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Dividing the lattice into blocks with a singlet ground state and knowing the exact low-energy spectrum of
the blocks and of dimers �or trimers� of blocks, it is possible to approach the lowest part of the lattice spectrum
through an excitonic type effective model. The potentialities of the method are illustrated on the one-
dimensional �1D� frustrated chain and the 1/5-depleted square and the plaquette 2D lattices. The method
correctly locates the phase transitions between gapped and nongapped phases.
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I. INTRODUCTION

The idea that one may see a periodic lattice as built from
interacting blocks of sites, rather than as interacting sites, is
computationally and intellectually attractive. Various meth-
ods take advantage of this idea in order to perform a scale
change. Among them, Wilson’s bright proposal of real space
renormalization group1 �RSRG� is certainly the most elegant
one, since it can be infinitely iterated and converges asymp-
totically on meaningful fixed points. In its original version,
the RSRG theory consists in a severe truncation of the Hil-
bert space since only the lowest states of each block are
selected at each iteration. The resulting eigenfunction is
therefore expanded on the products of the selected block
eigenfunctions. While the method works well in the single
impurity Kondo problem, it fails for most quantum systems
defined on lattices. Recent works have shown that its effi-
ciency can be dramatically improved when one introduces
effective interactions between the blocks. The so-called con-
tractor renormalization �CORE� method2–5 also starts by the
exact treatment of blocks of sites, selects a few eigenstates
�IA� in each block A and then defines interblock effective
interactions �IAJB�Heff�KALB�. The calculation of these effec-
tive interactions requires the determination of the spectrum
of the AB system and the use of the Bloch’s theory6 of ef-
fective Hamiltonians. In most applications the size of the
blocks remains small, several states per blocks are kept, and
three and/or four blocks effective interactions are extracted
from the lowest states of the trimers and/or tetramers of
blocks spectrum. A specific variant of the method has been
proposed by two of the authors under the name of RSRG-EI
�Refs. 7–9� �RSRG with effective interactions�. This method
treats spin lattices by considering blocks with an odd number
of sites and a doublet ground state which is the only one to
be explicitly selected. The blocks are then considered as qua-
sispins. From the spectrum of dimers or trimers of blocks
one may define an interblock Heisenberg Hamiltonian. A
proper design of the blocks frequently results in an isomor-
phism between the original lattice and the lattice of blocks.
Hence the process may be iterated, exhibiting critical ratios
of the elementary interactions and fixed points. The method-
ological studies have examined the following dilemma in the
search for accuracy. �i� Consider larger blocks and only

dimers of blocks �i.e., two-body effective interactions only�
or �ii� consider smaller blocks and trimers or tetramers �i.e.,
three and four blocks interactions�. In most cases the former
solution is more efficient. Among the methods that are based
on a similar philosophy, one may mention the block corre-
lated coupled cluster method10 which also starts from the
product of the ground state in each block and uses the
coupled cluster formalism,11–13 as well as the self-consistent
perturbation method.14 These last two methods do not pro-
vide any information on the gaps, while CORE and
RSRG-EI give good estimates of them.

The present work presents a method that is also inspired
by the scale change concept. The renormalized excitonic
method �REM� is focused on a determination of the gap. It
starts from the definition of blocks constituted of an even
number of sites and presenting a nondegenerate singlet
ground state. The blocks may be identical or not, but they
must lead to a periodic picture of the lattice in terms of
blocks �hence with larger unit cells�. The ground state is still
built from products of block ground states and the interblock
effective interactions are extracted from exact energies of
dimers or trimers of blocks, the energy appearing as the sum
of block energies plus interaction energies between blocks.
The main difference between REM and previous methods
concerns the treatment of excited states. The model space
involves the states which are obtained by low-energy excita-
tion on a single block, the other blocks remaining in their
ground state. The excitation may, of course, concern any
block. The effective interactions now describe the interaction
between an excited state of a specific block and the neighbor
blocks ground states and the possible jump of an excitation
from one block to an other one. These interactions are still
determined through the use of Bloch’s theory of effective
Hamiltonians. Then, the lattice lowest excitations are treated
through an excitonic model that makes use of these effective
quantities.

The theory is developed in Sec. II. In Sec. III the effi-
ciency of the method is then illustrated on three spin lattices,
namely, the 1D frustrated chain, the 1/5-depleted 2D square
lattice, and the 2D plaquette lattice. The three problems ex-
hibit phase transitions �of second and first order� which are
satisfactorily treated with the renormalized excitonic method
proposed here.
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II. METHOD

A. Principle

Let us consider a lattice constituted of blocks A ,B , . . .,
having a nondegenerate singlet ground state. �A

0 is the
ground state for the block A, of Hamiltonian HA,

HA�A
0 = EA

0�A
0 . �1�

The zero-order description of the lattice ground state is the
product of all blocks ground states

�0 = �
A

�A
0 . �2�

The corresponding zero-order energy is additive

E0 = �
A

EA
0 �3�

but, since the Hamiltonian involves interaction operators be-
tween blocks

H = �
A

HA + �
A

�
�B

VAB, �4�

the mean energy implies interblock interactions

��0�H��0� = �
A

EA
0 + �

A
�
�B

��A
0�B

0 �VAB��A
0�B

0�

= �
A

EA
0 + �

A
�
�B

vAB
0 . �5�

Here vAB
0 is a first-order interaction energy between blocks A

and B.
Solving the AB problem exactly

HAB��AB
0 � = �HA

0 + HB
0 + VAB���AB

0 � = EAB
0 ��AB

0 � �6�

enables one to define an improved interaction energy vAB

vAB = EAB
0 − EA

0 − EB
0 , �7�

which takes into account at all orders the perturbative effect
of excitations on A and B, i.e., of the vectors ��A

i �B
j �. Then,

from the exact treatment of trimers of blocks HABC��ABC
0 �

=EABC
0 ��ABC

0 �, it becomes possible to define three-body
quantities

vABC = EABC
0 − EA

0 − EB
0 − EC

0 − vAB − vBC − vAC. �8�

The generalization of the procedure to many-block interac-
tions would lead to the additive ground-state energy

E = �
A

EA
0 + �

A
�
�B

vAB + �
A

�
�B

�
�C

vABC + ¯ �9�

according to the simplest version of the CORE method.2,3

Let us notice that the ground state wave function remains the
zero-order function �0 given by Eq. �2�.

For the description of the excited states a different model
space is required. The block A may be either in its ground
state or in the lowest excited state �of the desired multiplic-
ity� �A

* , obtained from the eigenequation relative to HA

HA��A
*� = EA

* ��A
*� . �10�

One may introduce local excitation TA
+ and deexcitation TA

operators ��A
*�=TA

+��A
0�, ��A

0�=TA��A
*�.

Let us call �A
* , the on-block excitation lowest energy �A

*

=EA
* −EA

0 . The model space S0
* is constituted of products of

one block excited state and ground states on all the other
blocks:

S0
* = ��I

*	, �I
* = TI

+�0 = �I
*�

J�I

�J
0. �11�

We intend to represent the lowest excitations on an en-
semble of blocks from the set of locally singly excited con-
figurations of the type �I

* where the excitation is localized
on block I. This will lead to an excitonic treatment of the
excitation, ruled by the effective Hamiltonian

H* = �
I

�EI
*TI

+TI + �
�IJ�

hIJ� �TI
+TJ + TJ

+TI� , �12�

where �EI
* is a local excitation energy on block I in the

presence of the other blocks in their ground state and hIJ� is
an excitation transfer integral between blocks I and J. The
eigenvectors of the Hamiltonian will be linear combinations
of local excitations

�k�
* = �

I

�I
k��I

* = 
�
I

�I
k�TI

+��0, �13�

and the eigenvalues will be collective excitation energies.
The amplitudes of the quantities �EI

* and hIJ� will be ob-
tained from the spectral properties of dimers and trimers of
blocks, using the effective Hamiltonian theory. Let us con-
sider first the extraction of information from pairs of inter-
acting blocks.

B. Extraction of information from dimers of blocks

For a dimer AB the ground state is described as �A
0�B

0 . The
model space for the lowest energy excited states is spanned
by the two vectors �A

*�B
0 and �A

0�B
* . The corresponding pro-

jector is

PAB
* = ��A

*�B
0���A

*�B
0 � + ��A

0�B
*���A

0�B
* � . �14�

If one identifies the two eigenvectors �AB
* and �AB

*� of

eigenenergies EAB
* and EAB

*�

HAB��AB
* � = EAB

* ��AB
* � , �15�

HAB��AB
*� � = EAB

*� ��AB
*� � , �16�

which have the largest projections onto the model space, it is
possible to define an effective Hamiltonian built on the
model space and according to Bloch’s definition

Heff�PAB
* �AB

* � = EAB
* �PAB

* �AB
* � , �17�

Heff�PAB
* �AB

*� � = EAB
*� �PAB

* �AB
*� � . �18�

In order to have an hermitian effective Hamiltonian its eigen-

vectors must be orthogonal. We shall assume that PAB
* ��AB

*� �
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is orthogonal or Schmidt orthogonalized to PAB
* ��AB

* �. One
may write, after normalization,

�PAB
* �AB

* � = a��A
*�B

0� + b��A
0�B

*� , �19�

�PAB
* �AB

*� � = − b��A
*�B

0� + a��A
0�B

*� . �20�

The spectral definition of Heff leads to the following equa-
tions:

��A
*�B

0 �Heff��A
*�B

0� = a2EAB
* + b2EAB

*� = EA
* + EB

0 + v�A*�B,

�21�

��A
0�B

* �Heff��A
0�B

*� = b2EAB
* + a2EAB

*� = EA
0 + EB

* + vA�B*�,

�22�

��A
*�B

0 �Heff��A
0�B

*� = �EAB
* − EAB

*� �ab = hAB. �23�

The terms v�A*�B �vA�B*�� represent the effective interactions
between A* and B �between A and B*� and hAB is the effec-
tive interaction responsible for the transfer of excitation from
A to B which may be significantly different from the direct
interaction hAB

0 = ��A
*�B

0 �H��A
0�B

*�. If A and B are identical
blocks and if the AB dimer presents an element of symmetry
transforming A in to B and vice versa, �a�= �b�=1/�2, one
eigenvector is an in-phase combination of �A

*�B
0 and �A

0�B
* , of

energy EAB
*g , the other one being the out-of-phase combina-

tion, of energy EAB
*u :

PAB
* �AB

*g =
1
�2

��A
*�B

0 + �A
0�B

*� , �24�

HAB��AB
*g � = EAB

*g ��AB
*g � , �25�

PAB
* �AB

*u =
1
�2

��A
*�B

0 − �A
0�B

*� , �26�

HAB��AB
*u � = EAB

*u ��AB
*u � , �27�

v�A*�B = vA�B*� =
1

2
�EAB

*g + EAB
*u � − EA

* − EB
0 , �28�

hAB =
1

2
�EAB

*g − EAB
*u � . �29�

It is then possible to consider the infinite lattice in which
each block is surrounded by nearest-neighbor blocks B with
equal or different respective interactions. The ground-state
energy is given from Eq. �9�

E0 = �
K

EK
0 + �

K
�
�L

vKL. �30�

The local excitation energy appearing in the effective exci-
tonic Hamiltonian Eq. �12� is

�EI
* = EI

* − EI
0 + �

K�I

�vK�I*� − vKI� . �31�

It involves the excitation energy of the isolated block
�EI

*−EI
0� and the modification of the interaction energy be-

tween the block I and the other blocks under the excitation of
the block I �K�I�vK�I*�−vKI��. The amplitude of the term hIJ�
in Eq. �12� is taken from the two-block problem Eq. �23��
hIJ� =hIJ. The effective Hamiltonian matrix has a near-
diagonal structure, similar to that of a tight-binding mono-
electronic Hamiltonian. It generates bands which only repre-
sent the states of the lattice having large projections onto the
vectors �I

*, i.e., on the intrablocks lowest energy excitations.
This description of the lowest-energy states of the lattice
should be relevant. If the blocks are identical and engaged in
the same interactions of negative sign with their first neigh-
bors, the excitation energy to the lowest k� =0 state should be

�k�=0
*� = �EI

* − EI
0� + �

K�I

�vK�I*� − vKI� + �
K�I

hIK. �32�

If the KI couples present an element of symmetry transform-
ing K into I, using Eqs. �32� and �28� one obtains

�k�=0
*� = �I

* + �
K

��KI
* − �I

*� , �33�

where �I
*=EI

*−EI
0 and �KI

* =EKI
*g−EKI

0 are excitation energies
on the blocks and dimers of blocks, respectively. One notices
that the other root EKI

*u of the dimer disappears in this expres-
sion.

One sees that the derivation leads to a renormalized exci-
tonic method, where the excitation transfer integrals hIJ� are
renormalized. The effective interactions include to all orders
some indirect processes going through higher-energy �mul-
tiple� excitations on neighbor blocks as well as inter-block
excitations, as will be shown hereafter. Of course, the results
are dependent on the shape and size n of the blocks.

C. Extraction of information from trimers of blocks

It is possible to use the eigenstates of trimers of blocks to
extract three-blocks interactions. For a given shape of the
elementary blocks one must of course consider the various
types of trimers of blocks. While for the ground state the
three-block correction is given by Eq. �8�, for the excited
states the model space involves three vectors. The projector
on the model space is

PABC
* = ��A

*�B
0�C

0 ���A
*�B

0�C
0 � + ��A

0�B
*�C

0 ���A
0�B

*�C
0 �

+ ��A
0�B

0�C
* ���A

0�B
0�C

* � , �34�

one must identify the three eigenstates of the ABC problem
having the largest projections on the model space. Notice
that these three states are not necessarily the three lowest

ones. Let us call these three states �ABC
* , �ABC

*� , and �ABC
*�

and the corresponding eigenenergies EABC
* , EABC

*� , and EABC
*� .

For hermiticity the projected eigenvectors PABC
* �ABC

* ,

�ABC
*� PABC

* , and PABC
* �ABC

*� are orthonormalized, leading to

three vectors �ABC
* , �ABC

*� , and �ABC
*� and from the spectral

definition of Heff:
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HABC
eff = EABC

* ��ABC
* ���ABC

* � + EABC
*� ��ABC

*� ���ABC
*� �

+ EABC
*� ��ABC

*� ���ABC
*� � , �35�

one may calculate the diagonal matrix elements of HABC
eff and

reexpress them as

��A
*�B

0�C
0 �HABC

eff ��A
*�B

0�C
0 � = EA

* + EB
0 + EC

0 + v�A*�B + v�A*�C

+ vBC + v�A*�BC, �36�

which defines a three-body interaction v�A*�BC, and revised
excitation hopping integrals

��A
*�B

0�C
0 �HABC

eff ��A
0�B

*�C
0 � = hAB + hAB�C�. �37�

The last term represents the effect of C on the hopping be-
tween A and B. One also obtains effective hopping between
non directly interacting blocks �for instance, A and C through
B in a linear ABC configuration�. This indirect propagation
may proceed, for instance for triplet states, through the pro-
cess �A

*�B
0�C

0 ← →�A
*�B

*�C
* ← →�A

0�B
0�C

* . These effective in-
teractions are used in the excitonic treatment.

The matrix elements of the effective excitonic Hamil-
tonian �12� are

�EI
* = EI

* − EI
0 + �

J

�v�I*�J − vIJ� + �
JK

�v�I*�JK − vIJK�

�38�

and

hIJ� = hIJ + �
K

hIJ�K�. �39�

In periodic lattices when all blocks are equivalent, the exci-
tation energy for the vector k� =0 �which is not necessarily the
lowest one� is

�k�=0
*� = EI

* − EI
0 + �

J

�v�I*�J − vIJ� + �
JK

�v�I*�JK − vIJK�

+ �
J

hIJ + �

K

hIJ�K�� . �40�

The method is generalizable to four �and more� blocks. One
should however remark that when one increases the number
of blocks the identification of the eigenstates having the larg-
est projections onto the model space may become ambigu-
ous. When changing the ratio of the intersite interactions the
�say� third best eigenvector may jump from the eigenvector
number 3 to the eigenvector number 4, a problem which will
be documented below. In such a case the effective Hamil-
tonian will be a discontinuous function of the intersite inter-
actions, which is a rather unpleasant feature.

D. Comment

Of course, the method is only applicable to the study of
gapped systems and to locate the phase transition between a
gapped phase and a gapless phase. This limitation is due to
the fact that one uses different model spaces for the ground
state and for the excited states. The method cannot provide
the low energy physics of gapless antiferromagnetic lattices.

For such phases the method is unable to give a strictly zero
gap nor the density of states. As will be shown in the follow-
ing examples the calculated gap becomes extremely small
and in some cases it may be spuriously negative. This limi-
tation �which is not present in the CORE method� should be
kept in mind.

III. TEST APPLICATIONS

A. The 1D frustrated spin chain

The 1D antiferromagnetic �AF� spin chain with J1 spin
couplings between nearest-neighbor sites and J2 couplings
�also AF� between next-nearest-neighbor sites �see Fig. 1�, is
ruled by the Heisenberg Hamiltonian

H = 2J1�
i

S� iS� i+1 + 2J2�
i

S� iS� i+2. �41�

It presents a second order phase transition for �J2 /J1�c= jc

=0.2411.15–17 There is no gap for J2 /J1= j� jc while a finite
gap exists beyond this critical ratio. Close to the critical point
the gap increases very slowly, presenting an essential singu-
larity at jc. It behaves at this origin17 as

� � � exp
− 	

j − jc
. �42�

Density matrix renormalization group �DMRG� calculations
have been reported for this system,17 as well as analytic
treatments.18 The renormalized excitonic method has been
applied to �n=4, 6, 8, and 10 sites� blocks, and extrapolated.
For a given value of n, the calculated gap �*��n� for the
lattice, estimated from Eq. �33�, using the �*�n� and �*�2n�
excitation energies, is dramatically reduced with respect to
�*�2n�, due to the cancellation of the �n−1� components of
the �*� excitation. Actually in such a simple problem
�*��n�=2�*�2n�−�*�n�. If �*�n�=A+Bn−1+Cn−2,

�*��n� = A + C
 1

4n2 −
1

16n2� + ¯ = A +
3C

16n2 . �43�

From the different calculations of �*��n� it is possible to
estimate an extrapolated value of the gap. We have used a
polynomial fit

�*��n� = a1 + a2�n + 1�−2 + a3�n + 1�−3 + a4�n + 1�−4,

�44�

which gives the results reported in Fig. 2 �somewhat better
than a fit in terms of inverse powers of n�. One may notice
that the extrapolated value of the gap �*�=a1 for j� jc is not
strictly zero. The largest error is for j=0 where �*�

=0.0068J1. This value is within the accuracy of the extrapo-
lation techniques of DMRG �see Fig. 3 of Ref. 17�. The
calculated gap goes through a minimum at j=0.24, close to

FIG. 1. The nondimerized frustrated 1D chain.
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the critical value, where ��*��=3
10−6. It increases for
larger values of J2. Immediately beyond J2c the gap follows
the expected law. We found 	=0.21022, �=0.10253 for the
parameters of Eq. �42�. The calculated gap for the
Majumdar-Ghosh point �2J2=J1� is 0.465J1, which compares
well with the DMRG �Ref. 17� estimate �0.48J1� and the
result of an analytic development ��0.45J1�.18

B. The 1/5-depleted square 2D lattice

The 1/5-depleted square 2D lattice, built from square
plaquettes and octagons �see Fig. 3�, was first considered as
representing the 2D lattice of the CaV4O9 crystal. It appeared
later on that next-nearest-neighbor spin couplings are impor-
tant in this material, but the simple picture, with Jp AF cou-
plings on plaquette bonds and Jd AF couplings between ad-
jacent plaquettes, already presents an interesting physics
with three phases. When the plaquettes are weakly coupled,
i.e., Jp / �Jp+Jd�= j� jc, one may speak of a plaquette phase
and the system is gapped. It is also gapped when the dimers

connecting the plaquettes are weakly coupled, i.e., when
j� jc�. This phase is called dimer-phase. In between, i.e., for
jc�Jp / �Jp+Jd�� jc�, the lattice keeps a Néel order and this
phase is gapless. Several studies, using perturbative
expansions19 or quantum Monte Carlo �QMC� calculations20

agree on this picture and propose jc�0.4±0.01 and jc�
�0.51±0.01. We have tested our method on this problem.
The simplest block that one may consider is the octagon see
schema �A� of Fig. 3�. Its ground state is nondegenerate
whatever the Jp /Jd ratio. Actually starting from these blocks,
REM provides a correct picture of the physics, since the gap
disappears between jc=0.40967 and jc�=0.50945 �see Fig. 4�.
This result is obtained from eight-site blocks.

In order to check wether this excellent agreement was not
fortuitous we have introduced next-nearest-neighbor interac-
tions between octagons, applying the formalism of Sec. II C.
Two types of trimers �linear and perpendicular� have to be
considered. The results appear in Table I, and they deserve
the following comments.

The dependence of the gap on the j ratio is almost the
same as when working with dimers only. The gapless domain
in slightly reduced to the interval 0.39572� j�0.49784.

The third target vector for the perpendicular trimer �i.e.,
the third vector presenting the largest projection on the
model space� is the third eigenvector ��3� of the perpendicu-
lar trimer problem for j�0.41 and the fourth ��4� one for
j�0.41. This may be seen as a signature for a finite �24
sites� cluster of the vicinity of the phase transition in the
periodic lattice. A similar phenomenon is observed for the
linear trimer between j=0.40 and j=0.41. Regarding the
Néel-plaquette phase transition, a similar change of the target
vectors appears for 0.50� j�0.51 in the perpendicular tri-
mer superblock. This phenomenon of discontinuity of Heff

does not appear when working with dimers only. One might
eventually circumvent this problem by taking a weighted en-
ergy for the third “root” appearing in the spectral definition
of Heff. If P0 is the projector on the model space 	
= �P0�3�= �P0�3 � P0�3�, �= �P0�4�= �P0�4 � P0�4� and if
HABC��3�= �E3 ��3�, HABC��4�= �E4 ��4�, one might define

FIG. 2. Dependence of the gap of the frustrated 1D chain on the
j=J2 /J1 ratio. --�-- and --�-- direct gaps from 16 and 20 sites
segments, ¯�¯ and ¯�¯ REM gaps from 8 and 10 sites
blocks. The arrows indicate the benefit of the REM treatment. The
full line gives the extrapolated gap from REM.

FIG. 3. 1 /5-depleted 2D square lattice, various definitions of
blocks.

FIG. 4. Gap in the 1/5-depleted 2D square lattice. �—� from
octagonal blocks �A�, �…� from blocks of type �B�, �--� from blocks
of type �C�, ��� QMC calculations from Ref. 20.
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EABC
*� =	E3+�E4. One may alternatively change the shape of

the blocks. A stared eight-site block with four dimer bonds
around a plaquette pictured in scheme �B� of Fig. 3 is ex-
pected to be relevant for the dimer phase. The gap calculated
from these blocks almost coincides with the previously cal-
culated one, with a critical value jc=0.40 �see Fig. 4�.

For the plaquette phase we have considered blocks with
two plaquettes, as pictured in scheme �C� of Fig. 3. The gap
is slightly smaller than from the octagons, but the critical
values of disappearance of the gap, jc�=0.508, coincide. We
have compared our calculated gaps with the ones reported �in
Fig. 2 of Ref. 20� from QMC calculations, and the two meth-
ods practically coincide �within the uncertainties of reading
of the abovementioned figure�.

C. The plaquette lattice

The square type lattice built from interacting phaquettes is
characterized by intraplaquette J and interplaquette j AF cou-
plings �see Fig. 5�. The properties depend on the �= j /J ratio.
For j=0, the plaquettes are independent and the lattice is
gapped. It is not gapped for the j=J 2D square lattice, and
phase transitions are expected to occur for �j /J�c=�c and for
�J / j�c=1/�c �this last relation being due to the intrinsic sym-
metry between j and J�. Several works have been devoted to
this problem. Third-order series expansions21 and QMC
calculations22 suggest that �c�0.55. Extrapolations of finite

size exact diagonalizations23 fail to give a zero spin gap
whatever the value of �. A recent work has used the CORE
method24 together with order parameter susceptibilities, sug-
gesting a critical behavior between �=0.5 and �=0.6. The
problem of the gap is reexamined here using REM. Two
types of blocks have been considered. The first one involves
one, two or three plaquettes �n=4, 8, and 12 sites�, fragments
of a ladder see schema �A� of Fig. 5�. There are two types of
dimers, collinear or side by side. Let us call �EA the excita-
tion energy of the block and �EAB and �EAB� the excitation
energies for these dimers. For a block of n1 sites along the
longitudinal direction, n2 sites along the transverse one, our
model leads to the following expression of the gap
�E�n1 ,n2�:

�E�n1,n2� = 2�EAB�2n1,n2� + 2�EAB�n1,2n2� − 3�EA�n1,n2� .

�45�

Figure 6 reports the gap calculated for n1=2, 3, 4 and n2
=2. One sees that the gap vanishes when � tends to 1. An
extrapolation is possible in terms of n1

−1 and n1
−2, for n2=2,

TABLE I. Calculated spin gap for the 1/5-depleted square lat-
tice as a function of j=Jp / �Jp+Jd�.

gap
number of the third
relevant eigenvector

j dimers trimers linear perpendicular

0 1.0 1.0 3 3

0.1 0.777541 0.794138 3 3

0.2 0.533681 0.561073 3 3

0.3 0.272110 0.289024 3 3

0.39 0.041669 0.015530 3 3

0.39572 0.028882 0.0 3 3

0.4 0.019637 −0.01160 3 3

0.40967 0.0 −0.03536 4 3

0.41 −0.00068 −0.03610 4 3

0.42 −0.01882 −0.05463 4 4

0.49 −0.03646 −0.02158 4 4

0.49784 −0.02361 0.0 4 4

0.5 −0.01961 0.005945 4 4

0.50945 0.0 0.027081 4 3

0.51 0.001129 0.028707 4 3

0.52 0.024859 0.057802 4 3

0.55 0.105265 0.139275 3 3

0.7 0.463095 0.461658 3 3

0.8 0.654426 0.648198 3 3

0.9 0.831083 0.830046 3 3

1 1.0 1.0 3 3

FIG. 5. Definitions of blocks for the study of the plaquette
lattice.

FIG. 6. Singlet-triplet spin gap in the plaquette lattice from
2
2 block ���, 4
2 block ���, 6
2 block ��, 4
3 block ���.
Dashed line: extrapolation from n
2 block.
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�E�n1,n2 = cte� = A0 +
A1

n1
+

A2

n1
2 . �46�

�̄E�n2�=A0 is the n1 extrapolated value of the gap for a fixed
value of n2. Assuming that

�E�n1,n2� = 
	 +
�

n1
+

�

n1
2 + ¯ �
	 +

�

n2
+

�

n2
2 ¯ � ,

�47�

�E�n1,n2� = �̄E +
a1

n1
+

a1

n2
+

a2

n1
2 +

a2

n2
2 +

b

n1n2
�48�

one obtains

�E�n1,n2� = �̄E −
a2

2n1
2 −

a2

2n2
2 −

b

n1n2
. �49�

Confronting Eqs. �46� and �49� gives A0= �̄E−a2 /2n2
2, A1

=−b /n2, and A2=−a2 /2. Hence the final value of the ex-

trapolation gap is �̄E=A0−A2 /n2
2. Figure 6 reports the so-

calculated gap as well as the values �E�n1 ,n2� for n2=2 and
n1=2 ,4 ,6 as a function of the j / �J+ j� ratio. One sees that a
gapless phase appears for n1�2. After extrapolation the lat-
tice is found to be gapless for j /J�2/3=0.666. The value of
�c is somewhat larger than the commonly accepted value but
it represents a considerable improvement over the extrapola-
tions of finite lattices exact diagonalizations. One may men-
tion that, as a by-product of the present calculations, one
obtains, for j=J, a value of the gap of the two-leg ladder. The
extrapolation leads to �E=0.47J, close to the best QMC es-
timate �0.50J�.25 A second type of rectangular blocks have
been considered, involving odd numbers of sites in one di-
rection and even numbers in the other one see schema �B� of
Fig. 5�. In such a case there are three types of dimers. These
12-site �n1=3, n2=4� blocks are more compact than the pre-
vious �n1=6, n2=2� ones and the calculated gap, which ap-
pears in Fig. 6, is somewhat lower. Extrapolation is difficult
in this case, due to the difference in the physical nature of the
dimers, but the evaluations from different blocks are quite
consistent.

IV. CONCLUSION

We have presented a simple method for the study of the
gap in gapped periodic lattices. The method rests on the con-
sideration of blocks and a truncation of the Hilbert space to
products of a few eigenstates of the blocks as practiced in the
RSRG. In the past we have considered �2n+1�-site blocks,
with spatially nondegenerate doublet ground states, in spin
lattices. The blocks can then be seen as Sz= ±1/2 quasispins.

Using the theory of effective Hamiltonians, and the exact
spectrum of dimers �or trimers� of blocks, we have proposed
to renormalize the interactions between blocks, and the so-
obtained variant of CORE �RSRG-EI� happens to keep the
conceptual elegance of Wilson’s idea while gaining, at a very
low cost, numerical accuracy.7,8

The present work is closely related but different. It con-
siders blocks with even number of sites, presenting a nonde-
generate ground state. Again the exact treatment of the block
and of the dimers or trimers of blocks is employed to define
block effective energies and interblock effective interactions.
However different model spaces are used for the ground state
and for the lowest excited states. For the ground state �0,
built from the product of block ground states, the energy is a
simple sum of intra and interblock energies. The excited
states are linear combinations of locally singly excited func-
tions, products of an excited state on one block by the
ground states functions on the other blocks. This space is a
small fraction of those handled in RSRG techniques. The
knowledge of the excited states of dimers or trimers of
blocks enables one to define the effective interactions
between an excited block and its ground-state neighbors, as
well as effective excitation hopping integrals, which delocal-
ize the excitations. The effective interactions incorporate
complex processes, including multiple excitations or/and in-
terblock excitations. These informations are used to build an
excitonic Hamiltonian for the infinite lattice, and to estimate
the gap.

The method has been presented �and tested� in its simplest
version on spin lattices, with identical blocks, one excited
state per block, and extraction from dimers and trimers. It is
possible to generalize it to blocks of different sizes or topolo-
gies, and one may keep several excited states per block. The
renormalized excitonic method has been tested so far to the
research of singlet-triplet gaps but it is applicable as well to
singlet to singlet excitations. The bottleneck is the size of the
dimers or trimers of blocks, the lowest states of which have
to be calculated. In the few benchmark problems tested in the
present work the results are surprisingly accurate and the
method seems to be able to locate phase transitions between
gapped and gapless phases in 1D and 2D lattices at a very
low computational cost. Another application concerning the
Shastry-Sutherland lattice,26 shows the relevance of the here
proposed method for the study of phase transition in frus-
trated 2D spin lattices.
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