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Phonon density of states probed by inelastic x-ray scattering
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The formalism and the experimental conditions under which coherent inelastic x-ray scattering from
phonons can be utilized to determine the vibrational density of states are presented. The validity of the
approach is checked by comparison of results for diamond and MgO with ab initio lattice dynamics calcula-
tions and thermodynamic measurements. For diamond the agreement between experiment and theory is re-
markable, while for MgO slight differences can be observed, indicating the need for further refinement of the
lattice dynamics calculations. The generalization of the formalism is discussed, and potential applications in

various research fields are laid out.
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I. INTRODUCTION

The experimental determination of the energy distribution
function g(E), or vibrational density-of-states (VDOS), gives
important insight into the physical properties of materials,
since it allows the derivation of many thermodynamic and
elastic properties such as, for example, the specific heat, the
vibrational entropy, the Debye temperature, and velocity.' If
single crystals are available, the VDOS can in principle be
derived from a Born-von Kdrman (BvK) fit to the experi-
mentally determined phonon dispersion curves. Usually
these dispersions are, however, recorded only along the main
crystallographic directions. For nontrivial directions the con-
vergence to the real dispersion is not guaranteed, and conse-
quently the thus-obtained VDOS is only approximate. The
proper procedure necessitates a uniform sampling inside the
irreducible part of the first Brillouin zone (BZ) with a sub-
sequent interpolation, which is not subjected to the influence
of a model.? This approach is much more time consuming
and therefore rarely used.

In cases where sufficiently perfect single crystals are not
available, or for noncrystalline systems such as liquids and
glasses, g(E) has to be determined directly. This is com-
monly done by inelastic neutron scattering (INS). For inco-
herent monoatomic scatterers, the inelastic scattering spectra
are, after proper correction for the Debye-Waller factor and
multiphonon contributions, directly proportional to g(E). For
coherent scatterers the reconstruction of the VDOS from the
INS spectra necessitates (i) a correct directional averaging in
polycrystalline samples and (ii) an appropriate reciprocal
space sampling.’~ The sampling procedure of this so-called
“incoherent approximation” is usually obtained empirically.
For systems with different atomic species, only the general-
ized density of states can be obtained, for which the indi-
vidual contributions of the different constituent atoms are
weighted by their corresponding scattering length.

For elements with a Mossbauer isotope, the VDOS can be
obtained by nuclear inelastic scattering (NIS).%” In this
method, the nuclear resonance fluorescence, following the
absorption of x rays from Mossbauer nuclei, is recorded.
This process occurs on the time scale of the lifetime of the
nuclear resonance. Exploiting the time structure of synchro-
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tron radiation and using timing electronics allows the selec-
tive detection of only the resonantly excited quanta. Tuning
the energy of a highly monochromatized synchrotron beam
through the Mossbauer resonance while monitoring the fluo-
rescence yield then provides a direct measure of the VDOS.
The technique is limited to elements possessing a Mossbauer
isotope. This can, on the other hand, turn into an important
advantage for multi-element materials, since the dynamics of
the resonant nuclei can be studied separately.

As inelastic x-ray scattering (IXS) from phonons is essen-
tially a coherent scattering process, the same incoherent ap-
proximation as for coherent INS can be applied. Here, we
present a detailed description of the theoretical background
applied to IXS and show results on a monoatomic and binary
system, namely diamond and MgO. These results are con-
fronted with available ab initio lattice dynamics calculations,
and our derived elastic and thermodynamic properties are
compared to values available in literature. The applicability
and the limitations of this novel spectroscopic technique, as
well as potential applications, are discussed in the conclu-
sions.

II. THEORETICAL BACKGROUND

A. General formalism

The dynamical structure factor for IXS within the limit of
one-phonon scattering can be written as®

S(Q.E.1) =X G(Q.)F(E.T.0.)), W
J
where G(é,j) is
G(0.j) = Efn(é)eiéfn—wn(é 6,0, )M 2 ()

and the thermal factor is given by
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Here Q denotes the momentum transfer, E is the frequency
of the phonon, T is the temperature, and kg is the Boltzmann
constant. The sum in Eq. (2) extends over atoms in the unit

cell. fn(é) =fn(|é|)

n at position 7,, 6,(Q,j) is its eigenvector component in
mode j, M, is its mass, and W, is the corresponding Debye-
Waller factor. The upper and the lower signs in Eq. (3) cor-
respond to phonon creation and annihilation, respectively. An

=f,(0) is the atomic form factor of atom

alternative definition of the polarization vectors is &n(é, J)
=eXP(lQFn)én(Q,])» »
é,(0.j)=exp(~it-7,)-é,(Q—7,j), where 7 is an arbitrary re-
ciprocal lattice vector. If the Debye-Waller factors are as-

and the transformation rules are

sumed to be the same for all types of atoms (W), we obtain
0=|0|
S(Q.E.T) = g(Q.E)F(E) - exp(~2W), )

for the averaging over the sphere of radius

¢(Q.E) = < (0)(Q - 2,(0.j)M;"

2&E—EQ*,,-)>,
(5)

where (- --) means averaging over the sphere of radius Q and
the phonon modes j; the thermal factor is given by

F(E) = [exp(E/KT) — 117'E7". (6)

For large Q the normalized g(Q, E) should approach the gen-
eralized DOS:

G,(E)
$(Q.E) = AQ* 2 == £,(0), (7)
where G,(E)=2; én(é, HIPSE —E ;) are the partial densi-
ties of states and A is a scaling factor. For moderate values of
Q the function g(Q,E) has to be calculated directly from the

lattice dynamic model.

B. Sampling optimization

Several aspects have to be considered in order to ensure a
correct VDOS approximation. Intuitively, the larger the mo-
mentum transfer, the better the approximation, and in the
limit of a very large Q sphere, even one IXS spectrum will
give a good VDOS approximation. However, the radius of
the largest Q sphere is given by the maximum scattering
angle of the IXS spectrometer. Typical values and the corre-
sponding energy resolution for the ID28 spectrometer at the
ESRF are indicated in Table I. The momentum transfer range
corresponding to the first Brillouin zone has to be excluded,

since in this case the total momentum transfer Q is equal to
the phonon wave vector ¢, and only phonon modes with an
eigenvector component parallel to ¢ acquire finite intensity
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TABLE 1. Spectrometer characteristics for selected x-ray ener-
gies.

Energy Wavelength Resolution Omax
Reflection (eV) (A) (meV) (nm™1)
(888) 15816 0.7839 54 ~70
999 17793 0.6968 3.0 ~80
(11 11 11) 21748 0.5701 1.8 ~95

[see Eq. (2)]. Another aspect concerns the thickness of the
integration shell. While for INS there are no constraints as-
sociated to this, since the neutron scattering length b is inde-
pendent of Q, for IXS the atomic form factor f(Q) dis-
plays a pronounced Q dependence with an approximately
exponential decay, cast into the following form:® f(Q)
=37 ,a; exp(=b;0%) +c. This decay is element dependent, and
the half-value of f(Q) corresponds roughly to the inverse of
the spatial extent of the atom. This leads to a distortion of the
VDOS, if the integration is performed over a large Q range.

In general, no recipe exists for the choice of the shell
sampling, but in some special cases one can make semi-
quantitative estimations for preferable settings. If the averag-
ing is performed over a specific Q range with Q.;,<Q
< Qmax indicated by the second parenthesis, we obtain from
Eq. (5):

g(Qmin’ Qmax’E)

_ f_ﬁ NN - fnfm
_<<§ Mn|Qen(Q’J)| 5(E_EQ,j)+n§m V"m

X(08,(0.)) -(Q-&,(0.)) SE-Eg)) (8)
As the desired approximation is
2
g(Qmin’ Qmax’E) —A- <Q>2 2 fﬂ([<wQ>) G (E) (9)

the two following conditions have to be approximately sat-
isfied, corresponding to a uniform sampling of the BZ [Eq.
(10a)] and to the uniform mutual annihilation of cross terms
over the BZ [Eq. (10b)]:

|

2
E %|Q . én(Q’J)|25(E - Eé,j)

n n

2
2 [(£Q))

Iy G,(E), (10a)

— A(Q)*-

n

(5 Al G600 (66,0 3~ Eg)) 0

n#m VM
(10b)

No analytic solution is available for such a problem, and the
calculations have to be performed numerically.
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1. Uniformity of sampling

The uniformity of sampling was checked by a direct nu-
merical calculation: for every mesh point (N points inside the
BZ, mesh step: 0.0254") within the BZ its weight is taken
equal to the number of translationally equivalent points
within the sampling shell. As a measure of uniformity of
sampling the standard deviation of the weight of points w
from its average w over the BZ is taken:

U, = (1/1\% (w—w)2>

172

(11)

The smaller U, is, the better is the uniformity of sampling.

2. Uniformity of annihilation of cross terms

To estimate the uniformity of annihilation of cross terms,
the weight of every mesh point is taken equal to the sum
over translationally equivalent points within the sampling
shell with =1 weight, and the standard deviation of the
weight of points from zero over the BZ is then calculated:

C,= (1/1\% wz)"z. (12)

For the uniformity of sampling the output function depends
on the BZ shape only, whereas the uniformity of annihilation
of cross terms depends also on the cell content. Once the
parameters are established, the quality of sampling for an
arbitrary composition (within a given type of structure) can
be easily estimated by defining a parameter of merit:

( 7 )2 77 2 12
M= 2\ =2 U2+ (—#) - C(n,m)*
n M n n#m \ XM nM m
—\-2
X2 (13)
where f, corresponds to the average value of the form factor
over the sampled shell thickness.
For example, for diamond-type structures the atoms of the

basis are located at the origin and at 1/4 along the cube
diagonal [C1 (0 0 0) and C2(1/4 1/4 1/4)]:

(0-6c1(0.))=(Qé¢1(G.)),
(Q+2c2(0.1) = Q- ecld.j) - exp(%h +h+ z>>,

(Q+2ci(Q.]) +(Q-écx(Q.1))

(Q-2¢1(G.J) (Q-ep(d.j)),  h+k+l=4n,
_]-(Q-eci(Gu) (Q-éx(Gug). htk+l=dn+2,

~i(Q - 2c1(q.)) (Q-2ea(d.j)), h+k+l=dn+1,

L0 éc1(@)) ~(Q-é0(G.)),  h+k+l=dn+3.

Here, we introduce the reduced phonon wave vector ¢ de-
fined inside the first Brillouin zone, which is connected to the

total momentum transfer Q via the reciprocal lattice vector 7
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(Q=7+q). Terms (Q-é¢1(Q,))-(0Q-é(Q,)) mutually anni-
hilate in pairs corresponding to zones with h+k+I=4n(w
=+1)/h+k+I=4n+2(w=-1) and h+k+I=4n+1(w=+1)/h
+k+I=4n+3(w=-1). We therefore obtain two parameters,
C,(1) and C,(2), for the uniformity of annihilation of cross
terms, and the parameter of merit takes the following form:

M=\U>+C,(1)%+C,(2). (14)

This value is displayed in a three-dimensional plot in Fig.
1(a) as a function of Q,,;,, and the shell thickness Q,,,,—Oumin
in units of the inverse lattice parameter. It is important to
note that the above procedure corresponds to the worst sce-
nario, in particular, we neglect the annihilation of cross terms
due to both accidental and regular degeneracy (crossing of
two phonon branches and degenerate transverse phonon
branches, respectively). The annihilation we are dealing with
is only due to the phase shift in different Brillouin zones, and
the actual situation is always closer to a perfect averaging.

For NaCl-type structures the atoms of the unit cell are
located at the origin and at 1/2 along the cube diagonal [Na
(000)and C1 (1/2 1/2 1/2)]:

Q- ena(0.)) = (Q - énul o))
(Q-6c(0.)) = (0~ 2¢/G.j) - exp(mi(h+k+1)),

(0 ena Q) - (O - 26/(0.)))
(- enal@o)) - (O-eci(dn)) »
—(Q-en@)) (Q-éc(g)) , h+k+l=2n+1.

The U, [Eq. (11)] parameter is obviously the same as for
diamond. The parameter of merit for MgO is given in Fig.
1(b).

It is important to note that the developed criteria above
are independent of any specific lattice dynamics model, but
result from simple symmetry considerations. The advantage
of its use is that no a priori knowledge of the lattice proper-
ties is needed.

In order to extract the VDOS from the experimental spec-
tra, the contribution from multi-phonon processes and the
resolution function have to be properly subtracted. The in-
volved procedures are discussed in the following chapter.

h+k+1=2n,

C. X-VDOS reconstruction

1. Inelastic scattering probability and vibrational
density of states

Assuming a quasi-harmonic lattice with well-defined pho-
non states, the probability of inelastic scattering W(E) can be

expanded in terms of n-phonon contributions'”
W(E) =fLM( S(E) + 2, S“”(E)) , (15)
n=1

where f;,, is the Lamb-M®éssbauer factor (probability of re-
coilless scattering). The VDOS g(E) is directly proportional
to the single-phonon term in the expansion:
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FIG. 1. Estimated sampling quality for two selected structures: (a) diamond and (b) MgO. Q is given in units of the inverse lattice
parameter. The favorable points used in this study are marked by crosses.

ER8(|E|)
[1 —exp(— ElkgT)]’
(16)

SO(E) = f ;—:T exp(— iIEDM(7) = -

Here, Ex=1k?/2M is the recoil energy of a free nucleus of
mass M, and M(7) is the time-dependent correlation func-
tion, which describes the correlation between the displace-
ment u of the nucleus at a time interval t=#7.'0 The multi-
phonon contributions can be obtained recursively as

SU(E) = %S(U(E) ® S V(E). (17)

In the following, the data treatment from the raw experimen-
tal spectra to the properly normalized VOS shall be pre-
sented. Since the procedures closely follow the ones as pre-
viously described in great detail,!" we outline here only the
main steps.

2. Deconvolution procedure and subtraction of multi-phonon
contributions

The first step consists of the careful subtraction of the
elastic contribution from the experimental data. The thus-
corrected inelastic energy spectrum I(E), which only con-
tains the inelastic part, can be normalized according to Lip-
kin’s sum rules'?

JI(E)dE=Io(1 =fim)s (18a)

f I(E)EdE = I,E, (18b)

where [ is a scaling factor. In their present form Eq. (18b) is
valid for a symmetric, normalized instrumental resolution
function P(E) [[P(E)dE=1 and [P(E)EdE=0]. Equations
(18a) and (18b) thus allow the determination of I, and f;,,.

In the further treatment, the multi-phonon term is elimi-
nated simultaneously with the deconvolution of the instru-
mental function. To this purpose Q(7) and M(7), the Fourier
transform of the instrumental resolution function P(E) and
the inelastic energy spectrum I(E), respectively, are intro-
duced:

o(7) = f dE exp(iET)P(E), (19a)

Jo(7) = f dE expEDI(E). (19b)

Furthermore, using Qy(7)=(Q(7)+Py)/(1+Py), where P, is
a numerical parameter defining the degree of deconvolution,

one obtains for the Fourier transform of the single-phonon
scattering term S, (E)

f dE exp(iET)I(E)

e WX (20)

and, via back-transformation the frequency distribution func-
tion,
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g(E)= £[1 —exp(— E/kT)] J dar exp(—iET)M(7).
ER 277

(21)

3. Renormalization of the low-energy part of X-VDOS

As was already mentioned above, in the case of non-
monoatomic crystals only a generalized VDOS can be ob-
tained. It can, however, be shown that the real VDOS can be
recovered at least for the low-energy part. The generalized
X-VDOS g(E), normalized to unity [[zg(E)dE=1], for a
crystal containing N (different) atoms is given by

Z(E)=NX —G;;E) :

n n

7
2 n
—. 22
fﬂ ; M n ( )
If we keep in mind that the low-energy range of the X-DOS
corresponds to phonons of comparably large wavelengths,
the displacement of different atom species can be considered
approximately equal: |é,[>/M,=|é,,|*/M,,.

As g(E)=2,G,(E), the generalized DOS at low energies
can be written as

B =¢BXf: / M, (23)

In this manner, the properly normalized low-energy limit of
the real VDOS can be found:

I
g(E)=3(E)- -2 .2 M,

o~
=%(E) - a.
NS, 2 Ef 8(E) «a

(24)

This allows, even in multi-component systems, the determi-
nation of material properties such as the low-temperature
limit of 6, and the effective sound speed.

III. EXPERIMENTAL DETAILS

The experiment was performed on the Inelastic Scattering
beamline ID28 at the European Synchrotron Radiation Facil-
ity. The instrument was operated utilizing the silicon (8 8 8)
and (9 9 9) setup, providing a total energy resolution of 5.4
and 3.0 meV, respectively. The highly monochromatized x
rays were focused by a toroidal mirror into a spot size of
250 X 100 ,um2 (horizontal X vertical, full-width-half-maxi-
mum). The momentum transfer was selected by rotating the
analyzer arm around the sample position in the horizontal
plane. The spectrometer arm is equipped with five analyzers,
and therefore five spectra are recorded simultaneously. The
momentum resolution was set to 0.7 nm~! both in horizontal
and vertical directions. The spectra were recorded for two
angular settings of the spectrometer arm, thus covering a O
range of about 15 nm™! and yielding ten IXS spectra. The
exact angular positions were chosen to have an appropriate
sampling for the X-VDOS reconstruction (see above) and to
avoid Bragg peaks.

The resolution functions were experimentally determined
from a PMMA sample, kept at 10 K, and at Q=10 nm™. The
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FIG. 2. Effective scattering factors f>(Q)Q?* for Mg and O.

thus-obtained resolution functions are almost identical. For
the deconvolution procedure the individual resolution func-
tions were replaced by the best fit of a pseudo-Voigt function
to the average of the five experimental resolution functions.
The relative efficiencies of the analyzers were determined
using the elastic scattering from a PMMA sample at the same
angular position of the spectrometer as the ones used for the
VDOS measurements. These were then subsequently used in
order to properly weight the contribution of the individual
analyzers in the summation of the IXS spectra. The spectra
were recorded for the energy loss side (Stokes), including the
elastic line, centered around zero energy transfer. The energy
gain side (anti-Stokes) was constructed from the detailed bal-
ance condition, prior to the deconvolution procedure.

Single-crystal diamond powder with an average grain size
of 3—5 pum and MgO powder, obtained by grinding a single
crystal, was used. The compacted powders were placed in
aluminum holders between 8 um thick Kapton® foils (3 mm
thick/@3 mm for diamond and 1.5 mm thick/@2 mm for
MgO). In the case of MgO, the sample thickness corresponds
closely to the optimum thickness 7,,=1/u, where u is the
photoelectric absorption thickness. For diamond the effective
sample length is limited to 3 mm due to the depth of field of
the spectrometer. The resulting effective scattering volumes
thus amount to 0.08 and 0.04 mm? for diamond and MgO,
respectively.

In the case of diamond the VDOS can be directly ob-
tained, if the experimental spectra are properly weighted by
the factor f(Q)2Q? [see Eq. (5)]. For MgO we can only
extract the X-VDOS for the selected Q region. The weight-
ing with f(Q)™2 Q7% is no more useful as the contributions
for the two atoms are significantly different. On the other
hand, the variation of effective scattering factors f(Q)> Q>
for Mg and O is less than 8% over the sampled Q range (see
Fig. 2), therefore no correction is needed.

IV. RESULTS AND DISCUSSION
A. Diamond

The measurements for diamond were performed with both
5.4 and 3.0 meV energy resolution. For the higher energy
resolution the spacing between integration points was
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FIG. 3. Raw IXS spectra of polycrystalline diamond at scatter-
ing angles of 45.5°, 47.0°, 48.5°, and 50.0°. The instrumental en-
ergy resolution was 3.0 meV.

0.9 meV, the total acquisition time for each point ~235 s
(200 mA storage ring operation mode), and the maximal in-
elastic count rate ~2.5 s™!; for the lower energy resolution
the spacing between integration points was 1.8 meV, the to-
tal acquisition time for each point ~200 s (200 mA storage
ring operation mode), and the maximal inelastic count rate
~10 s~!. An example of the raw high-resolution spectra is
shown in Fig. 3.

The results of the properly weighted and summed IXS
spectra, recorded at the two incident photon energies, are
shown in Fig. 4. We note that besides differences in the vis-
ibility of certain features (due to the different energy resolu-
tions), the X-DOS spectra recorded at 15 816 and 17 794 eV
are very similar, despite the fact that the exact Q positions of
the analyzers are slightly shifted due to the difference in
photon energy. This confirms to some extent the validity of
the sampling procedure. Hereafter only the high-resolution
data will be discussed.

The deconvolution procedure gives a physically reason-
able value of the Lamb-Mossbauer factor of ~0.85 and a

2500

— 5.4 meV resolution
—— 3.0 meV resolution

2000+

15004

1000 4

Intensity (arb. units)

500 4

25 0 25 50 75 100 125 150 175 200
E (meV)

FIG. 4. “Incoherent” inelastic scattering spectra of polycrystal-
line diamond, recorded at 15816 eV (5.4 meV energy resolution)
and 17794 eV (3.0 meV energy resolution). The intensity is ap-
proximately normalized to equal x-ray exposures.
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FIG. 5. Reconstructed vibrational density of states of diamond
versus calculated ab initio results.'> The data are normalized to
equal surfaces.

multiphonon contribution of about 8% of the total inelastic
part. Our obtained single-phonon VDOS agrees well with the
ab initio calculated one,'> as can be appreciated in Fig. 5.
The position of special points is nearly identical, and further-
more the high-energy peak, due to the overbending of the
optical phonon branch,'>!3 is clearly seen.

The excellent quality of our experimental VDOS allows
the determination of several macroscopic parameters. For ex-
ample, the specific heat at constant volume is obtained by
Eq. (25), if the VDOS is normalized to unity:'

C — 3k f’5< E )2exp(E/kBT)g(E)dE
vo TR kgT/) [exp(ElkgT)—11>"

(25)
0

whereas the Debye temperature 6, is obtained formally from
the Debye equation.'® Their temperature evolution is dis-
played in Fig. 6. For Cy our results are in good agreement
with other experimental data: within ~2% below 100 K
(Ref. 17) and between 300 and 1100 K.'® The largest dis-
crepancy occurs at ~200 K and amounts to about 10%. The
sudden drop of the Debye temperature below 70 K is an
artifact due to the low signal level approaching zero energy
transfer. Nevertheless, a parabolic fit to the low-energy part
of the VDOS (from 0 to 25 meV) allows the determination
of the average sound speed vp. Our value for v is in excel-
lent agreement with the average sound speed calculated from
elastic constants!® according to

1 3 1 -1/3
=| — —d() , 26
Up < 12’7sz1 Vj3 ) ( )

where v; are found from the Christoffel’s equation. The low-
temperature limit of 6p, obtained from the same fit to the
VDOS, is obviously also very close to the calculated one:

o (wﬁ)%
v VDkB Vm .

27

Table II summarizes the main results. Further quantities
which can be derived are mean-squared thermal displace-
ment {(Ax)?)=—In f;/k*=0.002 A (k is the wave vector of

the incident photon); mean kinetic energy (7)~370 K at
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FIG. 6. (a) Specific heat Cy (solid line) and (b) Debye tempera-
ture 6p (solid line) calculated from the experimental VDOS. Ther-
modynamic results for the low-T (open diamonds)!'” and high-T Cy,
data (full diamonds)'® are shown as well. The solid diamond in
panel (b) indicates the zero-temperature 6p, derived from a para-
bolic fit to the VDOS.

room temperature; and mean force constant (F)~775
N/m.%

B. Magnesium oxide

The measurements on MgO were performed with 5.4
meV energy resolution. The spacing between integration
points was 1.2 meV, the total acquisition time for each point
~500 s (90 mA storage ring operation mode), and the maxi-

TABLE II. Selected macroscopic parameters for diamond.

Other
Calculated experimental
Parameter from VDOS data
fOp—high temperature 1930(40) K 1860 K (Ref. 21)
Op—Ilow-temperature limit 2250(50) K 2240 K (Ref. 19)
average sound speed 13.55(30) km/s 13.46 km/s
(Ref. 19)
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FIG. 7. (a) Raw IXS spectra of MgO powder at scattering angles
of 45.3°, 46.8°, 48.3°, and 49.8° and (b) “incoherent” scattering
spectrum.

mal inelastic count rate ~10 s~!. An example of raw spectra
is given in Fig. 7. The much stronger elastic contribution for
two out of the four spectra is due the proximity of a Bragg
peak.

The same procedure of deconvolution and multiphonon
substraction as for diamond is formally applied to MgO. The
recoil factor is used as fitting parameter, and its value, for
which the multiphonon contribution is properly removed, is
close to the Mg recoil factor (~5 meV). Figure 8 shows the
comparison of the experimental X-VDOS with results from
different ab initio calculations.’”>> As expected, the overall
form of the X-VDOS is roughly the same as for the VDOS,
but relative intensities of peaks are changed due to the dif-
ferent scattering power of Mg and O for x rays. As none of
the calculations match the experimentally determined pho-
non dispersion perfectly,”®?’ there are consequently signifi-
cant differences in the VDOS as well. These concern the two
main peaks, centered around 36 and 52 meV, and the high-
energy cutoff. The best agreement between experiment and
theory is obtained for calculations using density functional
perturbation theory (DFPT) within the local density approxi-
mation (LDA).?223 The calculations by Drummond et al.,*
performed using DFT within the quasi-harmonic approxima-
tion, underestimate the transverse acoustic (TA) phonon en-
ergies and overestimate the energies of the highest optical
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FIG. 8. Reconstructed generalized X-VDOS of MgO versus cal-
culated ab initio results.

branches. The calculation by Parlinski ef al.?> shows the larg-

est energy difference for the first peak in the VDOS (~4
meV) and significantly underestimates the energy of the
highest optical branches.

As only the X-VDOS is available, no thermodynamic data
can be obtained. The present data should be completed by
N-VDOS measurements in order to obtain the partial VDOS
for Mg and O, or, less directly, the present X-VDOS results
should be used for the adjustment of ab initio models, most
likely using DFPT within LDA. As discussed in Sec. II C 3,
it can be shown that the real VDOS can be obtained at least
for the low-energy part. For this portion of the VDOS (E
<20 meV) we obtain a scaling factor « of about 0.908 and
extract from the thus-corrected generalized VDOS the low-
temperature limit of the Debye temperature and the average
sound speed by a parabolic fit to the experimental data. In
Table III we compare our results with the ones calculated
from available elastic data. The agreement is remarkable,
thus proving that even for a multi-component system aggre-
gate properties can be correctly extracted.

C. Applicability and limitations of the method

The general applicability of the method for the study of
elementary solids can be easily estimated. The overall scat-

TABLE III. Selected macroscopic parameters for MgO.

Calculated Calculated from
Parameter from VDOS elastic data?®
Op—Ilow-temperature limit 935(20) K 940 K
average sound speed V) 6.63(13) km/s 6.65 km/s
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FIG. 9. Relative inelastic scattering intensity of elementary sol-
ids of mass number Z for an incident photon energy of 15.8 keV,
Q=63 nm~!, and for an optimum sample thickness, but not thicker
than 3 mm (a, upper panel) or a sample thickness of 20 um (b,
bottom panel).

tered intensity is proportional to nsf*((Q)) -exp(—s/\), where
n is the concentration of scatterers, s is the sample thickness,
and \ is the x-ray attenuation length (\=1/u). The optimum
signal is attained, if s=\; on the other hand s must not ex-
ceed the focal depth of field of the Rowland-type spectrom-
eter. For the ID28 spectrometer the depth of field is given by
2 mm/sin(6,), where 2 mm corresponds to the horizontal
size of the detector pinhole and 6 is the scattering angle. For
typical VDOS setups the depth of field is limited to about
3 mm. As can be seen from Fig. 9(a), where we take a thick-
ness cutoff equal to 3 mm, in the worst case the scattered
intensity is only six times lower than in our experiment
(equivalent diamond thickness for a powder is taken as
2 mm).

As a consequence, the X-VDOS can be determined with
an appropriate accuracy for essentially all elemental solids.
One of the potential applications of this novel technique is
the VDOS determination of samples submitted to high pres-
sures. The most commonly used high-pressure device is the
diamond anvil cell (DAC). Taking as a benchmark a typical
thickness of 20 um, the corresponding dependence of the
scattering intensity as a function of Z is shown in Fig. 9(b). It
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is obvious that for low Z materials, the mismatch of the
acceptable sample thickness and the attenuation length A\ is
so large that the scattered intensity is very weak. For ele-
ments heavier than, say, scandium, however, the signal level
should be sufficiently high to allow measurements in a DAC.

V. CONCLUSIONS

Inelastic x-ray scattering within the “incoherent approxi-
mation” approach promises to become a valuable tool in the
determination of the frequency distribution function, thus
complementing well-established inelastic neutron and
nuclear scattering techniques. Our criteria developed for a
uniform sampling allow the reliable determination of the
VDOS, as demonstrated for the case of diamond, used as a
benchmark. We obtain a very good agreement of our
X-VDOS and derived elastic and thermodynamic properties
with calculations and other available experimental results,
thus convincingly proving the validity of our approach. The
MgO X-VDOS is in remarkable agreement with ab initio
calculations by Schiitt et al.?*> and Ghose et al.?? using DFPT
within LDA and independently determined macroscopic
properties (Cy, 6p,vp). Significant differences occur for
other ab initio calculations.?*?> QOur experimental results
therefore provide a discriminating test for the validity of the
approximations made in the respective calculations. Our

PHYSICAL REVIEW B 72, 224305 (2005)

semi-quantitative analysis shows that the technique can be
applied to a very wide class of materials and furthermore
opens the possibility to study systems in extreme conditions
such as high pressure and/or high temperature. This is of
particular interest for geophysical studies, where, besides a
host of thermodynamic properties, the determination of the
VDOS in combination with low Q measurements (within the
first Brillouin zone) allows the determination of v, and v,
(average longitudinal velocity), respectively. From this, the
average shear velocity vy can be directly derived without
precise knowledge of the equation-of-state.

It is worth noting that with respect to INS, the amount of
material needed is three to five orders less, and anomalous
absorption (like for B, Cd, Gd...) or anomalously high cross-
sections (H) are not present. For multi-component systems it
has to be taken into account that the X-VDOS is only defined
for a particular spherical shell in Q space due to the Q de-
pendence of the atomic scattering factor f(Q). Since the scat-
tering strengths for neutrons and x rays are essentially differ-
ent, it opens the possibility to extract directly the partial
densities of states in at least binary systems from coupled
N-VDOS and X-VDOS measurements.
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