,jm
�,� =

�rin,jm�2��,� − 3rin,jm
� rin,jm

�

�rin,jm�5
, �2�

where rin,jm= �xm−xn ,yj −yi ,zm−zn�, and the equal-site case
�i= j ,n=m� is excluded from the sums in Eq. �1�. Generaliz-
ing Ref. 11, the final term in Eq. �1� represents the combined
effect of the Zeeman energy due to an external magnetic field
and the single-ion anisotropy. We take the external field to be
in the yz plane, so H0= �0,H� ,H��, while the anisotropy is
represented here in terms of an effective field Han which may
be site dependent. This approximation should be satisfactory
provided the single-ion anisotropy is uniaxial �with our y
axis as the prefered direction� and the sample is magnetized
along the y direction. More generally, we might write the
anisotropy term as −Kn�Sin

y �2 at each site. In the uniaxial case
�where coefficient Kn�0� with a longitudinal applied field,
the correspondence between the two forms is well known to
be approximately Han

y =2�Sin
y �Kn. We do not include the case

of “easy-plane” anisotropy �where Kn�0� in the present
work.

Generally, the magnetization of the system is inhomoge-
neous due to the interplay between the applied field and the
demagnetizing fields. The equilibrium configuration of spins
is found by optimizing the total free energy of the system,
following the method described in Ref. 11. The equilibrium
orientation of a spin at site �i ,n� is then represented by two
angles ��n ,�n	 in polar coordinates �see Fig. 1b of Ref. 11�.
The linear SWs at low temperatures �T	Tc� are investigated
by the Green’s function method, following Refs. 11–13. We
first use the Holstein-Primakoff transformation to convert the
spin Hamiltonian into an equivalent form in boson operators.
The transformation is applied with respect to the local coor-
dinates �x� ,y� ,z��, which are assigned to each spin individu-
ally such that the y� axis is along the equilibrium direction of
that spin. Corresponding to our choice of coordinate axes,
the components of the spin vector Sin are represented in
terms of boson creation and annihilation operators ain

† and ain

by the expressions �denoting Sin
± =Sin

z�± iSin
x��

Sin
+ = 
2S�1 − ain

† ain/2S�1/2ain, �3�

Sin
− = 
2Sain

† �1 − ain
† ain/2S�1/2, �4�

Sin
y� = S − ain

† ain. �5�

The transformation relating the global coordinates �x ,y ,z� to
the local coordinates has the following form:

�Sin
x

Sin
y

Sin
z � = � cos �n sin �n sin �n sin �n cos �n

0 cos �n − sin �n

− sin �n cos �n sin �n cos �n cos �n
��Sin

x�

Sin
y�

Sin
z�
� .

�6�

We now substitute the above transformation into the
Hamiltonian �1�, which can be expanded in terms of boson
operators as H=E+H�2�+H�3�+H�4�

¯, where H�m� denotes a
term with m boson operators. The first-order term H�1� is
found to vanish due to the minimization of the energy E, and
the noninteracting �linear� SW excitations can be obtained
from the quadratic Hamiltonian H�2�. After making a one-
dimensional �1D� Fourier transform along the wire axis, it
has the form

H�2� = �
k,n,m

�An,m
�2� �k�ak,n

† ak,m + Bn,m
�2� �k�ak,n

† a−k,m
†

+ Bn,m
�2�*�k�ak,na−k,m	 , �7�

where k is the wave number along the y axis of symmetry.
The terms H�3� and H�4� describe the leading-order effects of
SW interactions and will not be considered further in the
present paper. The coefficients An,m

�2� �k� and Bn,m
�2� �k� depend on

the canting angles ��n ,�n	 and are quoted in the Appendix .
The boson operators ak,n

† and ak,m are represented in terms of
k and the site indices n and m in a particular layer.

In order to obtain the linear SW spectrum, the quadratic
Hamiltonian �7� must be diagonalized. This can be done by
applying a generalized Bogoliubov transformation as in our
previous paper.11 It was shown there that the diagonalized
Hamiltonian has the form

H�2� = −
1

2�
k

Tr
A�k�� +
1

2 �
k,l=1

N


k,l + �
k,l=1

N


k,lbk,l
† bk,l, �8�

where A�k� is the N�N matrix with elements given by An,m
�2� ,

and the new boson operators bk,l
† and bk,l, which satisfy the

usual commutation relations, are defined by

ak,n = �
l=1

N

Sn,l�k�bk,l + Sn,l+N�k�b−k,l
† , , �9�

a−k,n
† = �

l=1

N

Sn+N,l�k�bk,l + Sn+N,l+N�k�b−k,l
† . �10�

Here Sn,m�k� is an element of the 2N�2N transformation
matrix Sk, which satisfies the following condition:

Sk�I 0

0 − I
�S̃k

* = �I 0

0 − I
� , �11�

where I is the N�N unit matrix, and the tilde denotes a
transpose. Then the lth column of the matrix Sk, which we
denote by Sl�k�, as well as the noninteracting SW frequen-
cies, which we denote by 
k,l, can be found by solving the
following eigenvalue equation:

� A�k� 2B�k�

− 2B*�− k� − Ã�− k�
�Sl�k� = ± 
k,lSl�k� , �12�

where B�k� is the N�N matrix with elements given by Bn,m
�2� .

Also the + sign is taken for l=1,… ,N and the − sign for
l=N+1,… ,2N.

We note that information about the spatial distribution of
relative intensities of the SW modes can be deduced using
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the transformation matrix Sk. More precisely, we introduce

Pn�
k,l� = 
�Sn,l�k��2 + �Sn+N,l�k��2 �13�

as defining a probability amplitude for the mode with fre-
quency 
k,l propagating along the nth spin line. As a measure
of the spatial distribution of any mode it is useful also to
consider here the quantity D�rs ,
k,l�, associated with the SW
mode of frequency 
k,l propagating on the shell of radius rs
�in the units of a�, defined by

D�rs,
k,l� = �
n

shell�rs�

�Pn�
k,l��2, �14�

where rs=0,1 ,… ,r with r denoting is the effective radius of
the nanowire. The summation is over all sites in the shell
with radius rs.

We also want the relative intensities associated with the
discrete SW frequencies. This information can be acquired
from the Green’s functions of the form ��ak,n ;ak,m

† ��
 at fre-
quency 
. These quantities are directly related to the corre-
lation functions of the dynamical part of the spin operators,
and therefore contain a full description of the dynamic be-
havior of the system.16 We first calculate the Green’s func-
tions corresponding to the diagonalized Hamiltonian �8� by
solving the corresponding equation of motion to obtain

��bk,l;bk�,l�
† ��
 = ��bk,l

† ;bk�,l���−
 =
1

2�

�kk��ll�


 − 
k,l
. �15�

Using the transformations in Eqs. �9� and �10� we get

��ak,n;ak,m
† ��
 =

1

2�
�
l=1

N �Sn,l�k�Sm,l
* �k�


 − 
k,l
−

Sn,l+N�k�Sm,l+N
* �k�


 + 
k,l
� .

�16�

A Green’s function, which can be related to the total fluctua-
tion spectrum for the system, is then defined as

G�k,
� = �
n=1

N

��ak,n;ak,n
† ��
 =

1

2�
�
l=1

N � Gl
−�k�


 − 
k,l
−

Gl
+�k�


 + 
k,l
� ,

�17�

where

Gl
−�k� = �

n=1

N

Sn,l�k�Sn,l
* �k� , �18�

Gl
+�k� = �

n=1

N

Sn,l+N�k�Sn,l+N
* �k� . �19�

Finally the spectral intensity associated with each SW
mode is obtained by using the fluctuation-dissipation
theorem16 and is defined as

F�k,
� = − 2
1 + n�
��Im G�k,
 + i
� , �20�

where 
 is a positive infinitesimal �
→0� and n�
� is the
Bose-Einstein distribution function 
exp��
 /kBT�−1�−1. For
the room-temperature Brillouin scattering experiments10 to

be discussed later, we have �
	kBT and so n�
�
�kBT /�
.

III. NUMERICAL CALCULATIONS

We now apply the theory, as described above, to the SW
modes in ferromagnetic nickel nanowires. These provide a
good case for numerical studies because high-quality arrays
of nanowires have been fabricated �see, e.g., Refs. 5 and 6�
and three low-frequency SW branches were measured using
Brillouin light scattering �BLS�.10 The latter technique
supplemented earlier ferromagnetic resonance �FMR�
studies7,8 on other samples. We concentrate on two different
situations, the longitudinal and transverse cases, correspond-
ing to the external magnetic field applied either parallel
or perpendicular to the wire axis. The numerical calcula-
tions are carried out in term of the dimensionless param-
eters h=g�BH0 /SJ, han=g�BHan /SJ, and Rd= �g�B�2 /Ja3.
These characterize the external magnetic field and the single-
ion anisotropy fields �relative to SJ�, and the ratio between
dipolar and exchange interaction strengths. Equivalently,
starting from values for the magnetization Ms and the ex-
change stiffness D of the nanowires, we are able to deduce
all the microscopic parameters for our model. Specifically,
we have the relations h=H0a2 /D, Rd=Msa

2 /D, and SJ
=g�BD /a2. In the following calculations, we use
g�B=30.9 GHz/T �corresponding to g=2.21� for nickel,17

and the single-ion anisotropy fields are either set to zero or
are introduced phenomenologically.

In the study of nickel nanowires by BLS,10 the magneti-
zation Ms was deduced to be 0.0480 T, similar to the value
for bulk nickel.17 However, the exchange stiffness D was
obtained by fitting the results for the measured SW frequen-
cies at zero field with the macroscopic theory of dipole-
exchange SWs.15 In the case of small pinning the value of D
was inferred to be 3.13 T nm2, which is about one order of
magnitude smaller than for bulk materials.17 It is, therefore,
appropriate that in our calculations we examine the effect of
using different values of D, as well as the one reported in
Ref. 10. We note that in our calculations, surface pinning can
arise due to the total effective dipolar fields having a position
dependence 
e.g., terms in Eq. �A3�� as well as due to any
surface anisotropy field. This feature of a nonuniform dipolar
field causing pinning was recently pointed out for magnetic
nanostructures.18

The experimental BLS data10 covered two different cases,
namely, the variation of SW frequencies with nanowire ra-
dius in zero applied magnetic field, and the dependence of
SW frequencies on a magnetic field applied perpendicular to
the wire axis. The parameters reported in Ref. 10 correspond
to wave number k=0.041 nm−1 together with the above val-
ues for Ms and D. The exchange length in this case is de-
duced to be lex�2.27 nm, and we discuss its role later. The
nanowires used in the experiments have radii of 12.5, 15, 20,
and 27.5 nm, which are all larger than the exchange length
by a factor of 5 or more. This implies that a dipole-exchange
theory is appropriate.

A. Zero applied field

We note first, in the case of zero applied field, that the
macroscopic theory as developed by Arias and Mills15 was
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used in Ref. 10 to provide a good fit to the experimental data.
The approximate SW frequency �taking k�0 and small pin-
ning� employed by Wang et al. to fit their data for a wire of
radius R is


l = g�B�D�al/R�2
D�al/R�2 + 4�Ms�	1/2 �21�

where l�=1,2 ,3 ,…� plays the role of an azimuthal quantum
number and enumerates the modes. The lowest three values
of the constant al are a1=1.84, a2=3.05, and a3=4.20.

As discussed in our previous paper,11 the spin S at each
“lattice” site may be chosen to represent either a single spin
or a “cluster” of spins, in which case the lattice constant a
used in our model is an effective value. Therefore we have
some flexibility in the way of microscopically modelling a
nanowire of given radius R. We note that R=ra where r is
the radial factor defined in Sec. II and related to the total
number N of spins in any cross section. One constraint is that
the “lattice constant” a should be chosen such that it is
less than the exchange length, which is defined as
lex= �D /4�Ms�1/2. Within the scale of this exchange length,
the spins deviate only slightly from one to another and can
be treated as uniform and represented by an overall effective
spin. Obviously, for a nanowire of given R, one expects to
obtain better results by choosing smaller a and larger r,
within the limitations imposed by computational resourses. It
is evident that r and N must be large enough �and a small
enough� that the predicted results for the SW properties do
not depend on the precise choice of these parameters. To test
for these effects we have carried out calculations for different
sets of r and a values. In Table I we show the predicted
results of the SW frequencies for a nanowire of radius
R=15 nm modeled by three different choices. These are
for N=127, 217, and 331, corresponding to the sets
of values �r=6, a=2.5 nm�, �r=8, a=1.875 nm�, and
�r=10, a=1.5 nm�, respectively. Here the external magnetic
field and the single-ion anisotropy are set to be zero, and
only the six lowest modes are presented. Other parameters
are taken from Ref. 10. The results corresponding to different
choices of N are seen to be close to each other for these
low-frequency SW modes, implying that it is good enough to
choose r=10 and vary a to model nanowires of radius less
than about 25 nm, as mostly used in the experiments. For
nanowires of larger radius, one would need to increase the
value of r �and N�. Table I also shows how our results for

R=15 nm compare with the approximation of Eq. �21� and
with experiment. Note that the second mode 
k,2 is identified
as the uniform mode �as we discuss later�. Its amplitude is
distributed approximately uniformly thoughout the nanowire,
implying that this mode does not interact with light and
therefore is not observed using BLS. The third and fourth
discrete modes are relatively close together in frequency and
we surmise that �when linewidth effects are taken into ac-
count� they lead to only one peak in the spectral intensities.
Similar arguments apply for the fifth and sixth modes. Justi-
fication for this is discussed later, and tentatively we identify
the combined effect of these four modes with the second and
the third peaks observed in the experiments,10 respectively.

In Fig. 1�a� we show results for the SW frequencies ver-
sus nanowire radius in the case of no applied magnetic field
and no single-ion anisotropy, using the same parameters as in
Ref. 10. The nanowires are modeled by choosing r=10 �or
N=331� and taking a to range from 0.9 to 2.5 nm. When we
compare the results for nanowires of radius R equal to 12.5
and 15 nm with the experimental data10 �e.g., see also Table
I for the latter case� we find good agreement. More generally,

TABLE I. SW frequencies �in GHz� of a nickel nanowire with
R=15 nm in zero applied field, modeled by choosing N=127, 217,
and 331. Only the lowest few branches are considered, and com-
parisons are made with Eq. �21� and with experiment �Ref. 10�.

SW branch N=127 N=217 N=331 Approx. 
Eq. �21�� Expt.10


k,1 4.68 4.69 4.70 5.41 4.79


k,2 7.01 7.03 7.03


k,3 10.56 10.64 10.68 9.54 10.16


k,4 11.46 11.74 11.91


k,5 14.37 14.64 14.81 14.12 14.81


k,6 14.97 15.43 15.71

FIG. 1. SW frequency versus nanowire radius in zero applied
magnetic field and zero anisotropy field, taking D= �a� 3.13 and �b�
6.26 T nm2.

T. M. NGUYEN AND M. G. COTTAM PHYSICAL REVIEW B 72, 224415 �2005�

224415-4



the predicted behavior of the SW modes is more complicated
than seen from the BLS experiments. For example, in Fig.
1�a� one can notice a “crossing” effect �with mode repulsion�
of the two lowest modes near R=12 nm. One of these modes
�label u� is the analog of the uniform mode at k=0, which
would occur at frequency g�B2�Ms�9.3 GHz in the mag-
netostatic theory for cylindrical nanowires,14 independent of
the values for R and D. Its weak dependence on R in our
microscopic calculations is attributed mainly to the position
dependence of the dipole-dipole sums. However, a problem-
atic feature of Fig. 1�a� is that the lowest mode is seen to go
soft at the value of R�20 nm. This was found to be case
even when we used larger r in the modeling, e.g., r=12
implying N=469, so it is a consequence of the choice of
physical parameters rather than the coarseness of the numeri-
cal calculations. In relative term, the dipolar contributions
may be too strong, leading to a SW instability. This leads us
to reexamine the choice of D used in the calculations, which
might be too small �compared to the bulk value�, and also to
consider the effects of single-ion anisotropy.

To investigate the dependence of the SW frequencies
on the assumed value of the exchange stiffness, we have
carried out calculations with other choices of D. For ex-
ample, the results obtained on doubling the previous value
�so D=6.26 T nm2� are shown in Fig. 1�b�. One can see from
this figure that all the modes, except the uniform mode, are
shifted up to some extent when the value of D increases. The
effect of the lowest mode becoming soft is not seen in this
range of radius, but the results for the SW frequencies �e.g.,
at R=12.5 and 15 nm� are no longer consistent with the
experimental data.10 Hence we go back to the original value
of D, and we study the effects of nonzero single-ion aniso-
tropy on the SW frequencies. In the present case where there
is no applied magnetic field and the magnetization is
along the wire axis, we assume a uniaxial form with
Han= �0,Han ,0�. The inclusion of site label n indicates that
there may be a position dependence of this anisotropy, e.g.,
leading to a contribution to the surface pinning, and so we
choose Han to be Ha,surf at any surface site and to have the
bulk value Ha,bulk otherwise. In Fig. 2�a� we show the results
for the SW frequencies in the case where the surface aniso-
tropy field corresponds to Ha,surf=0.06 T, while the field in-
side the wires is Ha,bulk=0.02 T. Analogous results are rep-
resented in Fig. 2�b�, but choosing Ha,bulk=Ha,surf=0.06 T, so
there is no contribution to the surface pinning in this case.
Comparison of these with Fig. 1�a� shows that the lowest SW
branch is no longer predicted to become soft in an unphysi-
cal manner. Moreover, with these relatively small anisotropy
fields there is still good agreement between theory and ex-
periment for R=12.5 and 15 nm. The Han values are chosen
arbitrarily, but we note that their magnitudes are actually
comparable �or smaller� than the estimated demagnetizing
field within one of the experimental samples in Ref. 10,
namely, a disk-shaped sample containing R=15 nm nickel
nanowires in an array with a filling factor of �10% �by
volume�. Further experiments on nickel nanowires �e.g., by
FMR or BLS� would be useful for a proper determination of
the single-ion anisotropy fields. However, it is interesting to
note that Ebels et al.8 found evidence for a weak uniaxial
anisotropy from their FMR studies of nickel nanowires. The

magnitude was comparable to what we have assumed above.
We now turn to the spatial dependence of the SW

modes, particularly in terms of the radial parameter
rs �=0,1 ,2 ,… ,r� introduced in Sec. II. Specifically, we have
calculated for the nickel nanowires the function D�rs ,
k,l�
defined in Eq. �14�. For each mode �with a given k and l� this
quantity gives a measure of the mean squared amplitude in
the “ring” of sites with radius rs. Some numerical examples
are shown in Fig. 3 for two values of R=ra, namely, R=10
and 15 nm, both modeled by taking r=10 as described be-
fore. The behavior is rather similar in the two cases and
exhibits strong spatial effects with the occurence of nodes
and antinodes, which is as expected in terms of the spatial
quantization assumptions applied to the macroscopic theory
in Ref. 10. The higher-frequency branches of the SW spec-
trum will include modes with an increasing number of nodes
and/or antinodes, and the mode labeled 
k,6 is an example of
this effect. The number of spin sites in ring rs is equal to 6rs,
and we note that the uniform mode 
l=1 and l=2 in Figs.
3�a� and 3�b�, respectively� corresponds to an approximately

FIG. 2. SW frequency versus nanowire radius for two choices of
the anisotropy fields: �a� Ha,bulk=0.02 T, Ha,surf=0.06 T, and �b�
Ha,bulk=Ha,surf=0.06 T. The applied magnetic field is zero and
D=3.13 T nm2.
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linear increase of D�rs ,
k,l� with rs, as expected.
Next, in this zero field case, we consider the integrated

intensities of the modes. These are deduced from the Green’s
function analysis in Eqs. �17�–�20�. In the absence of damp-
ing effects, the integrated intensity F�k ,
� would consist of a
series of sharp spikes ��-function peaks� at the discrete 
k,l
values that we obtained earlier. In any experiment the SW
modes have an intrinsic damping and also there are limita-
tions due to instrumental resolution. Additionally, in BLS
from a metal, the strong optical absorption gives rise to a
spread of wave numbers and hence frequencies, the so-called
“opacity broadening” effect �see, e.g., Ref. 16�. In the recent
BLS measurements on nickel nanowires, the three resolved
peaks for the lowest SW modes when R=15 nm had a half-
width �0.5� full width at half maximum� of about 2 GHz
�see Fig. 1 of 10�. When we incorporate this phenomenologi-
cally into our theory, by replacing 
 in Eq. �17� by 
+ i

with 
=2 GHz, we obtain the results illustrated in Fig. 4. As
well as the experimentally studied cases of R=12.5 and 15
nm, we have included the case of R=10 nm in order to illus-
trate the trend in behavior when R becomes closer to the
exchange length lex. In all cases, the spectral intensity as a

function of frequency shows structure due to the SW modes
and, overall, there is a decrease in intensity with increasing
frequency, as is the case experimentally in the BLS spectrum
for the 15 nm nanowires.10 Of course, in a more complete
analysis, one would need to evaluate 
 from first principles
�by taking account of the higher-order effects contain in the
Hamiltonian�, and the resulting expression might depend on

 and k in general. The simple choice for 
 made here is
intended to illustrate qualitatively the lineshape effects that
are produced in the experimental conditions and to estimate
the relative intensities associated with the individual modes.
However, apart from the above, it is important to stress that
our calculated spectral intensities cannot be directly, or quan-
titatively, compared with the BLS spectra. The latter include
factors that describe how the light enters and leaves the
sample, including optical absorption effects, and takes ac-
count of the scattering process. In particular, the uniform
mode does not normally contribute to the BLS spectrum, but
it is included when we calculate the spectral intensities of all
SW modes as in Fig. 4. It would be of interest to develop a
Green’s function formalism for the light scattering intensity
in a nanowire �cylindrical� geometry, as has been done for
the planar geometries of thin films and superlattices �see,
e.g., Ref. 16�, but this is currently not available. In order to
give a better idea of the relative spectral intensity associated
with the individual SW modes, we show in Fig. 5 the effect
of reducing the half-width 
 by a factor of 10. The relative
heights of the Lorentzian-like peaks �some partially overlap-
ping� give an indication of the individual integrated intensi-
ties, including again the uniform mode.

FIG. 3. Spatial distribution of the lowest six modes for R= �a�
10 and �b� 15 nm. Other parameters are chosen to be as in Fig. 1.
The modes are numbered in increasing frequency.

FIG. 4. Spectral intensity versus frequency for R= �a� 10, �b�
12.5, and �c� 15 nm, modeling the line shapes with 
=2 GHz. The
short vertical lines mark the frequencies 
k,l in each case.
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Finally in this subsection, we discuss the effect of varying
the longitudinal wave number k on the SW frequencies, since
up to now we have employed the experimental value
k=0.041 nm−1 from Ref. 10. Results deduced for a 15 nm
nickel nanowire are shown in Fig. 6 taking, for simplicity,
the other parameters to be the same as in Fig. 1�a�. The k
dependence is weak, as expected, in this long-wavelength

regime, but we see nevertheless that there can be a subtle
influence on the mode hybridization �mode repulsion� behav-
ior for some branches.

B. Transverse applied field

We now generalize the numerical calculations to the case
where there is an applied field H0 in the transverse direction.
The BLS studies on nickel nanowires in Ref. 10 corre-
sponded to transverse fields up to 1 T, i.e., large enough to
reorient the magnetization direction to lie in the transverse
direction. For H0�0 there is no macroscopic theory avail-
able for the SW modes, because the magnetization becomes
spatially nonuniform and canted away from the wire axis.

First we calculate the SW frequencies and their spatial
distributions following the procedure outlined in Sec. II. We
take the case of nanowires with R=15 nm, modeled using
effective parameters r=10 and a=1.5 nm �so N=331� as de-
scribed before. The values of k, Ms, and D are for simplicity
taken to be the same as deduced from the zero-field analysis
of the BLS experiments,10 and we ignore single-ion aniso-
tropy effects. Some results for the lowest-frequency modes

k,l�l=1,… ,7� as a function of the transverse applied field
are shown in Fig. 7. For comparison we also represent the
experimental data �taken from the inset to Fig. 1 of Ref. 10�.
There are several points of interest. The transition at a field
value Hc�0.30 T, identified in Ref. 10 as the critical field to
“switch” the magnetization into the perpendicular orienta-
tion, is well produced in the theory using the assumed pa-
rameters. Next, the overall behavior of the SW modes below
and above Hc is fairly successfully described. We note that
our second mode �labeled u� is the “uniform” mode, and so
would not be seen in BLS. While the quantitative agreement
between theory and experiment is not close for larger H0,
this might be due to the choice of parameters �e.g. the ne-
glect of single-ion anisotropy�. In Fig. 8 we show some re-

FIG. 5. Similar to Fig. 4, but with the half-width reduced to

=0.2 GHz.

FIG. 6. SW frequency versus wave number k for a nickel nano-
wire with R=15 nm in zero applied field.

FIG. 7. Frequency versus transverse magnetic field for nickel
nanowires with R=15 nm, taking other parameters as in Fig. 1�a�.
The solid curves are the theoretical results, and the symbols repre-
sent the experimental BLS data from Ref. 10.
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sults for the spatial dependence of the modes for two values
of H0, chosen to be below and above the Hc value. As in Fig.
3, we plot D�rs ,
k,l� versus the radial parameter rs. Again it
can be seen that some of the modes exhibit spatial reso-
nances with the occurence of nodes and/or antinodes.

Finally, we have studied the spectral intensities of the
modes, once more choosing R=15 nm and values of H0 be-
low and above Hc. In Fig. 9 the results are calculated with
the half-width parameter 
=2 GHz, chosen in accordance
with the experimental data as mentioned earlier. The fre-
quencies of the lowest three broadened peaks in each case
correspond roughly to those seen experimentally,10 although
as cautioned before we have calculated spectral intensities
not BLS intensities. Some similar calculations are shown in
Fig. 10 but with the value of 
 reduced to 0.2 GHz. This
illustrates the spectral intensities of the individual modes
more clearly.

IV. DISCUSSION AND CONCLUSIONS

We have developed our previous theoretical work11 on the
discrete dipole-exchange SW modes in ferromagnetic nano-

wires by extending the analysis of the spatial distribution of
the modes and adding �through a Green’s function analysis�
results for the relative intensities and spectral line shapes of
the modes. Additionally, we allowed for the inclusion of an
applied magnetic field at arbitrary orientation to the cylindri-
cal axis of the nanowires and for effects due to single-ion
anisotropy �e.g., contributing to the pinning�. This was done
with the aim of applying the theory quantitatively to the BLS
experiments on nickel nanowires reported in Ref. 10. It was
particularly important to do this in the case of a transverse
applied field because the macroscopic �or continuum� ap-
proach does not apply, as we discussed.

Overall, we have shown an encouraging correspondence
between our theory and the experimental data, both for
H0=0 and for nonzero transverse H0. In the zero-field case

FIG. 8. Spatial distribution of the lowest seven modes for
R=15 nm in the transverse case, taking H0= �a� 0.1 and �b� 0.6 T.

FIG. 9. Spectral intensity for R=15 nm calculated in the trans-
verse case with 
=2 GHz, taking H0= �a� 0.1 and �b� 0.6 T.

FIG. 10. Similar to Fig. 9, but with the half-width reduced to

=0.2 GHz.
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we found that the same parameter values for Ms, D, and k as
employed previously on the basis of a macroscopic analysis
�with small pinning� gave good agreement with nickel nano-
wires for R equal to 12.5 and 15 nm, but for larger
R��20 nm� the lowest SW branch was predicted to show a
soft-mode behavior. Increasing the value of the exchange
stiffness D �e.g., by doubling its value to take it closer to the
accepted bulk value for nickel� produced a poor fit for the
frequencies of the SW modes, whereas by contrast keeping
the same D value but introducing small uniaxial single-ion
anisotropy could lead to satisfactory results. It would be of
interest to have further experimental data on nickel nano-
wires �e.g., by BLS or FMR� to deduce the single-ion aniso-
tropy in these samples. In the case of transverse H0 �and
using the same parameters� we were able to demonstrate sat-
isfactory agreement, at least qualitatively, with the experi-
ments on the 15 nm sample.

For both the zero-field and transverse-field cases we de-
duced results for the spatial distribution of intensity of the
modes with respect to a radial parameter, showing evidence
for nodes and/or aninodes in some cases, as postulated in
Ref. 10 for the case of H0=0. Results were also presented for
the relative spectral intensities of the different SW modes in
the case of R=15 nm. Qualitatively, these results showed the
same features as the BLS spectra,10 although we emphasized
that there is an important quantitative difference between the
two types of spectra, precluding a direct comparison. It

would be of interest, in future theoretical work, to extend the
formalism for light scattering intensities for planar surfaces
to the cylindrical geometry of the present case. This would
involve incorporating the details about how the light enters
and leaves the sample �e.g., through the end of a wire or
through the curved surface� and the effects of optical absorp-
tion. Finally, it would be of interest to carry out similar com-
parisons between our theory and BLS experimental studies
for nanowire samples of other materials �such as iron and
permalloy� as these become available, and this might neces-
sitate a more detailed analysis of single-ion anisotropy ef-
fects. Some preliminary BLS data for permalloy nanowires
have just been published.19
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APPENDIX

For arbitrary orientations of the applied and single-ion
anisotropy fields the coefficients An,m

�2� �k� and Bn,m
�2� �k� in Eq.

�7� are

An,m
�2� �k� = �n�n,m −

1

2
SJn,m�k��cos��n − �m� + sin �n sin �m + cos��n − �m�cos �n cos �m − i sin��n − �m��cos �n + cos �m�	

+
1

2
�g�B�2S�Dn,m

x,x �k�
sin �n cos �n sin �m cos �m + cos �n cos �m + i�cos �n sin �m cos �m − sin �n cos �n cos �m��

+ Dn,m
y,y �k�sin �n sin �m + Dn,m

z,z �k�
cos �n cos �n cos �m cos �m + sin �n sin �m + i�cos �n cos �n sin �m

− sin �n cos �m cos �m�� + Dn,m
x,z �k�
sin��n + �m��cos �n cos �m − 1� − i�cos �n − cos �m�cos��n + �m��

− Dn,m
x,y �k�
sin �n cos �n sin �m + sin �n sin �m cos �m + i�cos �n sin �m − sin �n cos �m��

− Dn,m
y,z �k�
cos �n cos �n sin �m + sin �n cos �m cos �m + i�sin �n sin �m − sin �n sin �m��	 , �A1�

Bn,m
�2� �k� = −

1

4
SJn,m�k��cos��n − �m��cos �n cos �m − 1� + sin �n sin �m + i�cos �n − cos �m�sin��n − �m�	

+
1

4
�g�B�2S�Dn,m

x,x �k�
sin �n cos �n sin �m cos �m − cos �n cos �m + i�cos �n sin �m cos �m + sin �n cos �n cos �m��

+ Dn,m
y,y �k�sin �n sin �m + Dn,m

z,z �k�
cos �n cos �n cos �m cos �m − sin �n sin �m − i�sin �n cos �m cos �m

+ cos �n cos �n sin �m�� + 2Dn,m
x,z �k�
sin �n cos �n cos �m cos �m + cos �n sin �m + i�cos �n cos �m cos �m

− sin �n cos �n sin �m�� − 2Dn,m
x,y �k�
sin �n cos �n sin �m + i cos �n sin �m�

− 2Dn,m
y,z �k�
sin �n cos �m cos �m − i sin �n sin �m�	 , �A2�

where
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�n = g�BHan
�x� sin �n sin �n + g�B�H� + Han

�y��cos �n + g�B�H� + Han
�z��cos �n sin �n

+ �
l

�SJn,l�0�
cos��n − �l�sin �n sin �l + cos �n cos �l� − �g�B�2S
Dn,l
x,x�0�sin �n sin �n sin �l sin �l

+ Dn,l
y,y�0�cos �n cos �l + Dn,l

z,z�0�cos �n sin �n cos �l sin �l + Dn,l
x,z�0�sin��n + �l�sin �n sin �l�	 . �A3�

Here Jn,m�k� and Dn,m
�,��k� denote the 1D Fourier transforms with respect to k of Jin,jm and Din,jm

�,� , respectively, and Han

= �Han
�x� ,Han

�y� ,Han
�z�� for the anisotropy field at site n.
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